

Site C Clean Energy Project

Peace River Physical Habitat Monitoring Program (Mon-3)

Construction Year 5 (2019)

Dan Ciobotaru, PGeo Golder Associates Ltd.

Kathryn DeRego Semiao, PhD Golder Associates Ltd.

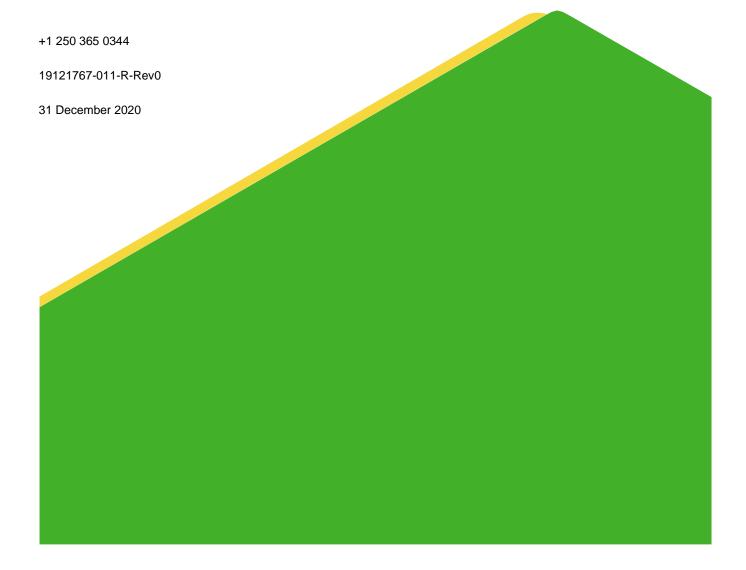
Rowland Atkins, PGeo, MSc Golder Associates Ltd.

Dustin Ford, RPBio Golder Associates Ltd.

REPORT

Peace River Physical Habitat Monitoring Program 2019 Investigations (Mon-3)

Submitted to:


Nich Burnett

BC Hydro 1111 West Georgia Street, 9th Floor Vancouver, BC V6E 4G2

Submitted by:

Golder Associates Ltd.

201 Columbia Avenue, Castlegar, British Columbia, V1N 1A8, Canada

Distribution List

Electronic Copy - BC Hydro

Electronic Copy - Golder Associates Ltd.

Suggested Citation: Golder Associates Ltd. 2020. Peace River Physical Habitat Monitoring: 2019

Investigations. Report prepared for BC Hydro, Vancouver, BC. Golder Report No.

19121767-011F: 38 pages + 3 appendices.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission from BC Hydro, Vancouver, BC.

i

Executive Summary

The Site C Clean Energy Project (the Project), including Project construction, reservoir filling, and operation, could affect fish and fish habitat via three key pathways: changes to fish habitat (including nutrient concentrations and lower trophic biota), changes to fish health and fish survival, and changes to fish movement. These paths are examined in Volume 2 of the Project's Environmental Impact Statement (EIS; BC Hydro 2013).

BC Hydro submitted an application to Fisheries and Oceans Canada (DFO) for an authorization under Section 35(2)b of the *Fisheries Act* for several components of the Project associated with dam construction, reservoir preparation, and reservoir filling (BC Hydro 2015a). In accordance with Provincial Environmental Assessment Certificate (EAC) Condition No. 7 and Federal Decision Statement Condition Nos. 8.4.3 and 8.4.4 for the Project, BC Hydro developed the Site C Fisheries and Aquatic Habitat Monitoring and Follow-up Program (FAHMFP; BC Hydro 2015b). The Peace River Physical Habitat Monitoring Program (Mon-3) represents one component of the FAHMFP that will monitor the effect of the Project on physical habitat in the Peace River.

Once complete, the Project will shift the point of regulation on the Peace River to approximately 85 km downstream of Peace Canyon Dam (PCD), which will influence physical processes driving river geomorphology, such as water velocities and sediment transport capacities (BC Hydro 2015b). Downstream of the Project, the daily range of water levels is predicted to increase, with the magnitude of these increases expected to be greatest closest to the Project. Associated changes to river flows will affect the types and distributions of aquatic habitats available to fish both upstream and downstream of the Project (BC Hydro 2015b).

The focus of Mon-3 is to monitor changes in physical habitat within the future diversion headpond during construction of the Project (2015 to 2023), and to monitor changes in physical habitat within the Peace River between the Project and the Many Islands area in Alberta during construction of the Project (2015 to 2023) and the first 30 years of operation (2023 to 2053; BC Hydro 2015a). Data collected in 2019 represent baseline data that will be used in before-after comparisons in future study years to monitor changes in physical habitat in the Peace River over time. When possible, the 2019 baseline dataset was supplemented with physical habitat data collected in 2015 (Golder 2016) and in 2017 and 2018 (Golder 2018, 2019) as part of the Offset Effectiveness Monitoring. Data collected as part of Offset Effectiveness Monitoring are spatially limited in extent, and do not cover the entire area surveyed in 2019.

In 2019, river cross-section surveys were conducted at 52 previously established transects on the Peace River (Golder 2015) to identify riverbed elevations. Bathymetry data were collected using an acoustic doppler profiler (ADP), and topographic data were collected using a real-time kinematic (RTK) GPS unit. Elevation data for portions of the river cross-sections that could not be surveyed by the ADP or RTK were extracted from LiDAR data collected and provided by BC Hydro. The above data were spliced together to produce a single dataset detailing the riverbed elevation at each transect location.

Grain size measurements were collected using a pebble count sampling procedure, with the field crew measuring the medial dimension (e.g., the b-axis) of at least 100 stones in a grid pattern laid out with a measuring tape at each sample location. The results from pebble counts were then used to calculate the D16, D35, D50, D84, and D95 percentiles (the particle size for which 16%, 35%, 50%, 84%, and 95% of the sample is finer than that size, respectively) at each location.

Overall, results from 2019 indicated an aggrading riverbed (i.e., deposition causing an increase in elevation) within the footprint of the future diversion headpond, a dynamic riverbed (i.e., aggrading and degrading) in the in-stream works area of the Project (between RKm 88 and RKm 105 as measured downstream from WAC Bennett Dam), and a static riverbed downstream of the Project between RKm 105.5 and RKm 110. Key results from the 2019 survey, which was conducted between 5 July and 14 September, as well as key trends observed between 2015 (Golder 2015) and 2019 are summarized as follows:

- Between 2015 and 2019, the riverbed near the upstream end of the diversion headpond aggraded, raising by as much as 1 m at some transects. The increase in deposited sediments is likely due to remobilization of upstream alluvial deposits and from sediment contributions from the Halfway River and Cache Creek. These potential sources are likely mobilized during high flow events between the two survey periods. The riverbed in the downstream portion of the diversion headpond appeared static. The additional sediment observed near the upstream end of the diversion headpond may continue to travel downstream over time and accumulate at other transect locations, which may confound the ability of future surveys to identify whether changes in channel profile and substrate composition are attributed solely to changes in the background sedimentation rate, development and operation of the future diversion headpond, construction activity, or a combination of all of these factors.
- Between 2015 and 2019, the riverbed was dynamic immediately downstream of the Project and within the footprint of in-stream works. Depending on the location, the riverbed degraded as much as 3 m or aggraded as much as 1 m. The most substantial aggradations were noted 800 m downstream of the mid-stream island that was recontoured for offset area Upper Site 109L (BC Hydro 2015c).
- The bed elevation within Upper Site 109L was lowered approximately 2 m during instream excavations in 2015 and 2016 to increase the amount of permanently wetted habitat available to fish and to reduce stranding risk. Since then, the channel has aggraded as much as 3 m. As of 2019, some portions of the riverbed have aggraded to elevations higher than those recorded prior to the development of the offset area.
- With the exception of minor variations in riverbed elevation near either the left or right downstream banks (as viewed facing downstream) the active channel at all 10 transects monitored between the downstream end of the in-stream works area and the Pine River's confluence with the Peace River were similar in both channel shape and riverbed elevations during the 2015 and 2019 surveys.
- Nineteen river cross-section surveys were conducted between the Pine River confluence and the Many Islands area. These data will be compared to similar surveys during future study years.
- Grain size measurements were completed in 2019 at 53 locations, from the upstream end of the future diversion headpond (approximately RKm 88) downstream to Many Islands area (RKm 225). The D50 and D95 values calculated from 2019 pebble count data were similar to historic D50 and D90 data recorded at locations between the Halfway River confluence and the British Columbia-Alberta border where the surveys overlapped (Church 2015), with gravel size sediment as the main river substrate. Downstream the British Columbia-Alberta border, the D50 and D95 values increase compared to the upstream area, and larger sized sediment (cobble) constitute a larger fraction of the sample compared to samples from sites further upstream.

Based on the cross-section surveys and grain size measurements conducted between 2015 and 2019, it can be concluded that overall changes to fish habitat within the Mon-3 study area over this period have been minimal.

Data collected from 2015 to 2019 will represent the baseline, pre-Project state of physical habitat in the Peace River. Management hypotheses will be statistically tested after the river diversion phase of construction (i.e., after 2020). The findings of Mon-3 will provide valuable context to results and trends observed in other FAHMFP components, most notably the Peace River Large Fish Indexing Surveys (Mon-2, Task 2a; e.g., Golder and Gazey 2020), Offset Effectiveness Monitoring (Mon-2, Task 2d; e.g., Golder 2020), and the Site C Fish Stranding Monitoring Program (Mon-12).

Acknowledgements

The Peace River Physical Habitat Monitoring Program (Mon-3) is funded by BC Hydro's Site C Clean Energy Project. Golder Associates Ltd. would like to thank the following individuals for their contributions to the program:

BC Hydro

Nich Burnett Vancouver, BC

Dave Hunter Vancouver, BC

Mike McArthur Vancouver, BC

Brent Mossop Vancouver, BC

The following employees of *GOLDER ASSOCIATES LTD*. contributed to the collection of data and preparation of this report:

Dustin Ford, BSc, RPBio Project Manager, Senior Fisheries Biologist, Associate Shawn Redden, BSc, RPBio Project Director, Senior Fisheries Biologist, Associate

Gary Ash, MSc

Dan Ciobotaru, PGeo

Kathryn De Rego, PhD

Rowland Atkins, PGeo, MSc

Senior Advisor, Report Editor

Intermediate Hydrologist, Coauthor

Geomorphology Specialist, Coauthor

Principal, Senior Geomorphologist

Demitria Burgoon, BSc Fisheries Biologist Paul Grutter, BSc, RPBio Fisheries Biologist

Brad Hildebrand, BSc Fisheries Biology Specialist Kevin Little, BSc Fisheries Biology Specialist

Michael Hildebrand, BSc, RPBio Fisheries Biologist

Carmen Orosz Survey Technician
Chloe Denny, MGIS, BSc, GISP GIS Specialist

Carrie McAllister Project Coordinator
Devin Dickson Warehouse Technician
Ron Giles Warehouse Technician

List of Acronyms and Abbreviations

Acronym	Description
ADP	Acoustic Doppler Profiler
DFO	Fisheries and Oceans Canada
EAC	Environmental Assessment Certificate
EIS	Environmental Impact Statement
FAHMFP	Fisheries and Aquatic Habitat Monitoring and Follow-up Program
LB	Left bank as viewed facing downstream
LiDAR	Light Detecting and Ranging
Mon-3	Peace River Habitat Monitoring Program
PCD	Peace Canyon Dam
Project	Site C Clean Energy Project
RB	Right bank as viewed facing downstream
RKm	River Kilometre as measured downstream from WAC Bennett Dam

Table of Contents

1.0	INTRO	DDUCTION	1
	1.1	Key Management Questions	3
	1.2	Management Hypotheses	3
	1.3	Study Objectives	4
	1.4	Study Area and Study Period	4
2.0	METH	IODS	6
	2.1	River Cross-Section Surveys	6
	2.2	Grain Size Measurements	7
3.0	RESU	ILTS	8
	3.1	River Cross-Section Surveys	8
	3.1.1	Diversion Headpond	10
	3.1.2	Peace River Downstream of the Project	13
	3.1.2.1	In-Stream Works Area	13
	3.1.2.2	In-Stream Works Area to Pine River Confluence	16
	3.1.2.3	Pine River Confluence to Many Islands	18
	3.2	Historical River Cross-Section Comparison	20
	3.3	Grain Size Measurements	20
	3.3.1	Historical Grain Size Measurements	30
4.0	DISC	JSSION	32
	4.1	Diversion Headpond	32
	4.2	Peace River Downstream of the Project	33
	4.2.1	In-Stream Works Area	33
	4.2.2	In-Stream Works Area to Pine River Confluence	34
	4.2.3	Pine River Confluence to Many Islands	34
	4.3	Fish Habitat	35
	4.4	Summary	35

5.0	CLOS	URE	36
6.0	LITER	ATURE CITED	37
TAB	LES		
Table	e 1:	Summary of field activities conducted in 2019 in support of BC Hydro's Peace River Physical Habitat Monitoring Program (Mon-3).	5
Table	e 2:	Summary of changes observed during river cross-section surveys conducted in 2015 and 2019 within the footprint of the future diversion headpond (Transect #US01 to #US12). Transects are presented in upstream to downstream order.	.11
Table	e 3:	Summary of changes observed in river cross-sections between 2015 and 2019 in the Project's downstream in-stream works area of the Peace River (Transect #DS01 to #DS08). Transects are presented in upstream to downstream order.	13
FIGU	IRES		
Figur	e 1:	Peace River thalweg elevations (in metres above sea level; MASL) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference. In 2015, cross-section profiles were only conducted downstream to the Pine River confluence.	8
Figur	e 2:	Change in Peace River thalweg elevations (in metres) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.	9
Figur	e 3:	Change in sediment storage (m³/m) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.	9
Figur	e 4:	Cumulative change in channel sediment storage (m³) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.	10
Figur	re 5:	The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25 th and 75 th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #US12 (most upstream) through #US01 (most downstream) within the future diversion headpond as recorded during 2015 and 2019 river cross-section bathymetry profile surveys.	12
Figur	re 6:	The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25 th and 75 th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #DS01 (most upstream) through #DS08 (most downstream) of the Peace River as recorded during 2015 to 2019 river cross-section bathymetry profile surveys.	.15

Figure 7:	The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25 th and 75 th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #DS09 (most upstream) through #DS18 (most downstream) of the Peace River as recorded during 2015 and 2019 river cross-section bathymetry profile surveys.	17
Figure 8:	The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25 th and 75 th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #DS19 (most upstream) through #DS37 (most downstream) of the Peace River as recorded during river cross-section bathymetry profile surveys, 2019.	19
Figure 9:	Thalweg Profile from Historical and Recent Cross-Sections Surveys (1968 – 2019)	.20
Figure 10:	Summary of D16 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.21
Figure 11:	Summary of D35 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.22
Figure 12:	Summary of D50 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.22
Figure 13:	Summary of D84 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.23
Figure 14:	Summary of D95 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.23
Figure 15:	Summary of percent material by substrate type by RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference. Boulders comprise less than 1% of the sample and are only visible in the top left portion of the figure.	.24
Figure 16:	Comparison of D50 values recorded in 2015 and 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	24
Figure 17:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #US12 (blue), #US11 (pink), and #US10 (green), and at the right bank (RB) of Transect #US10 (red) along the Peace River, 2019.	25
Figure 18:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #US09 (blue) and #US08 (red), and at the right bank (RB) of Transect #US08 (pink) along the Peace River, 2019.	.25
Figure 19:	Grain size distributions (points) and cumulative percentages (lines) along the right banks (RB) of Transects #US06 (blue), #US04 (pink), #US02 (red), and #US01 (green) along the Peace	26

Figure 20:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS02 (blue), #DS03 (pink), and #DS09 (red), and at the right bank (RB) of Transect #DS14 (green) along the Peace River, 2019	.26
Figure 21:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS14 (blue) and #DS17 (red), and at the right banks (RB) of Transects #DS15 (pink) and #DS18 (green) along the Peace River, 2019	.27
Figure 22:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS20 (pink) and #DS21 (red), at the right bank (RB) of Transect #DS22 (green), and at the left bank (LB) of Transect #19 (blue) along the Peace River, 2019	.27
Figure 23:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS24 (blue), #DS25 (pink), #DS26 (red), and #DS27 (green) along the Peace River, 2019	.28
Figure 24:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS28 (blue), #DS29 (pink), and #DS31 (green), and at the right bank (RB) of Transect #DS30 (red) along the Peace River, 2019.	.28
Figure 25:	Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS31 (blue) and #DS32 (pink), and at the left bank (LB) of Transects #DS33 (red) and #DS34 (green) along the Peace River, 2019.	.29
Figure 26:	Grain size distributions (points) and cumulative percentages (lines) at a mid-channel bar (MC) along Transect #DS35 (blue) and along the right banks (RB) of Transects #DS35 (pink) and #DS37 (red) along the Peace River, 2019.	.29
Figure 27:	Summary of D50 percentile (in mm) at river cross-sections surveyed between 1968 and 2019, by year and RKm, as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.30
Figure 28:	Summary of D90 percentile (in mm) at river cross-sections surveyed between 1968 and 2019, by year and RKm, as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference	.31

APPENDICES

APPENDIX A

Maps and UTM Coordinates

APPENDIX B

River Cross-Section Data (2015 to 2019)

APPENDIX C

Grain Size Data

1.0 INTRODUCTION

Potential effects of the Site C Clean Energy Project (the Project) on fish¹ and fish habitat² are described in Volume 2 of the Project's Environmental Impact Statement (EIS, BC Hydro 2012) as follows³:

The Project has the potential to affect fish habitat in two ways. The Project may destroy fish habitat by placing a permanent physical structure on that habitat, or the Project may alter fish habitat by changing the physical or chemical characteristics of that habitat in such a way as to make it unusable by fish. Destruction or alteration of important habitats may be critical to the sustainability of a species population.

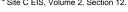
The Project may affect fish health and survival. It may cause direct mortality of fish or indirect mortality of fish by changing system productivity, food resource type and abundance, and environmental conditions on which fish depend (e.g., water temperature).

The Project may affect fish movement by physically blocking upstream and downstream migration of fish or by causing water velocities that exceed the swimming capabilities of fish, which results in hindered or blocked upstream migration of fish. Blocked or hindered fish movement has consequences to the species population. Fish may not be able to access important habitats in a timely manner or not at all (e.g., spawning habitats). Blocked fish movement may result in genetic fragmentation of the population.

Condition No. 7 of the Project's Provincial Environmental Assessment Certificate (EAC), Schedule B states the following:

The EAC Holder must develop a Fisheries and Aquatic Habitat Monitoring and Follow-up Program [FAHMFP] to assess the effectiveness of measures to mitigate Project effects on healthy fish populations in the Peace River and tributaries, and, if recommended by a QEP [Qualified Environmental Professional] or FLNRO [BC Ministry of Forests, Lands and Natural Resource Operations], to assess the need to adjust those measures to adequately mitigate the Project's effects.

Furthermore, the Project's Federal Decision Statement (FDS) states that a plan should be developed that addresses the following:


Condition No. 8.4.3: an approach to monitor changes to fish and fish habitat baseline conditions in the Local Assessment Area (LAA); and

Condition No. 8.4.4: an approach to monitor and evaluate the effectiveness of mitigation or offsetting measures and to verify the accuracy of the predictions made during the environmental assessment on fish and fish habitat.

The Peace River Physical Habitat Monitoring Program (Mon-3) is designed to provide supporting data to address the EAC and FDS conditions described above. Specifically, Mon-3 represents one component of the FAHMFP (BC Hydro 2015a) that aims to "monitor physical habitat within the [diversion] headpond (the Peace River from Site C upstream to near the Wilder Creek confluence) during Construction Years 5 to 8 [2019 to 2022] and within the Peace River downstream of the Project to the Many Islands area in Alberta during Construction Years 1 to 9 [2015 to 2023] and during Operation Years 1 to 30 [2023 to 2053]" (BC Hydro 2015a).

The potential effects of the Project on physical habitat in the future diversion headpond and in the Peace River downstream of the Project are described in Volume 2 of the Site C EIS⁴. These effects are briefly summarized below.

⁴ Site C EIS, Volume 2, Section 12.1.

1

¹ Fish includes fish abundance, biomass, composition, health, and survival.

² Fish habitat includes water quality, sediment quality, lower trophic levels (periphyton and benthic invertebrates), and physical habitat.
³ Site C EIS, Volume 2, Section 12.1.2.

The Project will shift the point of regulation on the Peace River approximately 85 km downstream of Peace Canyon Dam (PCD; the current point of regulation). The future diversion headpond will extend approximately 18 km upstream of the Project, influencing physical processes driving river geomorphology, including increasing water depths and decreasing water velocities (BC Hydro 2015b). Water levels in the future diversion headpond immediately upstream of the Project will be approximately 5.5 m higher than existing conditions (at the 90th percentile water level) and will be approximately 1.0 m higher than existing conditions near the Wilder Creek confluence (approximately 13 km upstream of the Project; KCB and SNC 2015), Changes in physical habitat within the future diversion headpond are expected to be greatest closest to the Project. The higher water levels in the future diversion headpond are expected to result in increased sediment inputs from the erosion of newly inundated areas, altering existing clean riverbed materials⁵.

Downstream of the Project, changes to the flow regime will affect the temporal and spatial availability of aquatic habitat, with the Project's influence being greatest in the approximately 16 km long portion of the Peace River between the Project and the Pine River's confluence with the Peace River⁶. Following construction of the Project, the mean annual sediment transport load in the Peace River is expected to reduce by 54% immediately downstream of the Project and reduce by 21% at the Pine River confluence due to sediment (mainly sands) settling in the upstream reservoir (BC Hydro 2015b). Downstream of the Pine River confluence, the Project is not expected to result in substantial changes to sediment depositional patterns and any changes observed are expected to be due to natural processes (e.g., valley wall erosion and landslides along the river) or driven by the ongoing response of the river channel to upstream flow regulations that started in 19677.

Fish species in the Peace River have the potential to be affected by changes in physical habitat in a variety of ways. For example, spawning habitat may be altered by changes in water depths or substrate sizes, or substrate interstitial spaces may be filled in with finer materials. Furthermore, aggradation or degradation within near-shore areas may create or reduce shallow-water rearing habitats for Young of-the-Year and immature life stages. Increased deposition and scouring also have the potential to create new gravel bars or depressions which may result in the creation of habitat or increase fish stranding risk.

The current fluvial geomorphology and sediment transport regime in the Peace River have been in a state of adjustment to the regulated flow conditions created in 1967 by the development of WAC Bennett Dam. The fluvial geomorphology baseline conditions in the Peace River are both naturally variable and are undergoing a long-term response to regulation. Downstream of Peace Canyon Dam to the Site C damsite location, the Peace River flows mainly within a valley that is incised approximately 200 m below the Alberta Plateau surface. The river channel flows within a nearly continuous alluvial valley-bottom fill, but the river channel impinges against the valley walls in many locations. The river channel has a wandering to low-order braided planform with abundant gravel bars and wooded islands. The bed material in this reach is predominantly gravel and cobble. This reach of the river has been most influenced by upstream river regulation due to its location immediately downstream from the two existing dams, and in most places along this reach of the Peace River, the bed material has rarely been mobilized since the onset of regulation (EIS, Vol.2, BC Hydro 2012).

Site C EIS, Volume 2, Section 12.4.2.2.

⁵ Site C EIS, Volume 2, Section 12.4.1.2. ⁶ Site C EIS, Volume 2, Section 12.4.2.2.

Downstream of the Project to the BC-Alberta border, the Peace River flows within similar morphological conditions (see above), and has also been influenced by upstream river regulation. Similar fluvial geomorphology characteristics were also observed in the channel where the bed material has rarely been mobilized since the onset of regulation (EIS, Vol.2, BC Hydro 2012).

From the BC-Alberta border downstream to the Many Islands area, the Peace River flows within a similar valley type, incised approximately 200 m below the surface of Alberta Plateau. The river valley becomes more narrow and the channel more continuously confined by valley walls downstream of the border. The river channel has a dominantly single-thread planform. The bed material in this reach is dominantly fine gravel (Church, 2011). The historical changes in geomorphology and sediment transport caused by river regulation are moderated in this reach of the river due to tributary inflows and the lower abundance of alluvial channel features.

Mon-3 is designed to address uncertainties presented in the Site C EIS (BC Hydro 2012). Existing physical habitat was described in the Site C EIS (BC Hydro 2012) using a combination of methods, including channel morphology, bed surface grain size, and physical habitat mapping. In 2019, data generated in support of Mon-3 included both hydrographic and topographic surveys of monitoring cross-sections using an acoustic doppler profiler (ADP) (hereafter the river cross-section surveys) and grain size measurements (i.e., pebble count surveys).

Mon-3 will monitor physical habitat within the future diversion headpond during construction (2015 to 2023) and monitor physical habitat within the Peace River from the Project downstream to the Many Islands area in Alberta during construction (2015 to 2023) and the first 30 years of operation (2023 to 2053). The findings of Mon-3 will provide valuable context to results and trends observed in other FAHMFP components including the Peace River Large Fish Indexing Surveys (Mon-2, Task 2a; e.g., Golder and Gazey 2020), Offset Effectiveness Monitoring (Mon-2, Task 2d; e.g., Golder 2020), and Site C Fish Stranding Monitoring Program (Mon-12).

1.1 Key Management Questions

The overarching management questions for Mon-3 reflect that the Project can affect physical habitat in different ways:

- 1) "How does the construction of the Project affect physical habitat in the Site C Construction Headpond?"
- 2) "How does the construction and operation of the Project affect physical habitat in the Peace River between the Project and the Many Islands area in Alberta?"

1.2 Management Hypotheses

Mon-3's management questions will be addressed by testing a series of management hypotheses:

- H₁: "The Site C Construction Headpond will not affect channel morphology or bed sediment composition within the extent of the headpond."
- H₂: "The construction and operation of the Project will not affect channel morphology, bed surface grain size composition, or wetted area in the Peace River between the Project and the Many Islands area in Alberta."

Mon-3's management questions and hypotheses were setup in the Fisheries and Aquatic Habitat Monitoring and Follow-up Program (FAHMFP) developed as a requirement of Condition 7 of the Environmental Assessment Certificate (EAC) of the Project.

1.3 Study Objectives

In 2019, Mon-3 included a bathymetric and topographic survey to generate (together with elevation data extracted from LiDAR data provided by BC Hydro, for portions of the river that could not be surveyed by the ADP or RTK) river cross-section profiles at historical monitoring locations (Golder 2015) located between the upstream limit of the future diversion headpond and Many Islands in Alberta. At each river cross-section (i.e., transect) location, pebble counts were conducted at representative sites to obtain grain size data for analysis. When possible, results of the 2019 survey were compared to data collected in 2015 (Golder 2016), 2017 (Golder 2018), and 2018 (Golder 2019), and to historical river cross-section and grain size data collected from 1968 to 2005 (Church 2015). Data collected as part of offset effectiveness monitoring program from 2017 to 2018 (Golder 2018, 2019), are spatially confined, and do not cover the entire area study area.

1.4 Study Area and Study Period

The study area for Mon-3 includes an approximately 138 km long section of the Peace River from near the outlet of Cache Creek (RKm 87 as measured downstream from WAC Bennett Dam) downstream to the Many Islands area (RKm 225). Within this area, 52 river transects were surveyed, and included 12 transects upstream of the Project within the footprint of the future diversion headpond (Transect #US01 to #US12; RKm 87 to RKm 105.5), and 40 transects downstream of the Project (Transect #DS01 to #DS37; RKm 105.5 to RKm 225) (Appendix A, Figures A1 to A15). For analyses herein, transects situated downstream of the Project were grouped as follows: transects between the Project and the downstream extent of in-stream works associated with the Project's development (Transect #DS01 to #DS08; RKm 110); transects from the downstream extent of the in-stream works area to downstream of the Pine River's confluence with the Peace River (Transect #DS09 to #DS18; RKm 122); and transects from the Pine River's confluence downstream to the Many Islands area (Transect #DS19 to #DS37; RKm 225). UTM coordinates of the left and right banks of each transect (as viewed facing downstream) are provided in Appendix A, Table A1.

Grain size data were collected at 53 sites. Of those 53 sites, 17 were located upstream of the Project and 36 sites were located downstream of the Project (Appendix A, Figures A1 to A15). The locations of the 53 sites were selected to be both close to a river transect (either upstream or downstream of it) and to sample different river morphology features (mid-channel bars, side bars, or point bars). UTM coordinates of grain size measurement locations are provided in Appendix A, Table A2.

In 2019, field work for Mon-3 was conducted in the summer and fall. The bulk of the river cross-section surveys were conducted from 5 and 10 July (Table 1). A single day of surveys was also conducted on 14 September while crews were in the study area conducting grain size measurements. Grain size measurements were conducted from 10 to 14 September (Table 1). Field work was scheduled to coincide with anticipated high (July) and low (September) water levels in the Peace River. The river cross-section surveys were conducted to coincide with

anticipated higher water levels in the summer to facilitate the integration of 2019 LiDAR data provided by BC Hydro. Grain size data were collected in the fall to coincide with anticipated lower Peace River water levels to ensure larger areas of the active river channel were exposed and accessible for assessment.

Table 1: Summary of field activities conducted in 2019 in support of BC Hydro's Peace River Physical Habitat Monitoring Program (Mon-3).

Sample Activity	Sample Dates
River Cross-Section Surveys	5–8, 10 July 2019 14 September 2019
Grain Size Assessment	10–14 September 2019

2.0 METHODS

2.1 River Cross-Section Surveys

River cross-section surveys included areas of the active channel that were within the bankfull flow at the time of survey. Riverbanks located beyond the bankfull flow limits at the time of survey were not surveyed and were obtained from LiDAR survey data provided by BC Hydro. LiDAR data were collected by BC Hydro in May 2019. At each of the 52 transects, three different methods were used to collect coordinates (Easting, Northing, and Elevations) of surveyed elevations:

- Bathymetry surveys: A RiverSurveyor® M9 dual beam acoustic doppler profiler (ADP) system (SonTek/Xylem Inc., San Diego, CA, USA) was used to measure the river depth from a boat. These measurements of water depth were used to establish the riverbed surface elevation. The ADP transducer was mounted 0.15 m below the water surface with a minimum measurable river depth of 0.35 m. Water velocity data were collected during the survey and provided to BC Hydro but are not presented in this report.
- Topographic surveys: A Trimble® R8 GPS RTK system (Trimble Inc., Sunnyvale, CA, USA) was used to measure topography in select wadable areas of the Peace River and on shoreline areas above the water surface at the time of the survey. Topographic elevations were measured along the established transects and included areas of the active channel below the bankfull elevation. Survey data of the riverbanks upslope of the bankfull elevation were not collected along any of the river cross-sections.
- Elevation data for portions of the river cross-sections that were not surveyed by the ADP or RTK were extracted from LiDAR data provided by BC Hydro.

During bathymetric surveys, the Trimble GPS system was attached to the ADP system and the local positional coordinates (latitude and longitude) were transmitted to the ADP unit, which were incorporated into the raw data file collected by the ADP data software to provide UTM coordinates for surveyed locations. The survey methods were referenced to the same datum, and at the end of the survey, these data were spliced together to produce a single dataset.

The 2019 river cross-section data were compared to data collected in 2015 (Golder 2016), 2017 (Golder 2018), and 2018 (Golder 2019), when possible. Summary statistics (i.e., mean, median, standard deviation, quartiles, and range) were calculated for each transect completed in 2019 and were qualitatively compared to historical data where river cross-section data overlapped. Only the portions of the active channel, as assessed by the ADP and RTK, were included in summary statistics (i.e., LiDAR data were not included in these summaries).

To determine the change in channel storage (i.e., the volume of aggradation or degradation) between 2015 and 2019, the 2015 and 2019 river cross-sections were divided into 0.01 m lateral segments. Values for each segment were linearly interpolated between data points and the elevation for the 2019 river cross-section was subtracted from the 2015 river cross-section and the difference between these values was summed for all points along the river cross-section. The cumulative change in sediment storage along the channel was calculated by multiplying the river cross-sectional storage change at each river cross-section by the distance between transects.

2.2 Grain Size Measurements

Grain size distribution was assessed at 53 locations on the Peace River (Appendix A, Figures A1 to A15) using pebble count methodology. Pebble count sample locations were situated near river cross-section survey locations where there was a suitable amount of sub-aerial (i.e., unwetted) exposures of appropriate geomorphic features, which included point or mid-channel bar heads (i.e., the location where the bar meets the underwater riffle crest) and bank deposits. Where possible, sites that were sampled for grain size distribution during the 2015 field program (Golder 2016) were reassessed. Reassessing the same locations in both 2015 and 2019 was not possible in some cases as some of the sites assessed in 2015 were submerged at the time of the 2019 survey, (i.e., the water was too deep and/or too fast to wade safely) while other sites were situated within active construction areas associated with the Project and could not be safely accessed by field staff. For the locations found submerged at the time of survey the closest location with the same channel feature (e.g., point bar) was surveyed.

The pebble count sampling procedure followed the guidelines outlined in Bundt and Abt (2001). The field crew measured the medial dimension (e.g., the b-axis, where the a-axis and c-axis represent the longest and shortest axes in a stone, respectively) of at least 100 stones in a grid pattern laid out with a measuring tape. The spacing of the grid was determined separately for each sample location and was set at approximately twice the diameter of the largest stone in the sample area. Stones were measured with a ruler and then classified by phi size. Phi size classes are defined as the negative base-2 logarithms of sediment sizes on the Wentworth sediment size scale. Half phi sizes were used in the cobble range. Material class size definitions used in the field are presented in Appendix C, Table C1. The results from pebble counts were then used to calculate the D16, D35, D50, D84, and D95 percentiles (the particle size for which 16%, 35%, 50%, 84%, and 95% of the sample is finer than that size, respectively) at each sample location.

3.0 RESULTS

3.1 River Cross-Section Surveys

River cross-sections were measured at 52 transects in 2019 to obtain channel profile data (Appendix B, Figures B1 through B52). Each river cross-sections' UTM coordinates are provided in Appendix A, Table A1.

River cross-sections downstream of the Pine River's confluence with the Peace River were not assessed in 2015 and thalweg elevations from 2017 and 2018 were not plotted due to their limited spatial coverage. Between 2015 and 2019, the elevation of the thalweg increased by up to 1 m near the upstream end of the future diversion headpond (Figure 1 and Figure 2). The change in thalweg elevation between the Moberly River's confluence with the Peace River (Transect #US03) and the downstream extent of in-stream activities associated with the Project (Transect #DS08) (i.e., between approximately RKm 105 and 110) was variable and ranged between a decrease in thalweg elevation (degradation) of over 3 m at Transect #DS03 and an increase in thalweg elevation (aggradation) of over 1 m at Transect #DS05 (Figure 2). The two transects are approximately 1100 m apart. The thalweg decreased approximately 3 m at Transect #DS03, and the sediment volume in the area increased due to construction activity on the left bank (Figure 3).

Between 2015 and 2019, the Peace River aggraded upstream of the mouth of the Moberly River (Figure 3). Substantial aggradation was also documented at RKm 110 (Transect #DS06b). Transect #DS06b is situated within the offset area Upper Site 109L and the aggradation is consistent with results presented in Golder (2020). Between 2015 and 2019, cumulative change in sediment storage generally increased with downstream distance between RKm 90 and 102, and increased sharply approximately 3 km upstream of the Moberly River's confluence with the Peace River (Figure 4). The highest levels of cumulative change in sediment storage were documented downstream of the Moberly River's confluence.

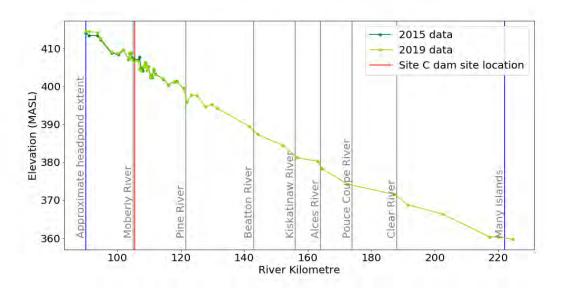


Figure 1: Peace River thalweg elevations (in metres above sea level; MASL) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference. In 2015, cross-section profiles were only conducted downstream to the Pine River confluence.

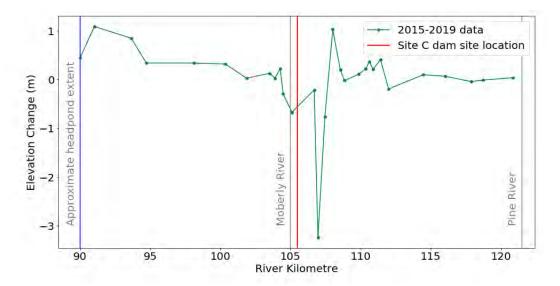


Figure 2: Change in Peace River thalweg elevations (in metres) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

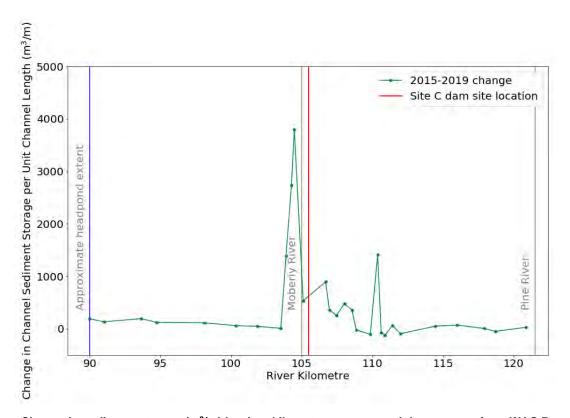


Figure 3: Change in sediment storage (m³/m) by river kilometre as measured downstream from WAC Bennett Dam.
The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

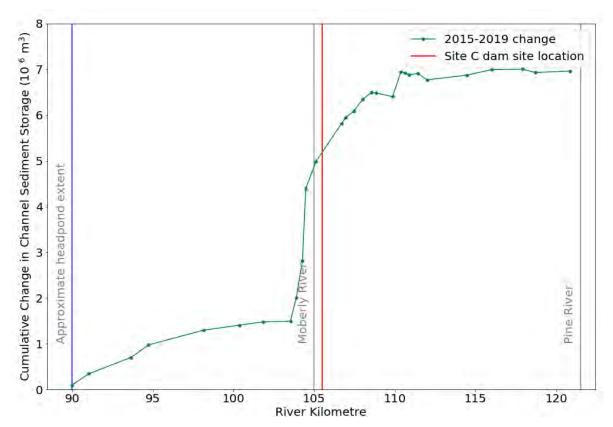


Figure 4: Cumulative change in channel sediment storage (m³) by river kilometre as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

3.1.1 Diversion Headpond

In both 2015 and 2019, river cross-sections were measured at 12 transects situated upstream of the Project and within the footprint of the future diversion headpond (Transect #US01 to #US12). For all 12 transects, the mean elevation was higher in 2019 than in 2015 (Table 2 and Figure 5). The elevations presented in Figure 5 are limited to the portions of the active channel that were measured using ADP and RTK.

Table 2: Summary of changes observed during river cross-section surveys conducted in 2015 and 2019 within the footprint of the future diversion headpond (Transect #US01 to #US12). Transects are presented in upstream to downstream order.

Transect #	Description of observations and changes noted over the study period
Transect #US12	The active channel maintained a larger main channel on the right bank (as viewed facing downstream) and a smaller secondary channel on the left bank (as viewed facing downstream). Riverbed elevations were slightly higher in 2019 compared to 2015.
Transect #US11	The active channel maintained a larger main channel on the right bank and a smaller secondary channel on the left bank. Riverbed elevations were higher along the thalweg of the main channel in 2019 compared to 2015.
Transect #US10	The active channel is a single channel with riverbed elevations slightly higher in 2019 compared to 2015.
Transect #US09	The active channel maintained a larger main channel on the right bank. Riverbed elevations appear slightly higher in 2019 compared to 2015.
Transect #US08	The active channel maintained a larger main channel on the right bank and a smaller secondary channel on the left bank. In 2019, the secondary channel was not accessible by boat due to low water levels and was not surveyed. Riverbed elevations were slightly higher in 2019 compared to 2015.
Transect #US07	The active channel is a single channel with similar riverbed elevations in 2015 and 2019.
Transect #US06	The active channel is a single channel with a shallow area in the middle (appearing as an island during low flows). Riverbed elevations were similar in 2015 and 2019.
Transect #US05	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019.
Transect #US04	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019, with the exception of the left bank where construction activities related to the Project modified the bank shape between 2015 and 2019.
Transect #US03	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019, with the exception of the left bank where construction activities related to the Project modified the bank shape between 2015 and 2019.
Transect #US02	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019, with the exception of the left bank where construction activities related to the Project modified the bank shape between 2015 and 2019.
Transect #US01	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019. Construction activities along both banks modified the shape and location of each bank between 2015 and 2019.

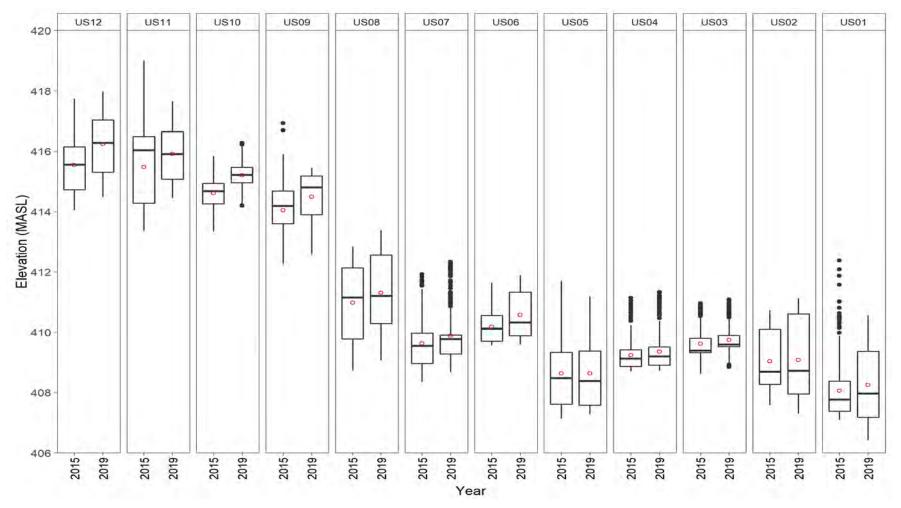


Figure 5: The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25th and 75th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #US12 (most upstream) through #US01 (most downstream) within the future diversion headpond as recorded during 2015 and 2019 river cross-section bathymetry profile surveys.

3.1.2 Peace River Downstream of the Project

3.1.2.1 In-Stream Works Area

River cross-sections were measured at 12 transects from Transect #DS01 to #DS08 in 2019. These transects encompass the portion of the Peace River between the Project (RKm 105.5) and the downstream extent of in-stream works associated with the Project (RKm 110). The mean elevation for these transects was higher in 2019 when compared to results from previous study years, with the exception of Transects #DS03, #DS04, and #DS08 (Table 3 and Figure 6). The elevations presented in Figure 6 are limited to the portions of the active channel that were measured using ADP and RTK.

Table 3: Summary of changes observed in river cross-sections between 2015 and 2019 in the Project's downstream in-stream works area of the Peace River (Transect #DS01 to #DS08). Transects are presented in upstream to downstream order.

•	
Transect #	Description of observations and changes noted over the study period
Transect #DS01	The active channel is a single channel with riverbed elevations that were similar in 2015 and 2019. Construction activities along both banks modified the shape and location of each bank between 2015 and 2019. The Peace River construction bridge is situated within this transect.
Transect #DS03	Transect surveyed in 2015, 2017, 2018, and 2019. River Road construction on the left bank, as viewed facing downstream, altered the location of the active channel. The active channel maintained a similar shape and similar riverbed elevations in 2017 and 2019. The 2018 survey was conducted slightly downstream of the transect line and is more representative of the bathymetry immediately downstream of Transect #DS03.
Transect #DS04	Transect surveyed in 2015, 2017, 2018, and 2019. River Road construction on the left bank altered the location of the active channel. The active channel maintained a similar shape and similar riverbed elevations in 2017, 2018, and 2019.
Transect #DS05	Transect surveyed in 2015, 2017, 2018, and 2019. River Road construction on the left bank altered the location of the active channel. The active channel on the left bank aggraded between 2015 and 2017 but maintained a similar shape and similar riverbed elevations in 2017, 2018, and 2019.
Transect #DS06A	Transect surveyed in 2017, 2018, and 2019. River Road construction and the development of habitat offset area Upper Site 109L along the left bank altered the location of the active channel. Between 2017 and 2019, riverbed elevations increased along the left bank by approximately 1.5 m. Between 2018 and 2019, the active channel maintained a similar shape but increased slightly in elevation.
Transect #DS06	Transect surveyed in 2015, 2017, 2018, and 2019. River Road construction and the development of habitat offset area Upper Site 109L along the left bank altered the location of the active channel. Since completion of the construction activities in 2016, the active channel has maintained a similar shape but has increased slightly in elevation.

Transect #	Description of observations and changes noted over the study period
Transect #DS06B	Transect surveyed in 2017, 2018, and 2019. River Road construction and the development of habitat offset area Upper Site 109L along the left bank altered the location of the active channel. The active channel increased 1.5 m in riverbed elevation between 2018 and 2019 adjacent to the left bank, and a corresponding 1.5 m decrease in riverbed elevation was observed near mid-channel, suggesting that the active channel has been displaced away from the left bank. The remainder of the 2019 profile shows a slight increase of riverbed elevations between 2018 and 2019, but the channel's overall shape was unchanged.
Transect #DS07	Transect surveyed in 2015, 2017, 2018, and 2019. River Road construction and the development of habitat offset area Upper Site 109L along the left bank altered the location of the active channel. The riverbed elevation along the left bank decreased substantially between 2015 and 2017 due to the construction of habitat offset area Upper Site 109L. Between 2017 and 2019, the active channel maintained a similar channel shape with a slight increase in riverbed elevations over time.
Transect #DS07B	Transect surveyed in 2017, 2018, and 2019. River Road construction and the development of habitat offset area Upper Site 109L along the left bank altered the location of the active channel. In 2019, the active channel showed a similar channel shape with a slight increase in riverbed elevations compared to 2017 and 2018.
Transect #DS07A	Compared to the 2017 survey, the 2019 survey showed a similar channel shape and similar riverbed elevations for the active channel, with the exception of the right bank, as viewed facing downstream, where construction associated with the development of habitat offset area Side Channel Site 108R modified the bank.
Transect #DS08	Transect surveyed in 2015, 2017, 2018, and 2019. The active channel showed a similar channel shape and similar riverbed elevations for all survey years.

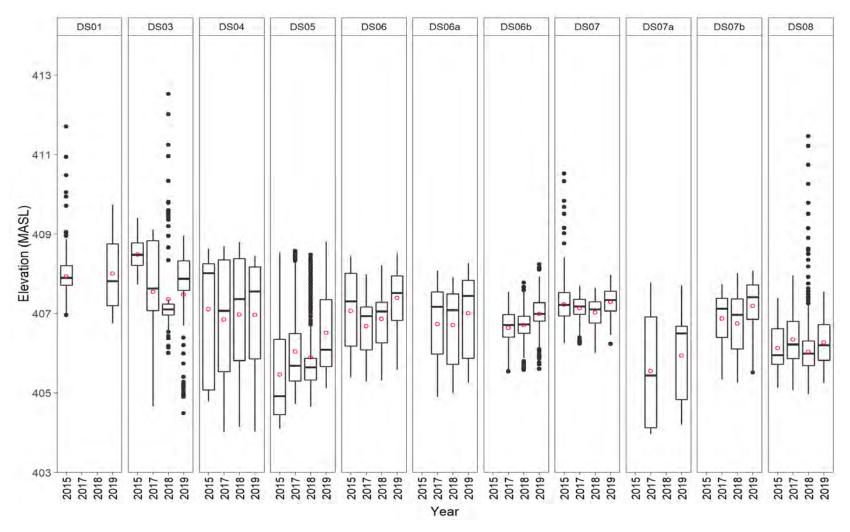


Figure 6: The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25th and 75th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #DS01 (most upstream) through #DS08 (most downstream) of the Peace River as recorded during 2015 to 2019 river cross-section bathymetry profile surveys.

3.1.2.2 In-Stream Works Area to Pine River Confluence

River cross-sections were measured at 10 transects from Transect #DS09 to #DS18 in 2015 and 2019. These transects encompass the portion of the Peace River from the downstream extent of in-stream works associated with the Project to the Pine River's confluence with the Peace River. With the exception of minor variations in riverbed elevation near either the left or right banks, the active channel at all transects were similar in both channel shape and riverbed elevations during the 2015 and 2019 surveys (Figure 7). The elevations presented in Figure 7 are limited to the portions of the active channel that were measured using ADP and RTK.

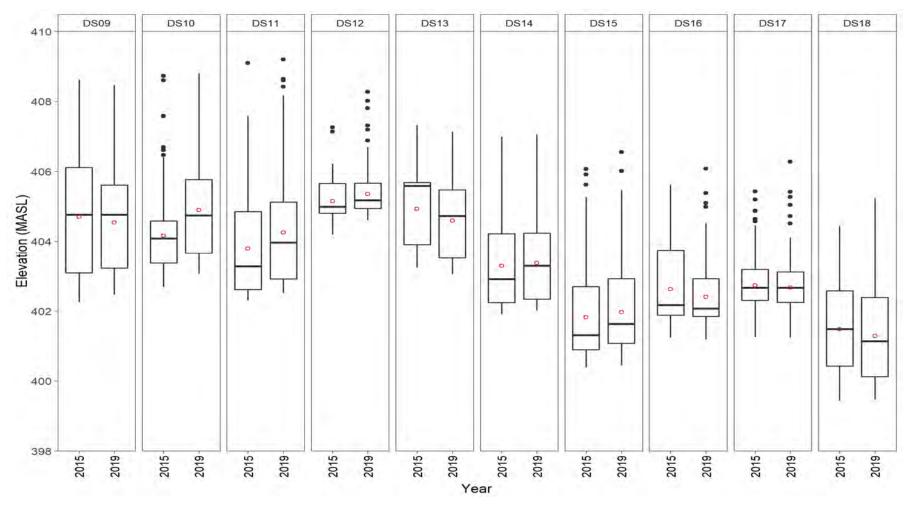


Figure 7: The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25th and 75th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range. Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points. Data are from Transects #DS09 (most upstream) through #DS18 (most downstream) of the Peace River as recorded during 2015 and 2019 river cross-section bathymetry profile surveys.

3.1.2.3 Pine River Confluence to Many Islands

River cross-section were measured at 19 transects from Transect #DS19 to #DS37 in 2019 (Figure 8).

These transects encompass the portion of the Peace River from the Pine River's confluence downstream to the Many Islands area. These transects were not surveyed prior to 2019 and are not graphically compared to any historical data. The elevations presented in Figure 8 are limited to the portions of the active channel that were measured using ADP and RTK.

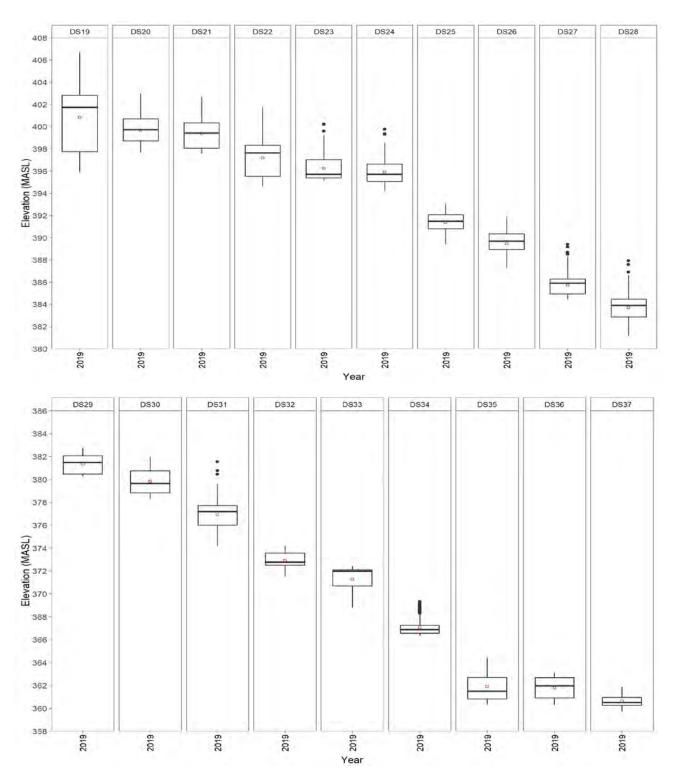


Figure 8: The mean elevation (red circle), median (heavy horizontal line), and upper and lower quartiles (i.e., 25th and 75th percentiles; lower and upper bounds of rectangle). Whiskers (vertical line) extend from the upper/lower quartiles to the maximum/minimum value within 1.5 times the interquartile range.

Data outside of 1.5 times the interquartile range ("outlying" values) are shown individually as points.

Data are from Transects #DS19 (most upstream) through #DS37 (most downstream) of the Peace River as recorded during river cross-section bathymetry profile surveys, 2019.

3.2 Historical River Cross-Section Comparison

River cross-sections were surveyed between 1968 and 2005 at multiple locations along Peace River and are presented in the Site C EIS report (BC Hydro 2012). These cross-sections extend from approximately river RKm 101 to RKm 128 (the Project is located at RKm 105.5).

The locations of some historical cross-sections are at different river kilometres when compared to cross-sections completed after 2015; a direct comparison to include all surveyed cross-section profiles was not possible. Thalweg elevations for each year with surveys at historical and Mon-3 cross-sections were plotted in a longitudinal profile to show natural variations in thalweg elevations (Figure 9). The longitudinal profile shows that the largest thalweg elevation variations were downstream of the Pine River confluence, near Transect DS21, with a variation of approximately 3.54 m between 1975 and 2019.

The river cross-sections surveys from between 1968 and 2005 are presented in Appendix B.

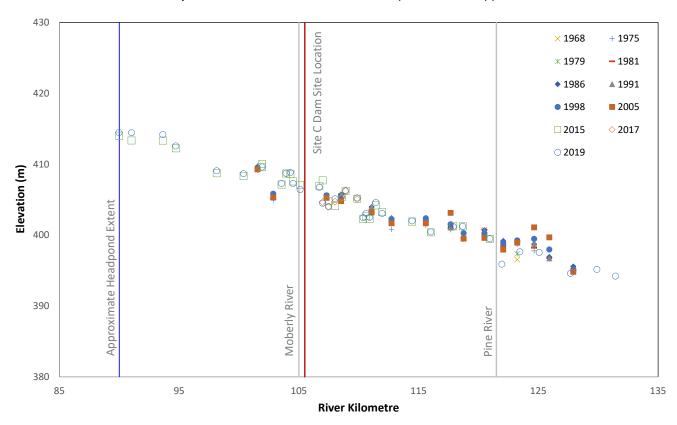


Figure 9: Thalweg Profile from Historical and Recent Cross-Sections Surveys (1968 – 2019).

3.3 Grain Size Measurements

In 2019, the grain size distribution of riverbed materials was estimated using the pebble count method at 38 locations. Fifteen sites that were surveyed during previous study years were not sampled in 2019 because they were inundated at the time of the survey or because they were located in areas under active construction. In 2019, the field survey was planned for anticipated low water levels; however, during the field surveys

(September 2019) high water levels were observed and field adjustments were made at each site to allow sampling to cover the available exposed channel feature. The survey followed a transect line (typically aligned upstream to downstream) with a constant spacing between the sampling points – approximately 0.4 m, similar to the 2015 program. A comparison of D50 between 2015 and 2019 surveys was completed for the sites with common measurements.

Overall, the distribution of D16, D35, D50, D84, and D95 percentiles in 2019 followed similar patterns throughout the study area (Figure 10 to Figure 14). The dominant substrate materials for the surveyed area were gravel (63% averaged over the study area) and cobble (33% averaged over the study area) in channel bar head and bank surfaces (Figure 15). While variability among sites was high, in general, the substrate of Peace River bars and banks over the study area became finer with distance downstream from RKm 90 to 180. Over this distance, the percentage of gravel increased, while the percentage of cobble decreased. The channel coarsened at approximately RKm 190. The percentage of sand size and finer material in the substrate was similar throughout the study area.

The range of grain sizes were similar in 2015 and 2019 for most reaches of the study area, although the sampled bar surfaces were typically finer in 2015 from approximately RKm 100 to RKm 110 (Figure 16).

Complete grain size distributions for 2019 are presented in Figure 17 through Figure 26. Results from multiple sites are compiled together in these figures to reduce the total number of plots presented. Additional figures presenting the D16 to D95 analyses and percentages by substrate type can be found in Appendix C.

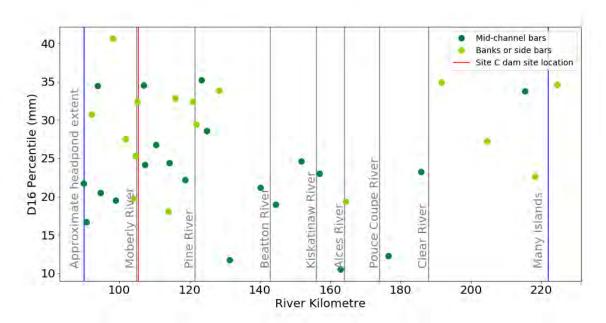


Figure 10: Summary of D16 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

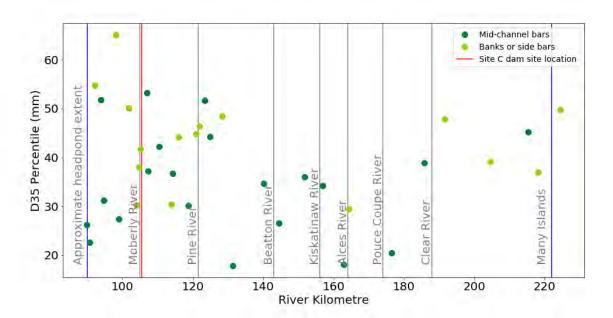


Figure 11: Summary of D35 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

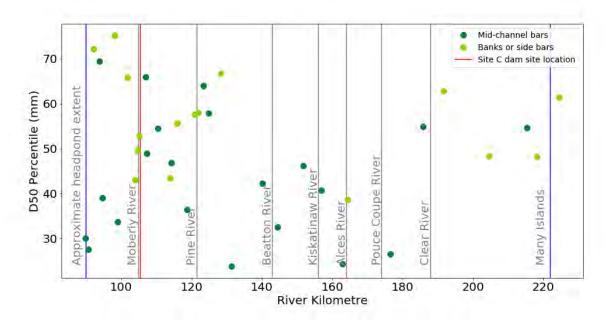


Figure 12: Summary of D50 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

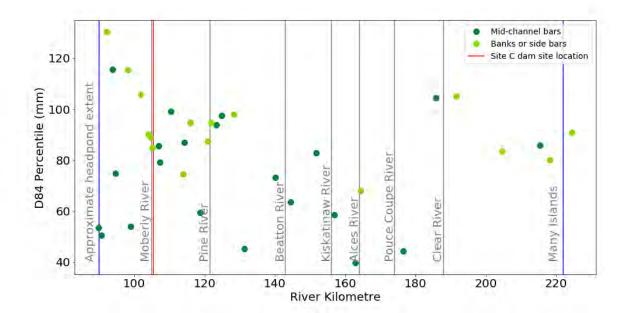


Figure 13: Summary of D84 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

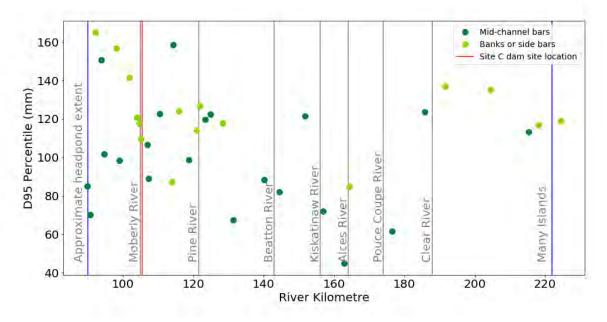


Figure 14: Summary of D95 percentile values (in mm) by sample type (mid-channel bars or bank/side bars) and RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

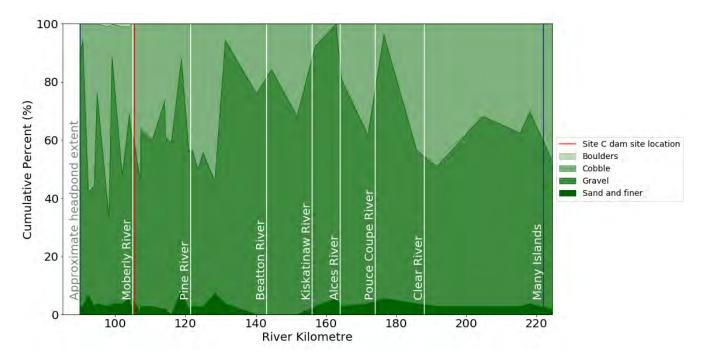


Figure 15: Summary of percent material by substrate type by RKm as measured downstream from WAC Bennett Dam, 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference. Boulders comprise less than 1% of the sample and are only visible in the top left portion of the figure.

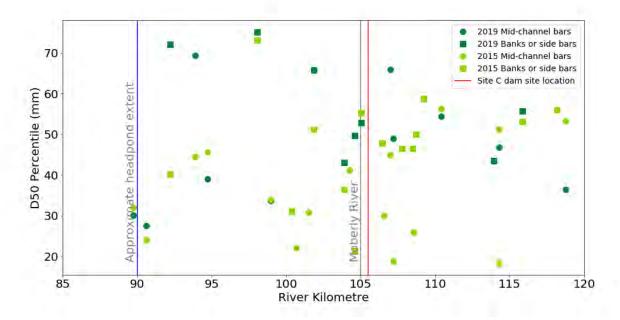


Figure 16: Comparison of D50 values recorded in 2015 and 2019. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

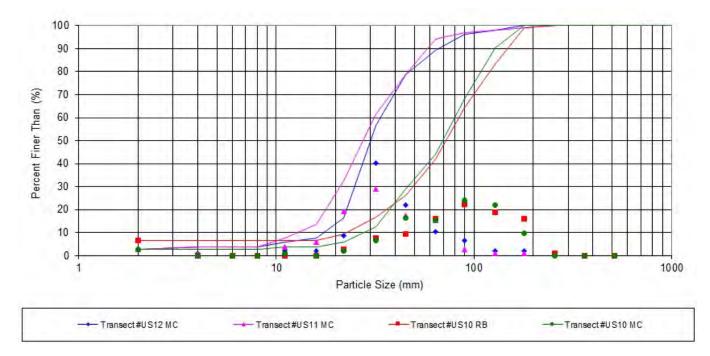


Figure 17: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #US12 (blue), #US11 (pink), and #US10 (green), and at the right bank (RB) of Transect #US10 (red) along the Peace River, 2019.

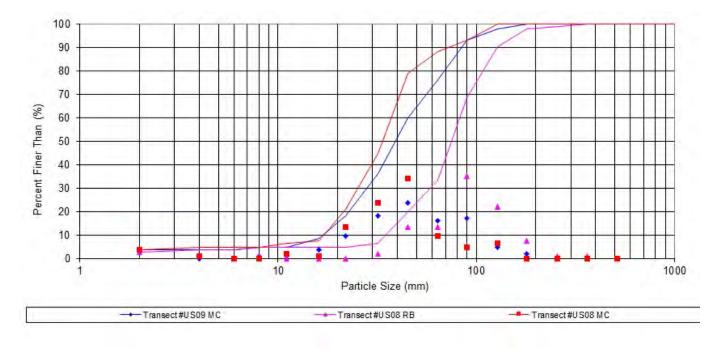


Figure 18: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #US09 (blue) and #US08 (red), and at the right bank (RB) of Transect #US08 (pink) along the Peace River, 2019.

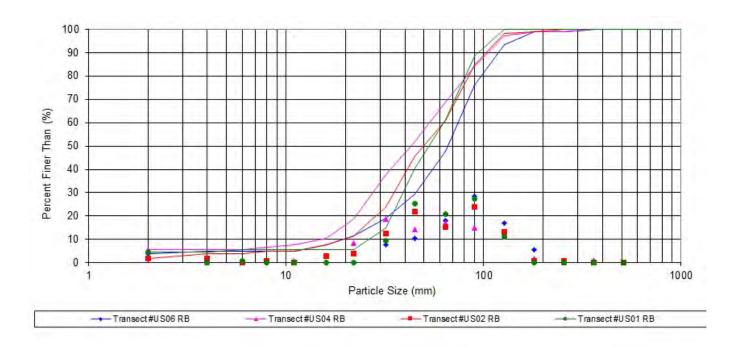


Figure 19: Grain size distributions (points) and cumulative percentages (lines) along the right banks (RB) of Transects #US06 (blue), #US04 (pink), #US02 (red), and #US01 (green) along the Peace River, 2019.

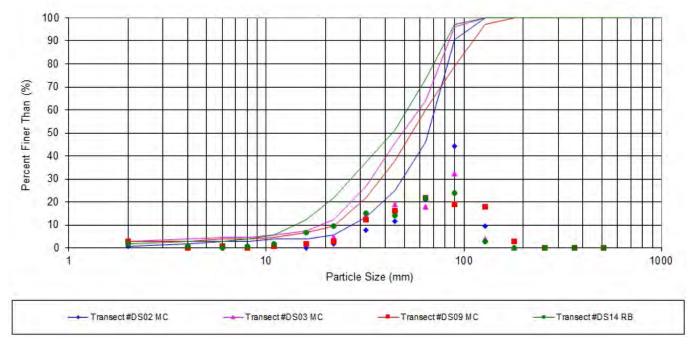


Figure 20: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS02 (blue), #DS03 (pink), and #DS09 (red), and at the right bank (RB) of Transect #DS14 (green) along the Peace River, 2019.

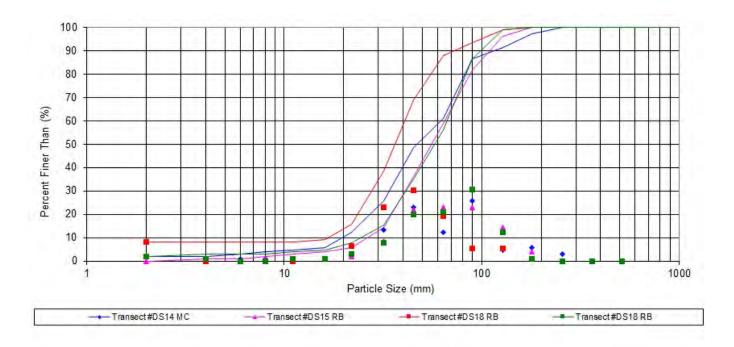


Figure 21: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS14 (blue) and #DS17 (red), and at the right banks (RB) of Transects #DS15 (pink) and #DS18 (green) along the Peace River, 2019.

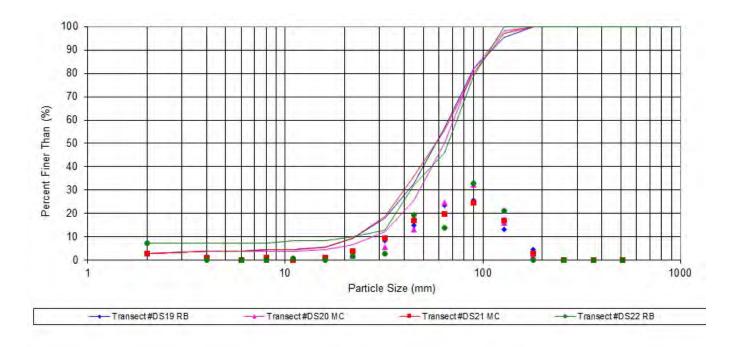


Figure 22: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS20 (pink) and #DS21 (red), at the right bank (RB) of Transect #DS22 (green), and at the left bank (LB) of Transect #19 (blue) along the Peace River, 2019.

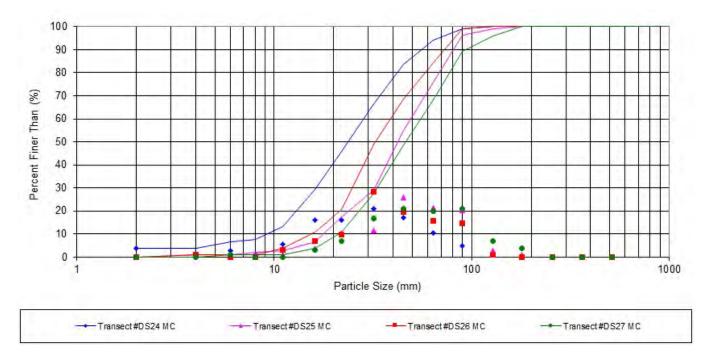


Figure 23: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS24 (blue), #DS25 (pink), #DS26 (red), and #DS27 (green) along the Peace River, 2019.

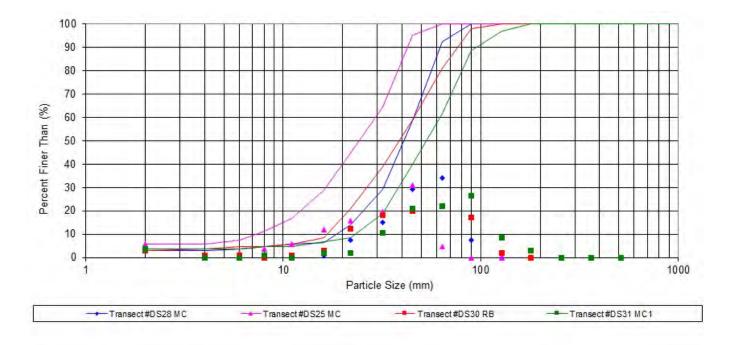


Figure 24: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS28 (blue), #DS29 (pink), and #DS31 (green), and at the right bank (RB) of Transect #DS30 (red) along the Peace River, 2019.



Figure 25: Grain size distributions (points) and cumulative percentages (lines) at mid-channel bars (MC) along Transects #DS31 (blue) and #DS32 (pink), and at the left bank (LB) of Transects #DS33 (red) and #DS34 (green) along the Peace River, 2019.

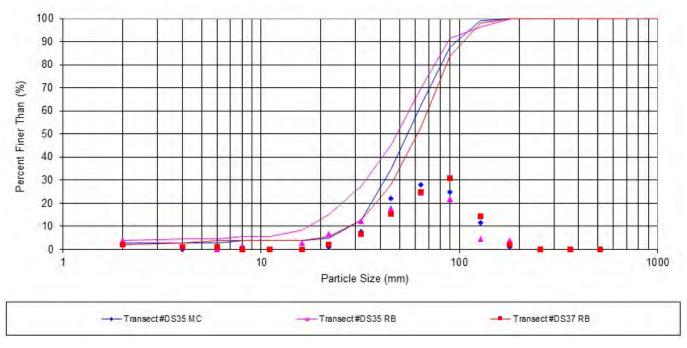


Figure 26: Grain size distributions (points) and cumulative percentages (lines) at a mid-channel bar (MC) along Transect #DS35 (blue) and along the right banks (RB) of Transects #DS35 (pink) and #DS37 (red) along the Peace River, 2019.

3.3.1 Historical Grain Size Measurements

Historical grain size measurement data were available for select years between 1968 and 2005 at multiple locations along Peace River and are presented in the Site C EIS (BC Hydro 2012). The measurements were collected at locations from downstream of Peace Canyon Dam to upstream of the Alces River's confluence with Peace River (near the BC-Alberta border).

The D50 percentile is presented in a longitudinal profile in Figure 27 and show larger variations in the D50 percentile upstream of the Halfway River confluence (i.e., near the upstream extent of the diversion headpond), and smaller variations downstream of the Halfway River confluence.

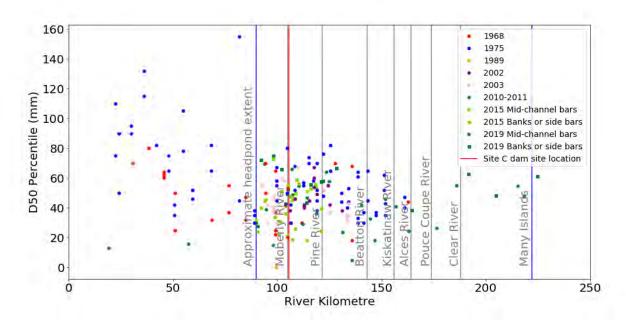


Figure 27: Summary of D50 percentile (in mm) at river cross-sections surveyed between 1968 and 2019, by year and RKm, as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

The D90 percentile is presented in a longitudinal profile in Figure 28 and show larger variations in the D90 percentile upstream of the Halfway River confluence and smaller variations downstream of the Halfway River confluence.

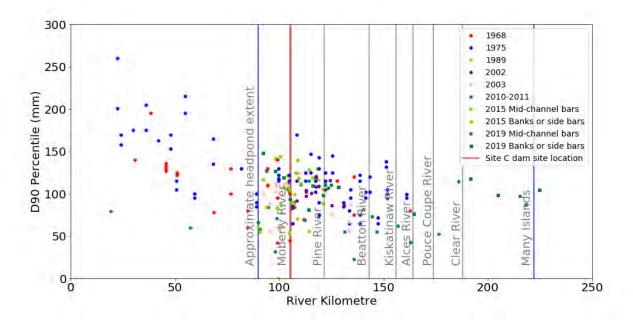


Figure 28: Summary of D90 percentile (in mm) at river cross-sections surveyed between 1968 and 2019, by year and RKm, as measured downstream from WAC Bennett Dam. The locations of the confluences of major tributaries (grey lines) and the Project (red line) are noted for reference.

4.0 DISCUSSION

Mon-3 will use physical habitat monitoring data to validate predictions and address uncertainties identified in the Site C EIS (BC Hydro 2012) regarding the Project's effect on physical habitat in the future diversion headpond and the Peace River between the Project and the Many Islands area. In 2019, river cross-section surveys and pebble counts were conducted within the footprint of the future diversion headpond and in the Peace River downstream of the Project to collect additional baseline data on riverbed elevations and substrate conditions in the Peace River prior to river diversion, which is currently scheduled to commence in the fall of 2020.

Data from the 2019 survey will be coupled with data collected in 2015, 2017, and 2018 to represent pre-Project baseline conditions in the study area prior to river diversion. These data will be compared to data collected during future study years (i.e., after river diversion and during operation of the Project) to test the program's hypotheses. Not all transects were surveyed during each of the four baseline study years, and data collected at some transects near the Project were inaccessible due to site preparation (BC Hydro 2015c) and river channelization activities (BC Hydro 2015b). Grain size data were collected in 2015 and 2019. Field crews attempted to sample the same locations during each study year; however, higher water levels in 2019 relative to 2015 limited access to some locations during the latter study year. Further, in 2019, constructions activities near the Project prevented access to some of the locations that were sampled in 2015.

Where possible, the relative change in riverbed elevation at each transect was assessed to determine if the channel had aggraded, degraded, or remained unchanged over the four-year study period. An increase in riverbed elevation indicated aggradation due to the accumulation of substrate and sediment. A decrease in riverbed elevation indicated degradation and a loss of substrate and sediment. Alternatively, little or no change in riverbed elevation indicated static conditions where gain and loss were approximately equal, and that any mobilized bedload was in transit through the site.

4.1 Diversion Headpond

H₁ of Mon-3 states that the diversion headpond construction will not affect channel morphology or bed sediment composition within the extent of the headpond. River diversion is currently scheduled to begin in the fall of 2020, after which, the diversion headpond will form and operate until reservoir filling. H₁ will be available for testing after river diversion commences. Survey data collected in 2015 and 2019 for this purpose are considered adequate for testing H₁ during future study years because they monitor changes in the channel profile (river transects) and changes in the grain size distribution at locations within the headpond.

Historic bathymetry assessments identified the reach of the Peace River between the Halfway River confluence and the Moberly River confluence, which includes a large portion of the future diversion headpond footprint, as a primarily degrading reach, where water velocities are sufficient to scour and transport sediment downstream (Church 2015). Contrary to Church (2015), the changes in riverbed elevation between 2015 and 2019 in the upstream-most 5 km of the future diversion headpond (i.e., Transects #US12 to #US09) identified a mixture of either aggraded or static channel profiles. The aggrading channel conditions between 2015 and 2019 were likely due to upstream alluvial deposits becoming mobilized during high flow events between the two survey periods. A preliminary review of discharge data from the Halfway River (Water Office 2019) indicated substantially higher maximum daily discharges (approximately 20-year flows) observed in 2011 (1490 m³/s), 2012 (1590 m³/s), and 2013 (1430 m³/s). During consecutive very high annual peak flows, it is expected that a river will mobilize higher than normal volumes of sediment because the erosion areas from the year prior are relatively exposed (i.e., too little time has passed for vegetation to recover) and therefore it is easy to mobilize new materials during

the following high flow event. The Halfway River is the largest contributor of sediment into the Peace River (EIS, Vol.2, BC Hydro 2012). It is therefore reasonable to assume that the channel aggradation in the upstream end of the survey area in the Peace River is with sediments delivered by the Halfway River.

The additional sediment observed in Transects #US12 to #US09 may continue to travel downstream and accumulate at other transect locations, which may confound the ability of future surveys to identify whether changes in channel profile and substrate composition are attributed solely to changes in the background sedimentation rate, development and operation of the future diversion headpond, construction activity, or a combination of all of these factors.

Data collected at downstream transects within the future diversion headpond (Transects #US08 to #US01) indicated very little change in riverbed elevation or profile between 2015 and 2019.

The D50 and D95 values calculated from 2019 pebble count data were similar to historic D50 and D90 data recorded at locations between the Halfway River confluence and the Moberly River confluence where the surveys overlapped (Church 2015). The 2019 substrate size composition and distribution data will also serve as a baseline to identify changes to substrate and fish habitat in response to the development of the future diversion headpond.

Overall, the observed changes between the 2015 and 2019 surveys were expected for this reach of the Peace River, and they are an indicator of fluvial geomorphology processes happening in the tributaries upstream of the future headpond and downstream of Peace Canyon Dam. These changes can be considered part of the natural variability of the Peace River channel when compared with historical baseline surveys (EIS, Vol 2, App. I, BC Hydro 2012).

4.2 Peace River Downstream of the Project

H₂ of Mon-3 states that the construction and operation of the Project will not affect channel morphology, bed surface grain size composition, or wetted area in the Peace River between the Project and the Many Islands area in Alberta. H₂ will be available for testing after the start of river diversion. Survey data collected in 2015 and 2019 are considered adequate for testing H₂ during future study years because they will monitor changes in the channel profile (river transects) and changes in the grain size distribution at locations downstream of the Project.

The D50 and D95 values calculated from 2019 pebble count data were similar to historic D50 and D90 values recorded at locations between the Moberly River and the BC-Alberta border where the two surveys overlapped (Church 2015). The 2019 substrate size composition and distribution data will also serve as a baseline to identify post-Project changes to substrate and fish habitat.

4.2.1 In-Stream Works Area

Transects #DS01 to #DS08 are situated immediately downstream of the Project and encompass the footprint of downstream in-stream works associated with the Project. In-stream works completed between 2015 and 2019 resulted in substantial changes in the channel profile at most transect locations. With the exception of the two most downstream transects (Transect #DS07a and #DS08), the channel profiles at all transects within the downstream in-stream works area were influenced by the construction of River Road along the left bank. Construction of River Road narrowed the active channel and moved the bank approximately 20 m south relative to years prior to the road's construction. Substantial changes to the channel profile were noted mid-channel along Transect #DS03, related to mid-stream island channel recontouring (BC Hydro 2015c). River cross-section

surveys conducted along Transect #DS05 between 2015 and 2019 noted an approximate 2 m increase in bed elevation near mid-channel between 2015 and 2017, but a stable riverbed between 2017 and 2019. Reasons for the large aggregation between 2015 and 2017 are not known but could be related to upstream construction activities, particularly the excavation of the mid-stream island approximately 800 m upstream.

Transects #DS06a to #DS07b are situated within the offset area Upper Site 109L. The channel profile within the offset area has undergone substantial changes since the offset's construction in 2016. The bed elevation within the offset area was lowered approximately 2 m to increase the amount of permanently wetted habitat available to fish and to reduce stranding risk. Since recontouring, portions of the offset area have degraded as much as approximately 1 m (see Transect #DS06b; Appendix B, Figure B19) and aggraded as much as approximately 3 m (see Transect #DS06; Appendix B, Figure B18). In 2019, some portions of the riverbed aggraded to elevations higher than those recorded prior to the development of the offset area. Descriptions of riverbed changes within Upper Site 109L are provided in Golder (2020).

The observed changes between the 2015 and 2019 surveys were as expected for this part of the Peace River because the area is located within the in-stream works area associated with the Project.

4.2.2 In-Stream Works Area to Pine River Confluence

At Transects #DS09 to #DS18, river cross-section surveys conducted in 2015 and 2019 were similar. Some evidence of aggradation was evident at Transect #DS09 along the left bank and some evidence of degradation was evident along the same bank at Transect #DS10 (i.e., immediately downstream). The highest level of aggradation was recorded at Transect #DS12, where sediments had accumulated along the left bank. All other transects in this portion of the study area were similar in 2015 and 2019, suggesting a static riverbed. Historically, the Peace River downstream of the Moberly River confluence consisted of alternating sections of an aggrading and degrading riverbed as sediment loads introduced by the Moberly River were transported downstream (Church 2015). Both the 2015 and 2019 river cross-section survey results support this interpretation and future river cross-section surveys will provide additional data that will either corroborate historical data or will potentially identify changes in aggradation and degradation in response to the construction and operation of the Project.

The observed changes between the 2015 and 2019 surveys were expected for this area, and they are within the natural variability of the Peace River channel when compared with historical baseline surveys (EIS, Vol. 2, BC Hydro 2012).

4.2.3 Pine River Confluence to Many Islands

Historical bathymetry surveys in the Peace River between the Pine and Beatton river confluences found alternating sections of aggrading and degrading habitat. Downstream of the Beatton River confluence, the channel gradient decreases and aggrading depositional habitats are more common (Church 2015). Data collected at Transects #DS19 to #DS37 in 2019, coupled with data collected during future river cross-section surveys can be used to corroborate the findings of Church (2015) and potentially identify changes in aggradation and degradation in response to the construction and operation of the Project.

The observed changes between the 2015 and 2019 surveys were as expected for this area, and they are within the natural variability of the Peace River channel when compared with historical baseline surveys (EIS, Vol. 2, BC Hydro 2012).

4.3 Fish Habitat

Based on cross-section survey results and grain size measurements conducted between 2015 and 2019, overall changes to fish habitat within the Mon-3 study area over this period have been minimal. It is unknown whether the aggradation identified within the upstream-most 5 km of the future diversion headpond increased or decreased overall fish habitat; however, the aggradation was likely due to upstream alluvial deposits becoming mobilized during high flow events. These events are considered part of the natural variability of the Peace River channel and are therefore unlikely to have a noticeable influence on fish within this area.

The most apparent changes to fish habitat occurred within the in-stream works area. Between 2015 and 2019, fish habitat was reduced along the left bank within this area by the construction of the River Road; however, the habitat loss along the left bank due to the construction of the River Road coincided with the construction of habitat offset areas by BC Hydro between 2015 and 2019 (Golder 2020). These offset areas were constructed immediately downstream of the Project and included rock spurs along the River Road and channel modifications at Upper Site 109L. These areas were constructed with the intent to increase the quantity and quality of available, permanently wetted habitat to support primary and secondary production for fish and provide rearing, feeding, overwintering, and potential spawning habitat for fish (BC Hydro 2015c). In addition, the offset areas were constructed to reduce fish stranding risk and increase the complexity and variability of fish habitat to support a variety of life stages for local fish populations. Effectiveness monitoring of the habitat offsetting areas in 2017, 2018, and 2019 identified that they provide a variety of suitable habitats for a variety of fish species and life stages. Furthermore, a high diversity of fish species were recorded during fish sampling efforts within the offset areas (Golder 2020).

The minimal difference in cross-section surveys or grain size measurements between 2015 and 2019 in the remainder of the Mon-3 study areas downstream of the in-stream works area suggests that there has been little overall change to fish habitat over this time period at these locations.

4.4 Summary

Major tributaries are the primary sources of sediment to the mainstem Peace River, with the largest contribution coming from the Moberly River (37,000 tonnes per year), followed by the Kiskatinaw River (14,000 tonnes per year), Pine River (8,600 tonnes per year), and Halfway River (6,900 tonnes per year; Church 2015). The development of the Project is expected to alter the sediment transport and substrate composition in the Peace River downstream of the Project; however, the extent that these alterations will influence the quality or quantity of downstream aquatic habitat remains unclear. Data collected in 2015, 2017, 2018, and 2019 suggest very little change in the physical habitat present in the Peace River with the exception of areas directly affected by the development of the Project. As a result, overall changes observed in physical habitat over this time period are not likely to have a noticeable influence on fish species within the Peace River. During future study years, these data will serve as a baseline dataset for testing Mon-3's hypotheses and categorizing the potential effects that the construction and operation of the Project have on physical habitat in the Peace River.

⁸ Fisheries and Oceans Canada (DFO) approved BC Hydro Offsetting Plan and issued a Fisheries Act Authorization [FAA; No. 15-HPAC-00170) for site preparation works on 30 September 2015.

35

5.0 CLOSURE

We trust that this report provides the information required. If there are any questions or require further detail, please contact the undersigned.

Golder Associates Ltd.

Kathryn DeRego Semiao, PhD Geomorphology Specialist

Dan Ciobotaru, PGeo Hydrologist

DC/DF/cmc

Rowland Atkins, PGeo, MSc Principal, Senior Geomorphologist

Dustin Ford, RPBio
Associate, Project Manager

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/107993/project files/6 deliverables/issued to the client_for wp/19121767-011-r-rev0/19121767-011-r-rev0-mon-3_2019 peace river physical habitat monitoring 22apr_21.docx

6.0 LITERATURE CITED

BC Hydro 2012. Site C EIS Vol 2 Section 11.8, Appendix I Fluvial Geomorphology and Sediment Transport, Technical Data Report (REF. NO. VA103-337/1-1)

- BC Hydro. 2013. Site C Clean Energy Project environmental impact statement Volume 2: assessment methodology and environmental effects. Amended EIS presented to the Secretariat for the Joint Review Panel Site C Clean Energy Project Canadian Environmental Assessment Agency. 7 August 2013.
- BC Hydro. 2015a. Fisheries and Aquatic Habitat Monitoring Follow-up Program Site C Clean Energy Project. Report prepared by BC Hydro. 40 pages + 20 appendices.
- BC Hydro. 2015b. DFO Application for authorization dam construction, reservoir preparation, and filling Site C Clean Energy Project. Report prepared by BC Hydro. Submitted to DFO on 15 December 2015. 178 pages + 24 appendices.
- BC Hydro. 2015c. DFO Application for authorization site preparation Site C Clean Energy Project. Report prepared by BC Hydro. Submitted to DFO on 23 February 2015. 80 pages + 15 appendices.
- BC Hydro. 2020. Survey LiDAR 2019 data obtained from BC Hydro on 18 March 2020.
- Bundt K. and Abt S. 2001. Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. General Technical Report RMRS-GTR-74. U.S. Department of Agriculture Rocky Mountain Research Station, Fort Collins, CO. 428 pages.
- Church M. 2015. The regulation of Peace River: a case study for river management. Wiley Blackwell. ISBN: 978-1-118-90614-9. 358 pages.
- Golder (Golder Associates Ltd.). 2015. Site C Clean Energy Project Mon-3 Peace River Physical Habitat Monitoring Program proposed transect locations. Prepared for BC Hydro, Vancouver, BC. Technical Memo. 4 pages + attachments.
- Golder (Golder Associates Ltd.). 2016. Site C Mon-3 Peace River Physical Habitat Monitoring Program 2015. Prepared for BC Hydro, Vancouver, BC. Technical Memo submitted on 17 October 2016. 55 pages + maps and appendices.
- Golder (Golder Associates Ltd.). 2018. Site C Clean Energy Project Offset Effectiveness Monitoring. River Road Rock Spurs and Upper Site 109L 2017 investigations. Report prepared for BC Hydro, Vancouver, British Columbia. Golder Report No. 1670320F: 28 pages + 4 appendices.
- Golder (Golder Associates Ltd.). 2019. Site C Clean Energy Project Offset Effectiveness Monitoring. River Road Rock Spurs and Upper Site 109L 2018 investigations. Report prepared for BC Hydro, Vancouver, British Columbia. Golder Report No. 1670320F: 35 pages + 4 appendices.
- Golder (Golder Associates Ltd.). 2020. Site C Clean Energy Project Offset Effectiveness Monitoring. River Road Rock Spurs and Upper Site 109L 2019 investigations. Report prepared for BC Hydro, Vancouver, British Columbia. Golder Report No. 19121769F: 50 pages + 4 appendices.
- Golder and Gazey (Golder Associates Ltd. and W.J. Gazey Research). 2020. Peace River Large Fish Indexing Survey 2019 investigations. Report prepared for BC Hydro, Vancouver, British Columbia. Golder Report No. 19121769. 139 pages + 8 appendices.
- KCB and SNC (Klohn Crippen Berger Ltd. and SNC-Lavalin Inc.). 2015. Site C construction flow modeling for diversion tunnel diameters = 10.4 m. Memorandum prepared for BC Hydro, Vancouver, BC. 26 pages.

Water Office. 2019. Government of Canada. Historic hydrometric data for Halfway River near Farrell Creek (Station Number 07FA006). Downloaded from: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html.

- Water Office. 2019a. Government of Canada. Historic hydrometric data for Peace River at Hudson Hope (Station Number 07EF001). Downloaded from: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
- Wentworth CK. 1922. A scale of grade and class terms for clastic sediments: Journal of Geology, volume 30, pages 377-392.

APPENDIX A

Maps and UTM Coordinates

Table B1: UTM Coordinates of transects located in the Peace River and surveyed as part of BC Hydro's Peace River Physical Habitat Monitoring Program, 2019. Transects are sorted from upstream to downstream with Transects #US12 to #DS30 situated in UTM Zone 10V and Transects #DS31 to #DS37 situated in UTM Zone 11V.

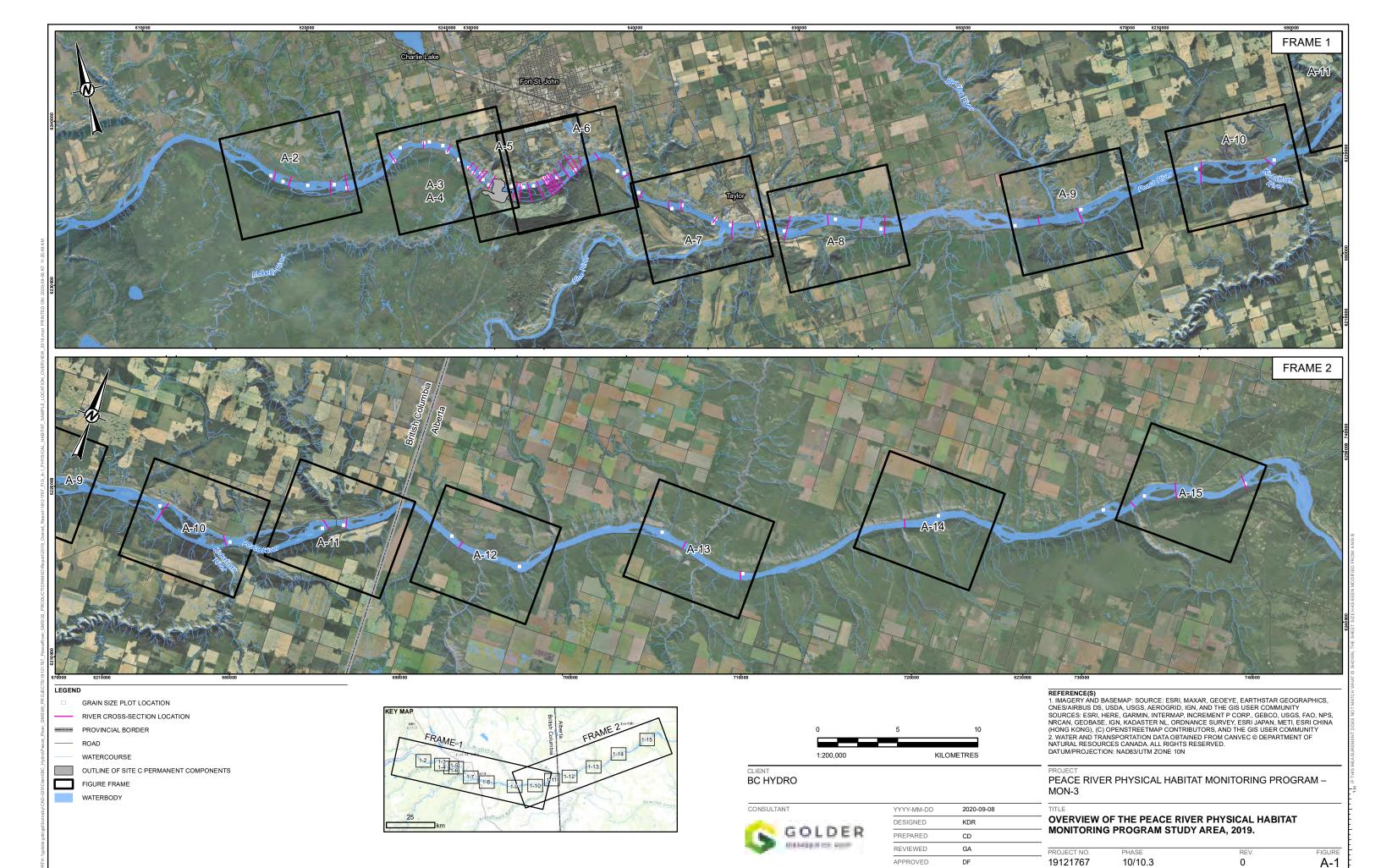
Transect Number	Left Down	stream Bank	Right Downstream Bank		
	Easting	Northing	Easting	Northing	
US12	616127	6233874	615838	6233291	
US11	617001	6233312	616652	6232717	
US10	619308	6232508	619141	6231654	
US9	620268	6232665	620260	6231565	
US8	623284	6233361	623539	6232731	
US7	625547	6233588	625449	6233190	
US6	627148	6232966	626836	6232628	
US5	628331	6231622	627869	6231270	
US4	628501	6231310	628093	6230912	
US3	628846	6231010	628287	6230605	
US2	629005	6230872	628357	6230369	
US1	629461	6230481	628795	6229817	
DS1	630670	6229758	630134	6228786	
DS3	630856	6229716	630577	6228621	
DS4	631314	6229624	631318	6228394	
DS5	631894	6229580	632070	6228423	
DS6a	632275	6229668	632673	6228536	
DS6	632409	6229718	632839	6228587	
DS6b	632544	6229773	632995	6228661	
DS7	632669	6229861	633150	6228740	
DS7b	632829	6229854	633279	6228828	
DS7a	633063	6230053	633501	6228947	
DS8	633504	6230441	633974	6229272	
DS9	633901	6230725	634430	6229527	
DS10	634272	6230691	634615	6229678	
DS11	634801	6230531	634809	6229801	
DS12	635315	6230462	635323	6229902	

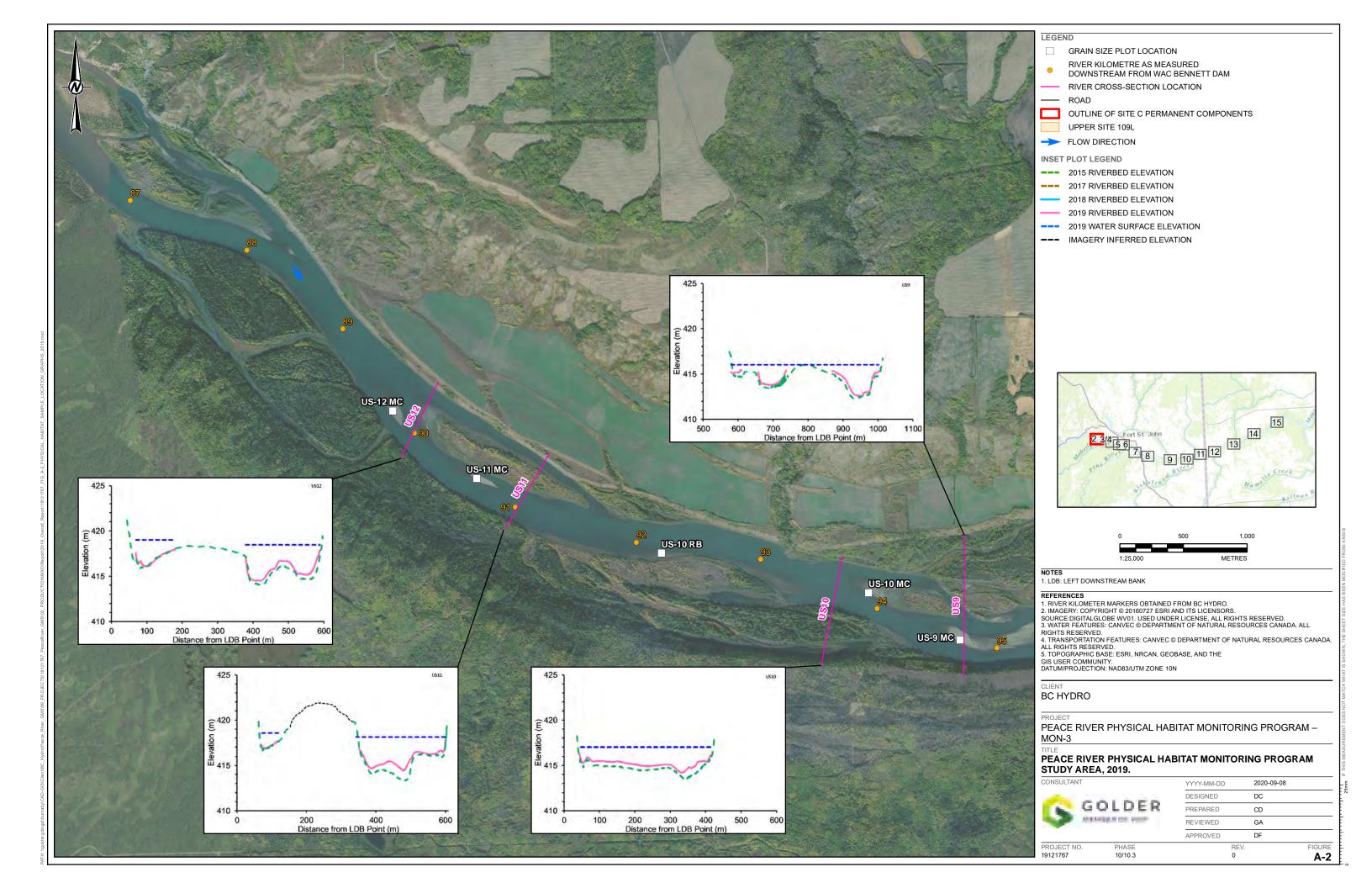
1

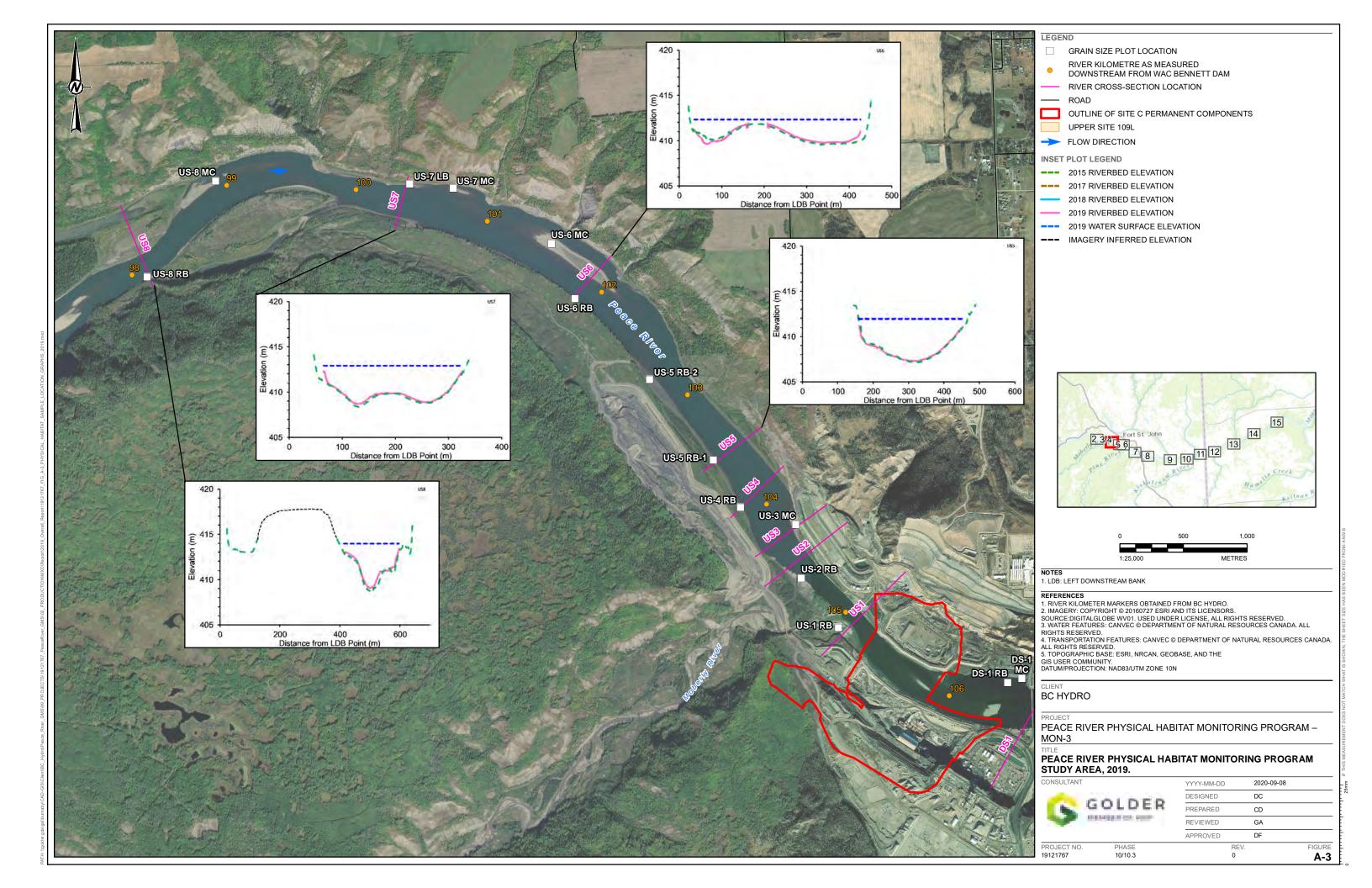
Transect Number	Left Down	stream Bank	Right Downstream Bank		
	Easting	Northing	Easting	Northing	
DS13	635823	6230523	636045	6229944	
DS14	637680	6228779	637153	6228588	
DS15	638221	6227477	637864	6227045	
DS16	639668	6226526	639517	6226049	
DS17	640442	6226405	640278	6225735	
DS18	642362	6224867	642035	6224572	
DS19	643284	6224430	642963	6223388	
DS20	644806	6224091	644808	6223601	
DS21	646872	6223891	646172	6222576	
DS22	649155	6223494	649069	6222859	
DS23	651210	6222776	650967	6222129	
DS24	652640	6222601	652364	6221443	
DS25	661944	6220369	661935	6219859	
DS26	664448	6220395	664621	6219400	
DS27	672708	6221474	672357	6220150	
DS28	676599	6220779	677055	6220184	
DS29	682132	6223850	682703	6223427	
DS30	683510	6224430	683643	6223855	
DS31	690816	6225578	690716	6225170	
DS32	703902	6230441	703841	6229965	
DS33	707746	6229905	707929	6229376	
DS34	716210	6236523	716459	6236044	
DS35	729098	6242440	729499	6242258	
DS36	731302	6244533	731775	6243595	
DS37	735044	6246439	735632	6245718	

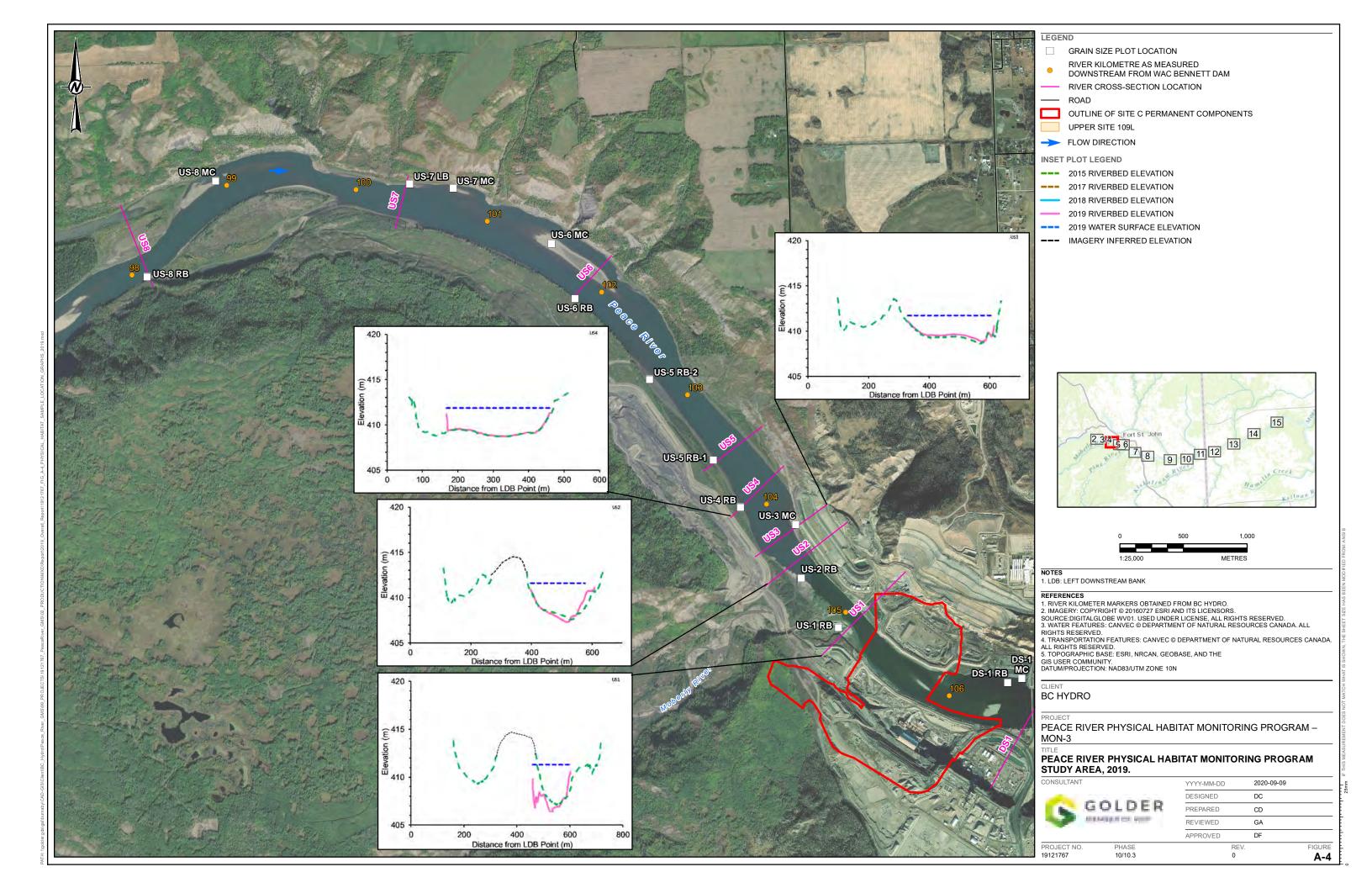
Table A2: UTM Coordinates of grain size measurement locations on the Peace River and surveyed as part of BC Hydro's Peace River Physical Habitat Monitoring Program, 2019. Sites are sorted from upstream to downstream with Sites #US-12 MC to #DS-30 RB situated in UTM Zone 10V and Sites #DS-31 MC-1 to #DS-37 MC situated in UTM Zone 11V.

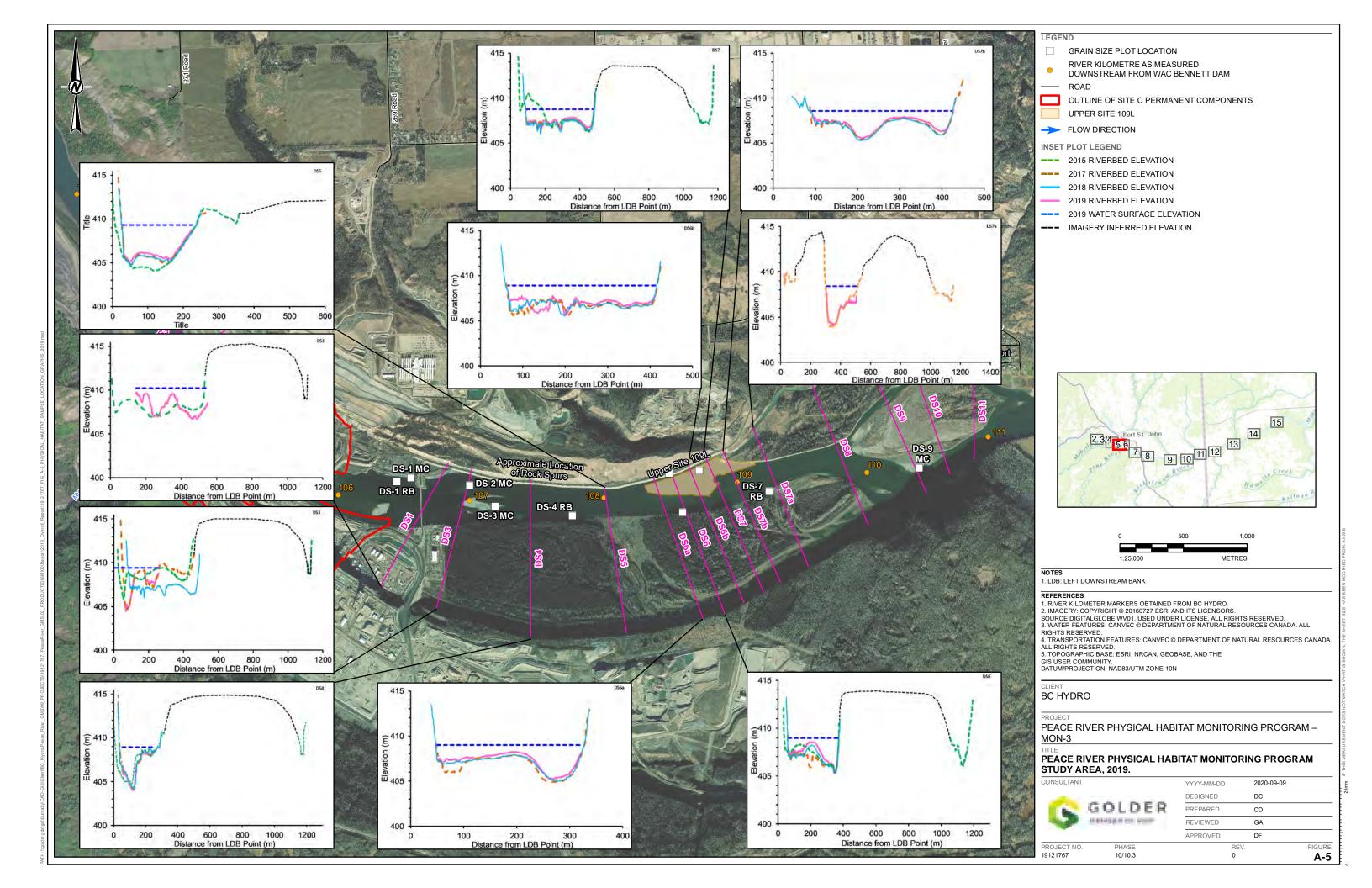
,, -	l line on a	ated in OTW Z				
Site 2019		UTM		Survey Year		Notes
Identifier	Survey Date	Easting	Northing	2015	2019	
US-12 MC	10-Sep-19	615742	6233749	Yes	Yes	
US-11 MC	10-Sep-19	616406	6233138	Yes	Yes	
US-10 RB	10-Sep-19	617828	6232536	Yes	Yes	
US-10 MC	10-Sep-19	619471	6232255	Yes	Yes	
US-9 MC	10-Sep-19	620089	6231937	Yes	Yes	
US-8 RB	10-Sep-19	623493	6232798	Yes	Yes	
US-8 MC	10-Sep-19	624098	6233588	Yes	Yes	
US-7 LB		625560	6233531	Yes	No	Site submerged in 2019; not assessed.
US-7 MC		625902	6233497	Yes	No	Site submerged in 2019; not assessed.
US-6 MC		626675	6233060	Yes	No	Site submerged in 2019; not assessed.
US-6 RB	10-Sep-19	626861	6232628	Yes	Yes	
US-5 RB-2		627448	6231992	Yes	No	Site submerged in 2019; not assessed.
US-5 RB-1		627949	6231359	Yes	No	Site submerged in 2019; not assessed.
US-4 RB	10-Sep-19	628164	6230987	Yes	Yes	
US-3 MC		628598	6230850	Yes	No	Construction; not assessed in 2019.
US-2 RB	10-Sep-19	628641	6230430	Yes	Yes	
US-1 RB	10-Sep-19	628933	6230041	Yes	Yes	
DS-1 RB		630266	6229609	Yes	No	Construction; not assessed in 2019.
DS-1 MC		630377	6229640	Yes	No	Construction; not assessed in 2019.
DS-2 MC	14-Sep-19	630695	6229502	Yes	Yes	
DS-3 MC	10-Sep-19	631039	6229416	Yes	Yes	
DS-4 RB		631647	6229342	Yes	No	Site submerged in 2019; not assessed.

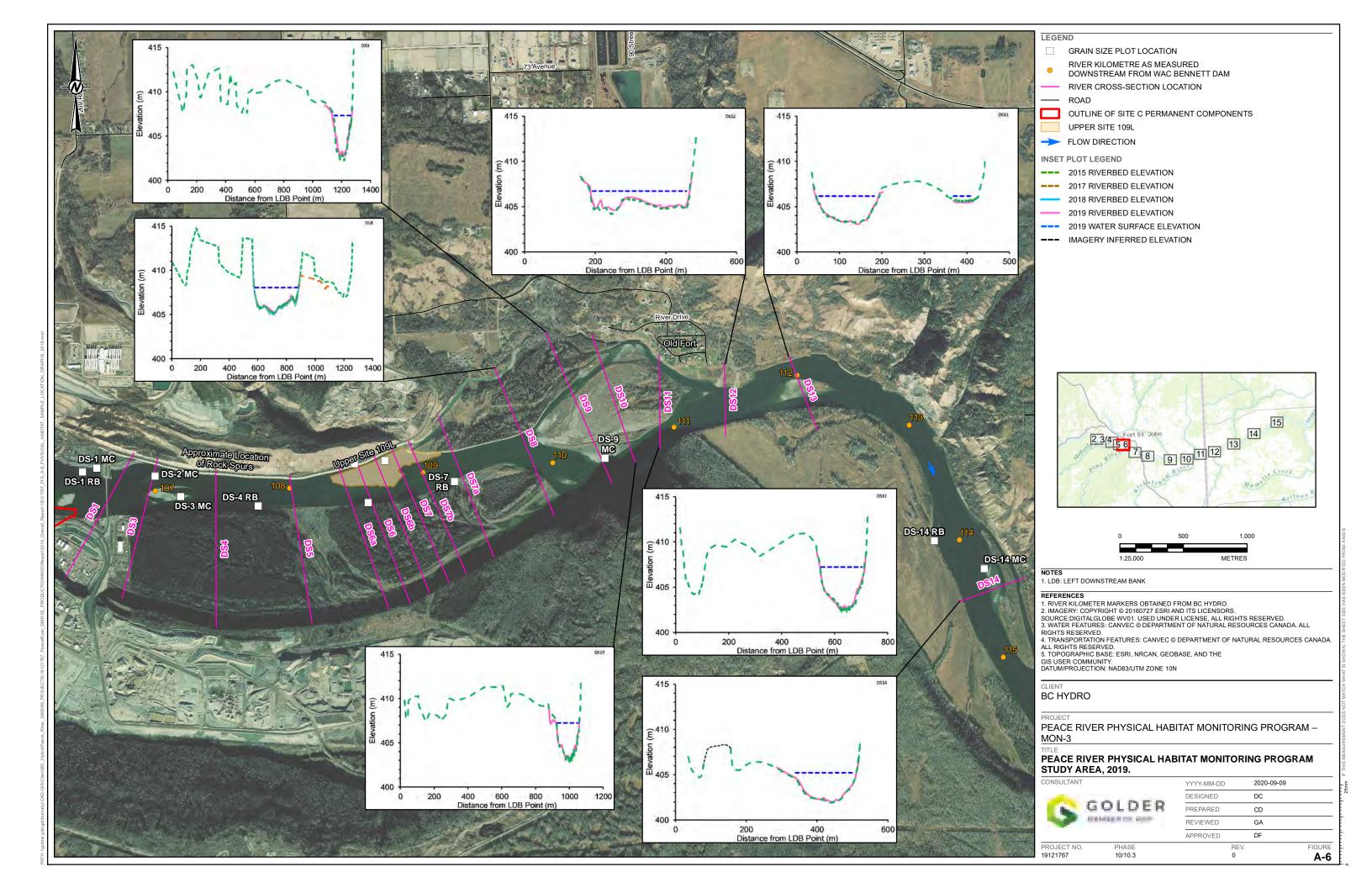


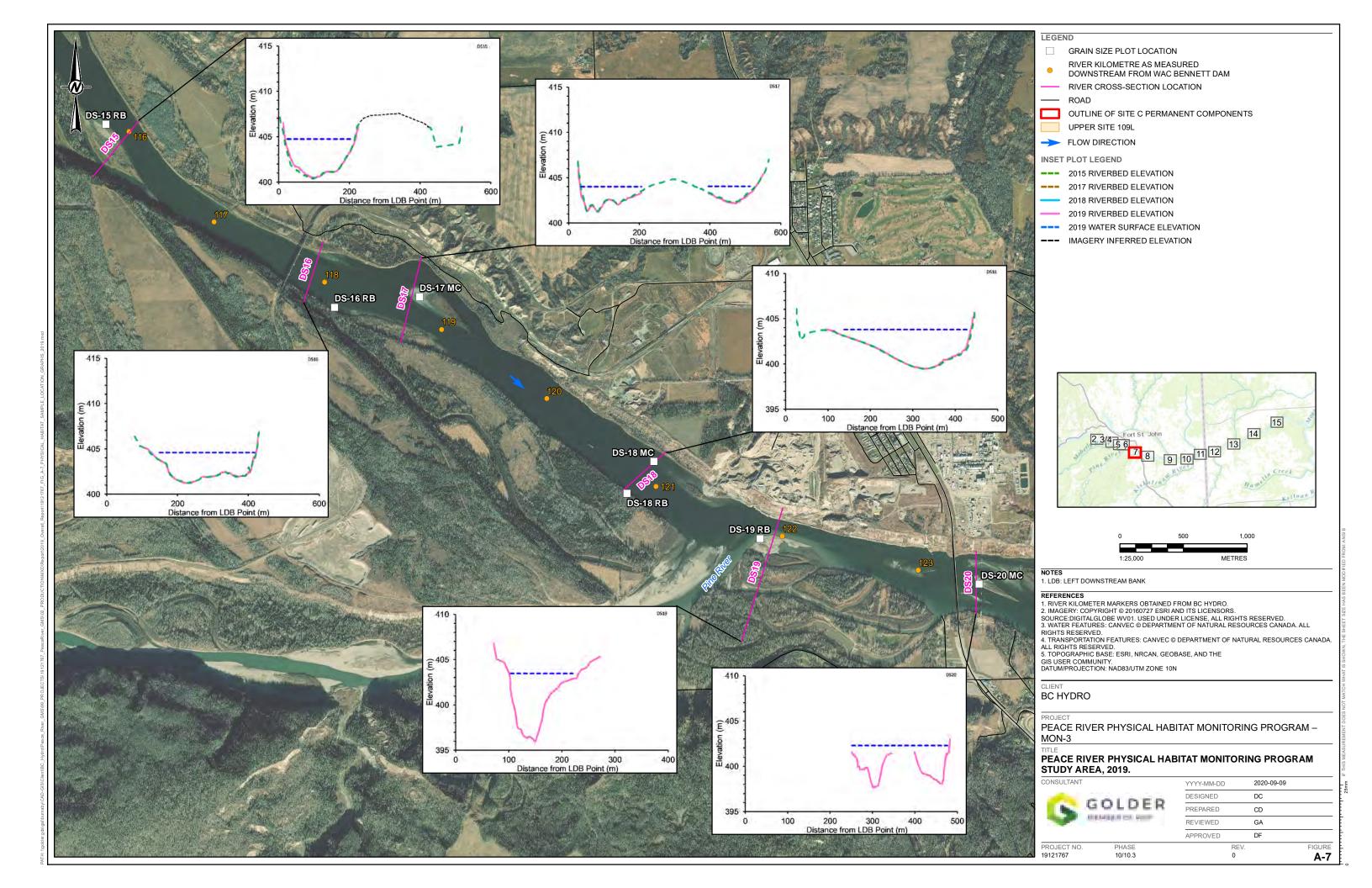

Site 2019		UTM		Survey Year		Notes
Identifier	Survey Date	Easting	Northing	2015	2019	
DS-5 LB		632406	6229676	Yes	No	Site submerged in 2019; not assessed.
DS-5 RB		632514	6229368	Yes	No	Site submerged in 2019; not assessed.
DS-6 LB		632644	6229700	Yes	No	Site submerged in 2019; not assessed.
DS-7 RB		633193	6229534	Yes	No	Construction; not assessed in 2019.
DS-9 MC	11-Sep-19	634188	6229962	Yes	Yes	
DS-14 RB	11-Sep-19	636960	6229322	Yes	Yes	
DS-14 MC	11-Sep-19	637361	6228850	Yes	Yes	
DS-15 RB	11-Sep-19	637884	6227501	Yes	Yes	
DS-16 RB		639760	6226007	Yes	No	Site submerged in 2019; not assessed.
DS-17 MC	11-Sep-19	640359	6226073	Yes	Yes	
DS-18 RB	11-Sep-19	642038	6224570	Yes	Yes	
DS-18 MC		642273	6224794	Yes	No	Site submerged in 2019; not assessed.
DS-19 RB	11-Sep-19	643107	6224188	No	Yes	
DS-20 MC	11-Sep-19	644797	6223871	No	Yes	
DS-21 MC	11-Sep-19	646298	6223120	No	Yes	
DS-22 RB	11-Sep-19	649002	6222888	No	Yes	
DS-24 MC	11-Sep-19	652334	6221740	No	Yes	
DS-25 MC	11-Sep-19	661938	6220289	No	Yes	
DS-26 MC	11-Sep-19	664359	6219807	No	Yes	
DS-27 MC	12-Sep-19	672348	6221253	No	Yes	
DS-28 MC	12-Sep-19	677081	6220458	No	Yes	
DS-29 MC	12-Sep-19	682180	6223269	No	Yes	
DS-30 RB	12-Sep-19	683544	6223981	No	Yes	
DS-31 MC-1	12-Sep-19	690091	6225669	No	Yes	

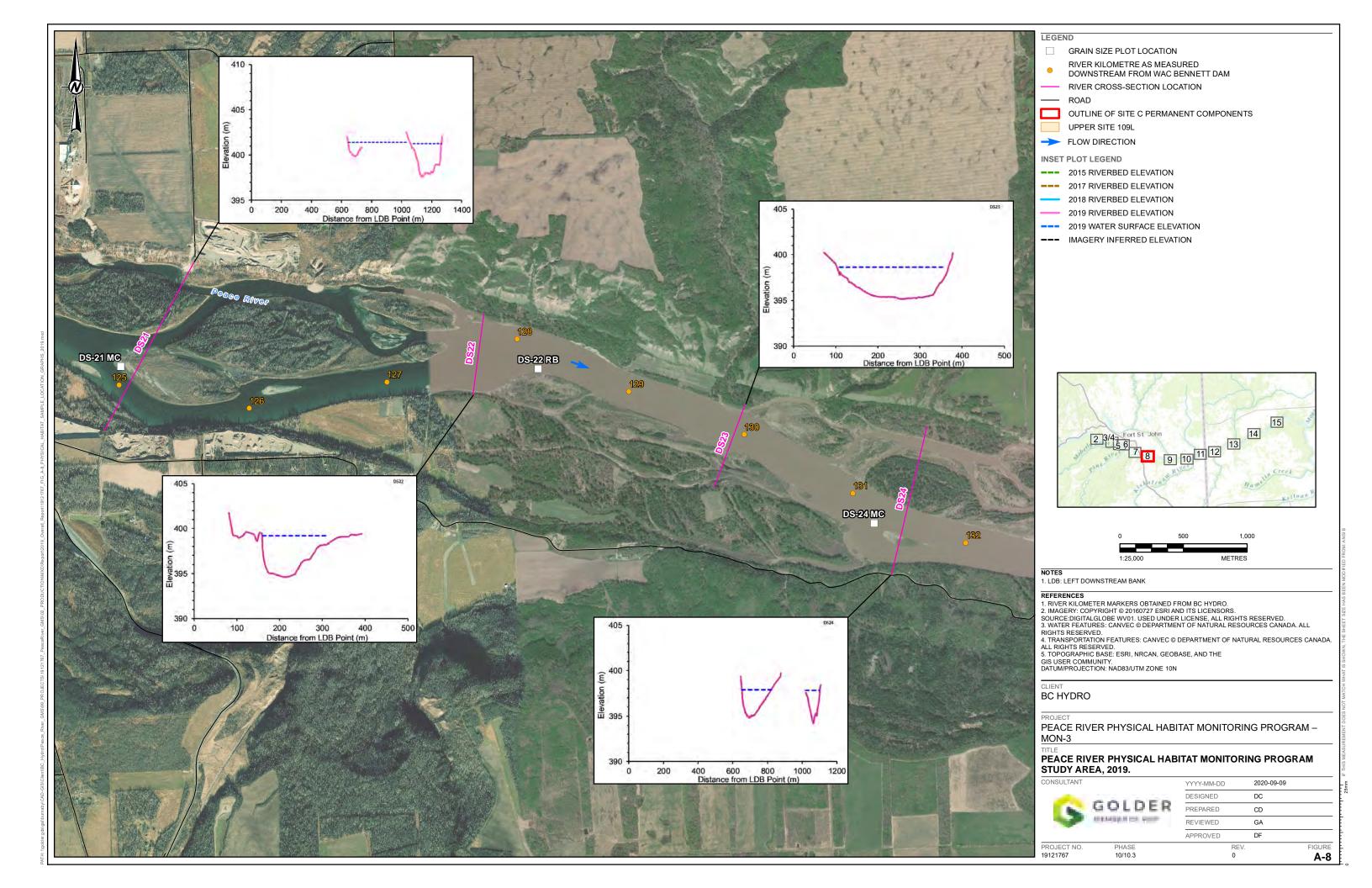


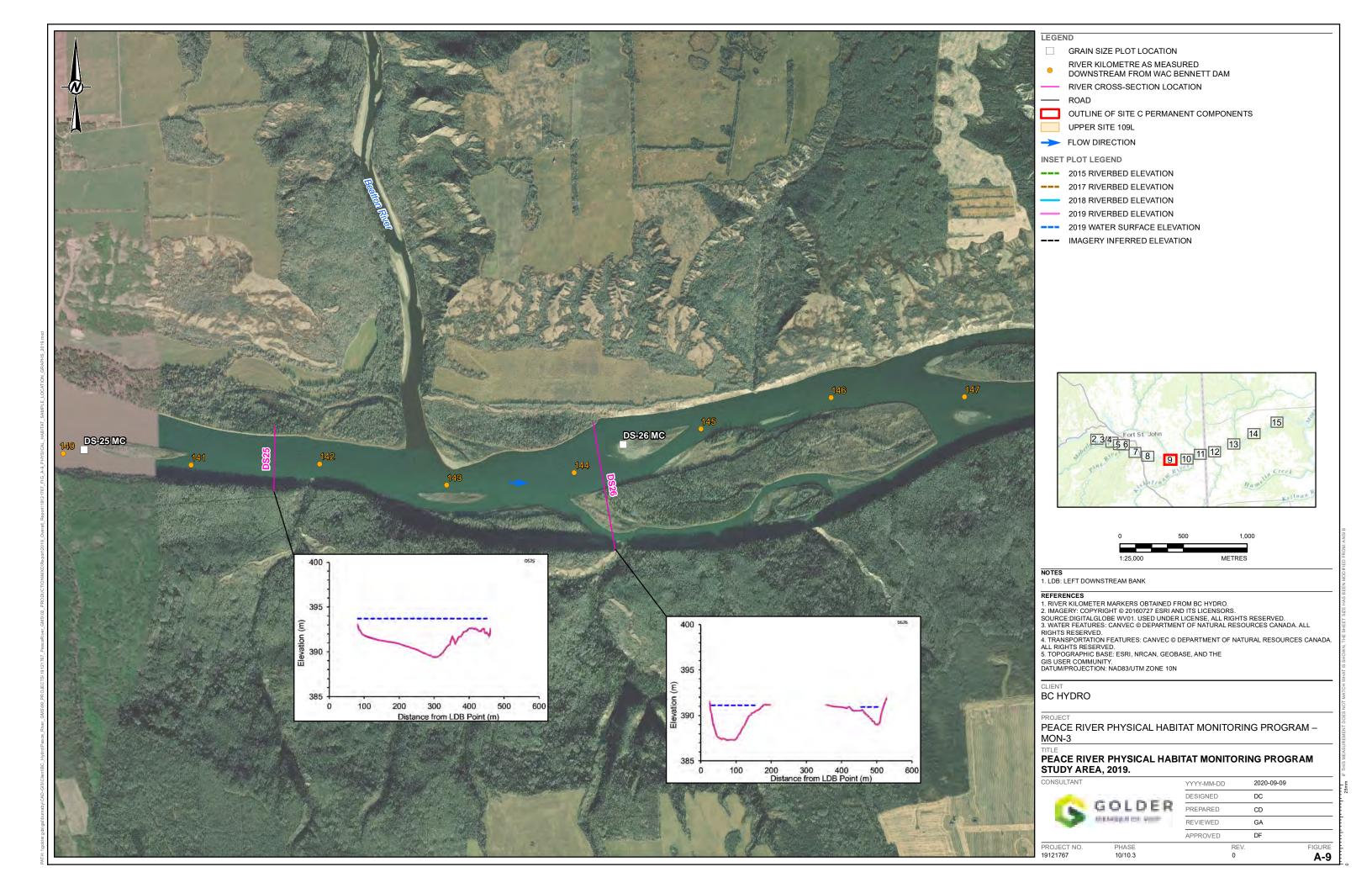

Site 2019		UTM		Survey Year		Notes
Identifier Survey Date	Easting	Northing	2015	2019		
DS-31 MC-2	12-Sep-19	691410	6225418	No	Yes	
DS-32 MC	12-Sep-19	702246	6230541	No	Yes	
DS-33 LB	12-Sep-19	708215	6229831	No	Yes	
DS-34 LB	13-Sep-19	718130	6237480	No	Yes	
DS-35 MC	13-Sep-19	727753	6241415	No	Yes	
DS-35 RB	13-Sep-19	730095	6243619	No	Yes	
DS-37 MC	13-Sep-19	735458	6246002	No	Yes	

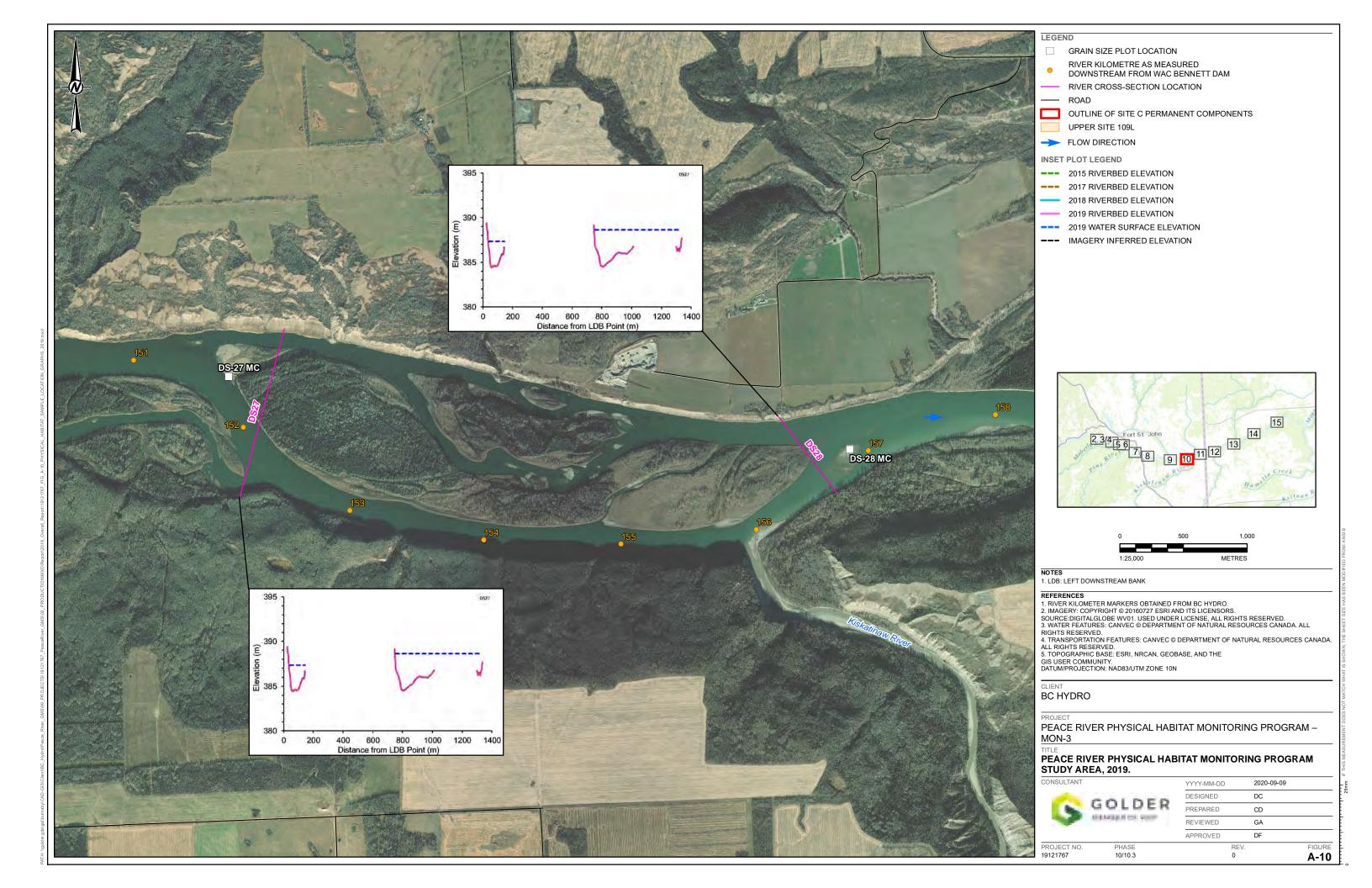


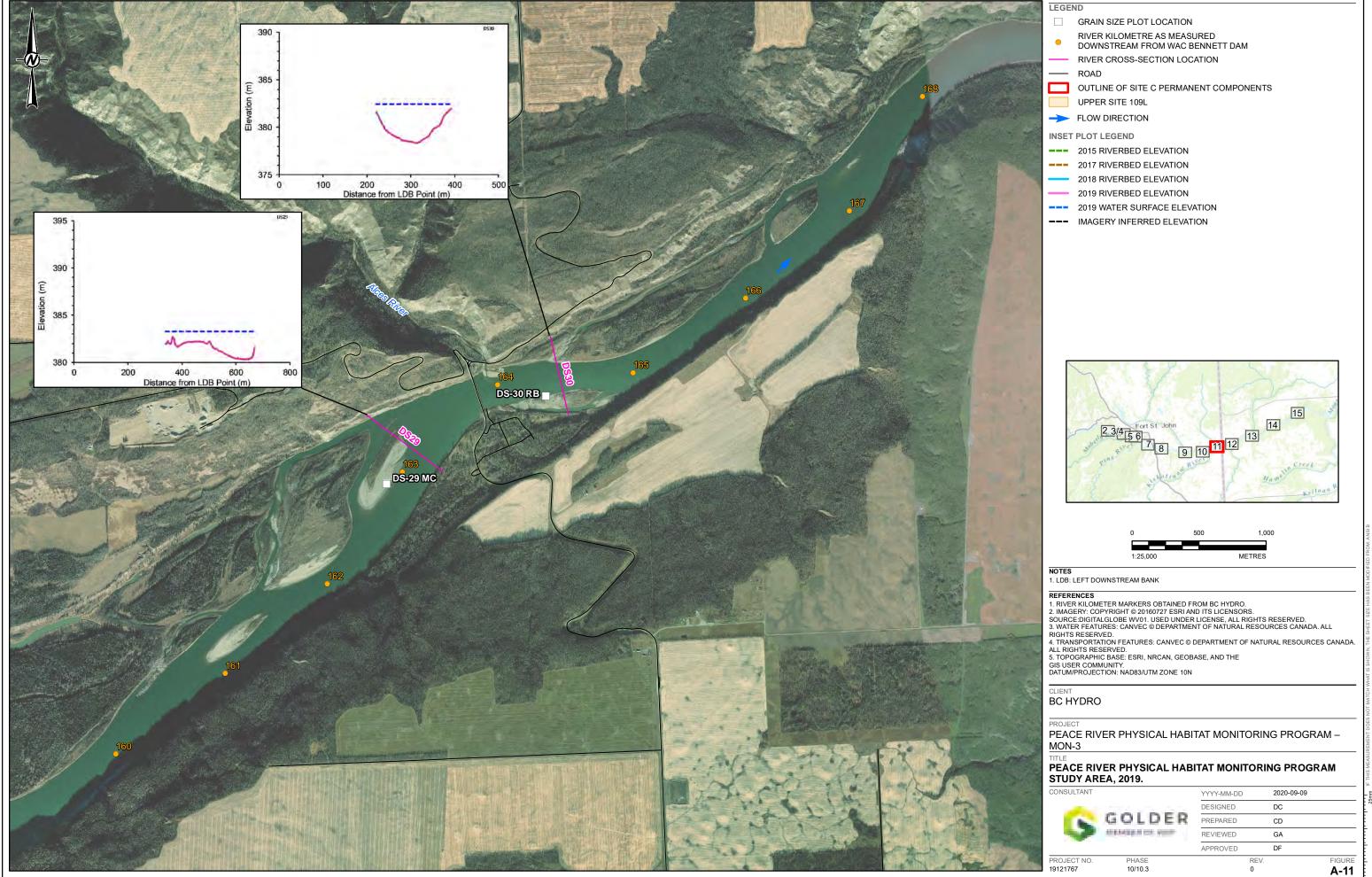


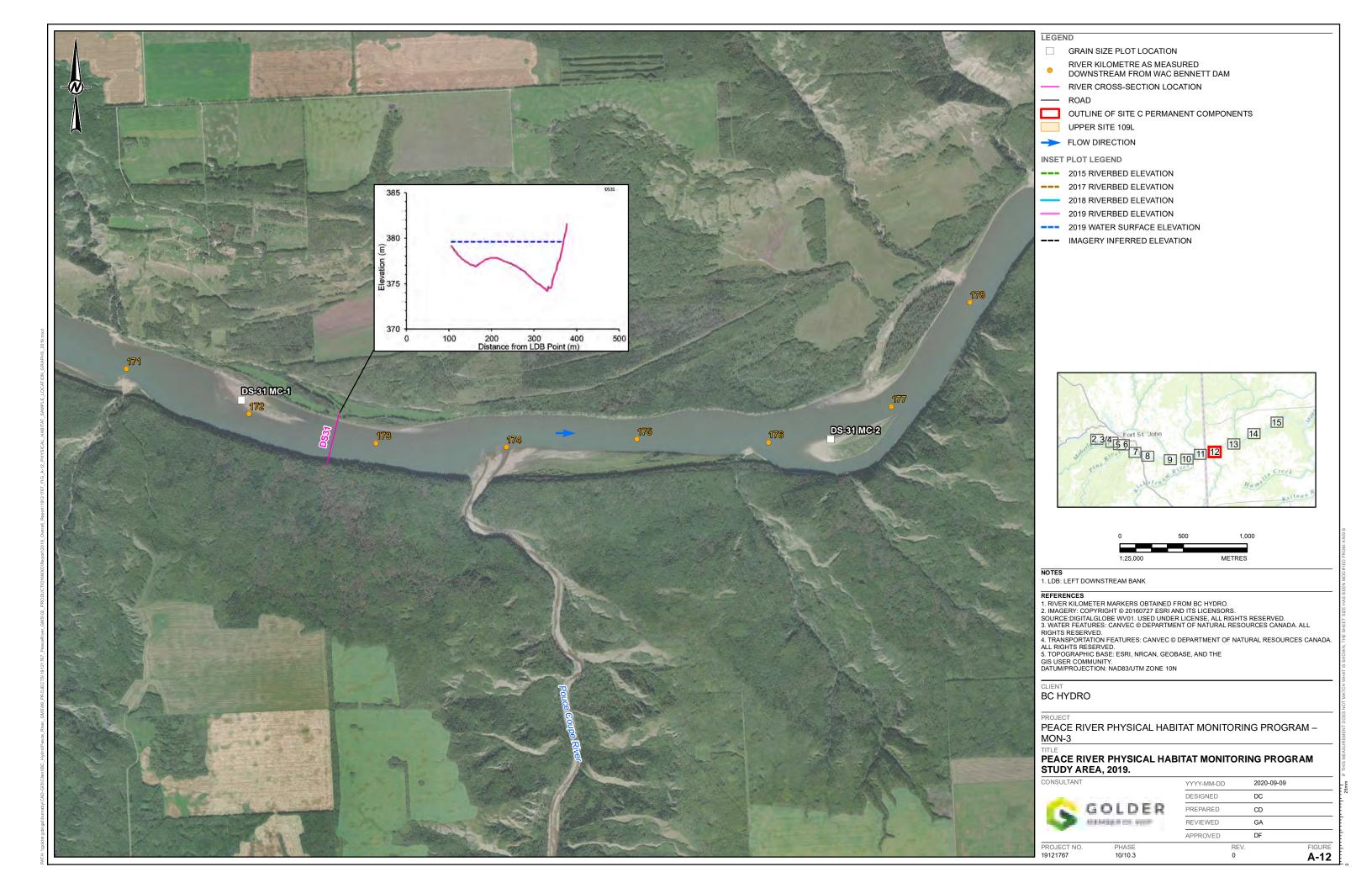


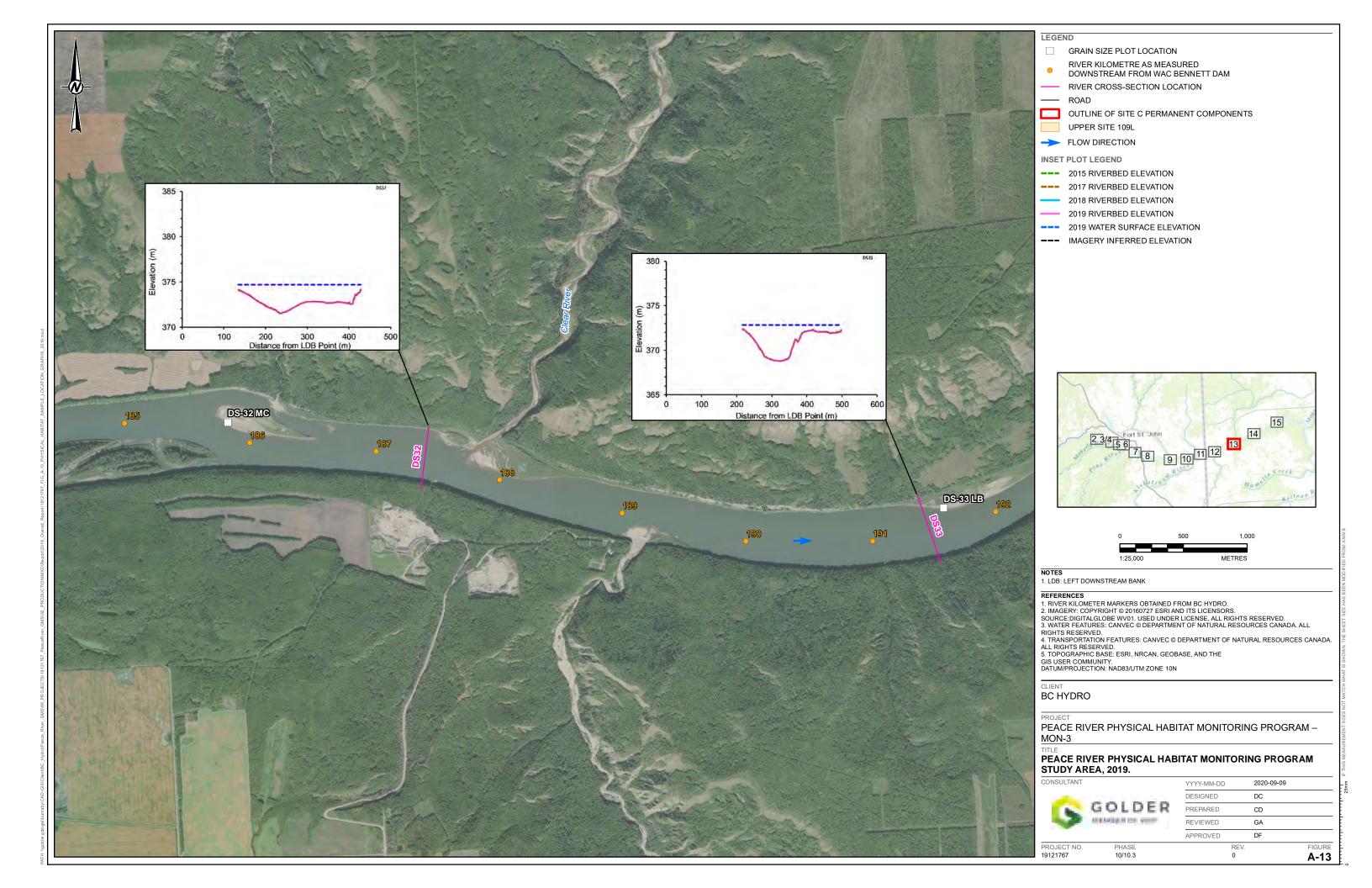


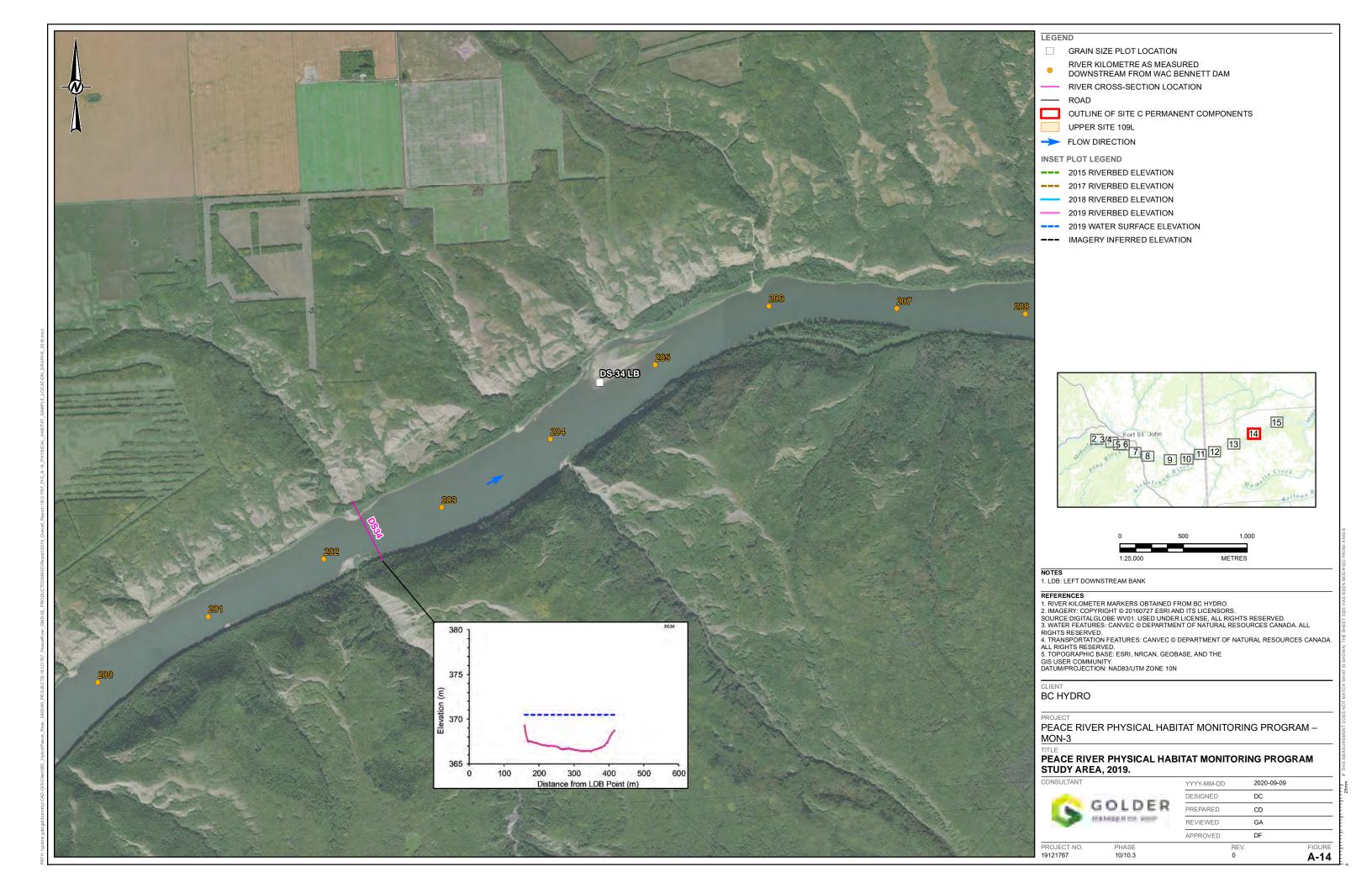


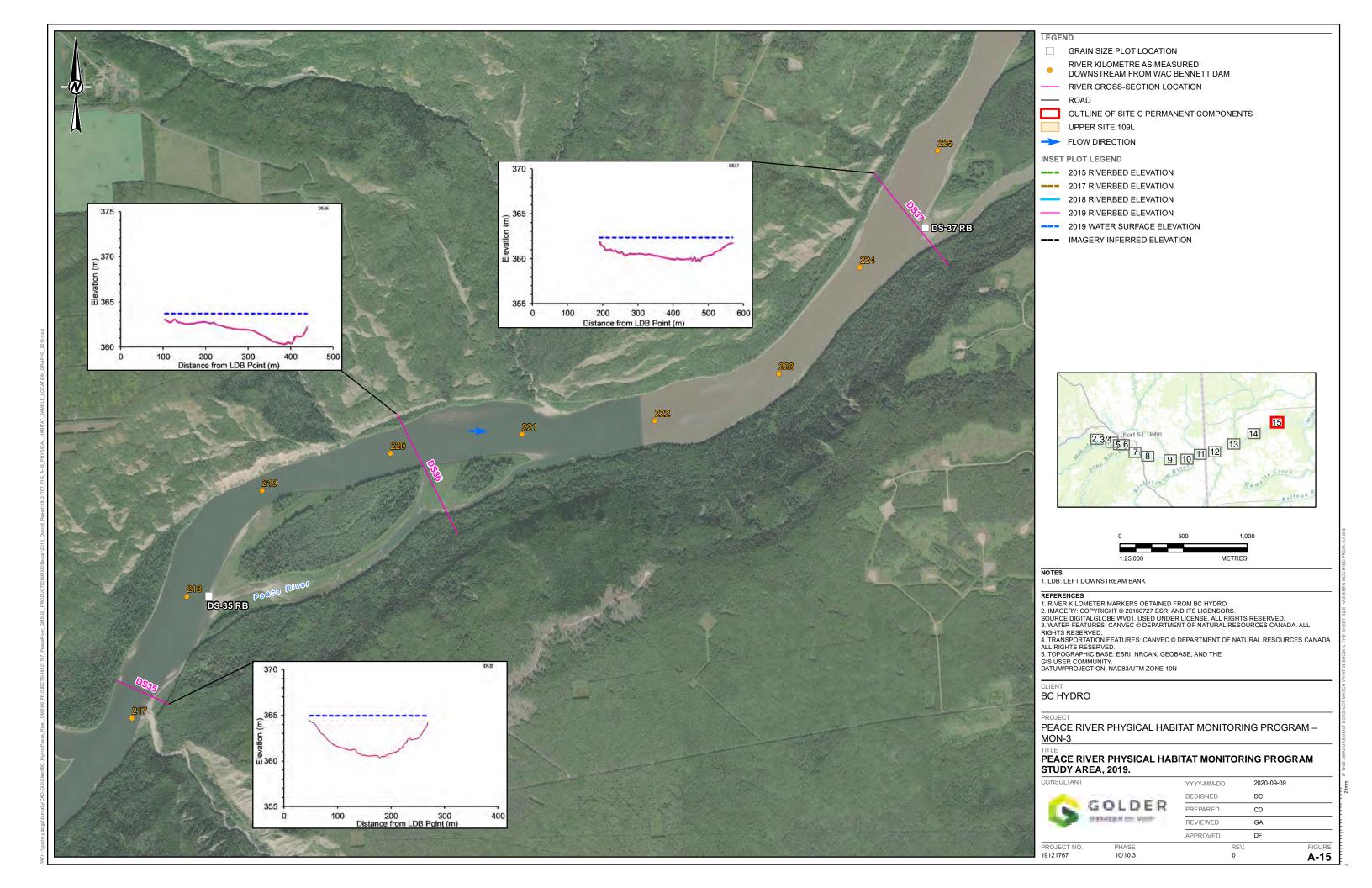












APPENDIX B

River Cross-Section Data (2015 to 2019)

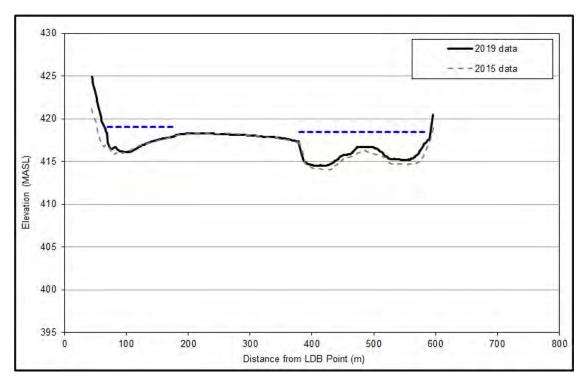


Figure B1: River cross-section at Transect #US12, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

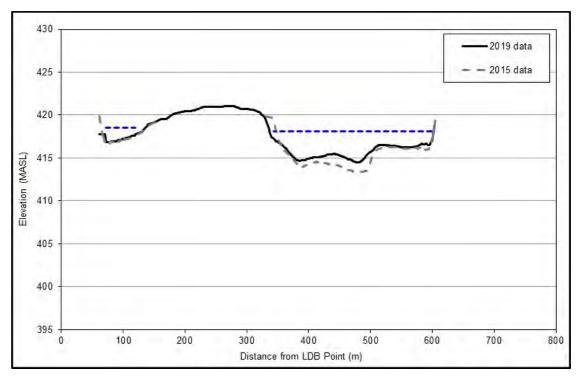


Figure B2: River cross-section at Transect #US11, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

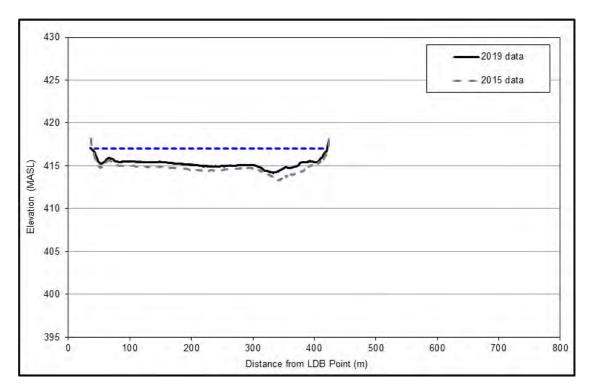


Figure B3: River cross-section at Transect #US10, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

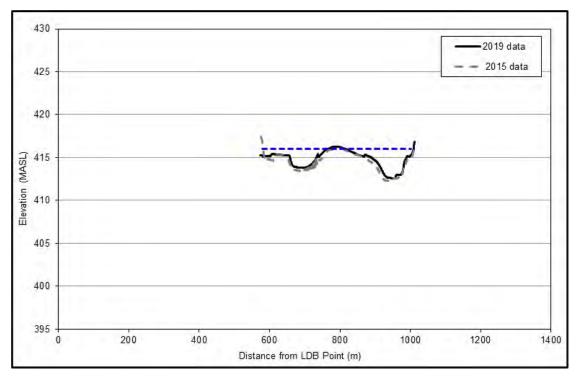


Figure B4: River cross-section at Transect #US09, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

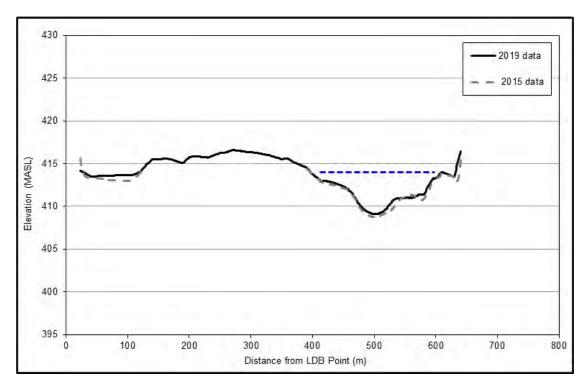


Figure B5: River cross-section at Transect #US08, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

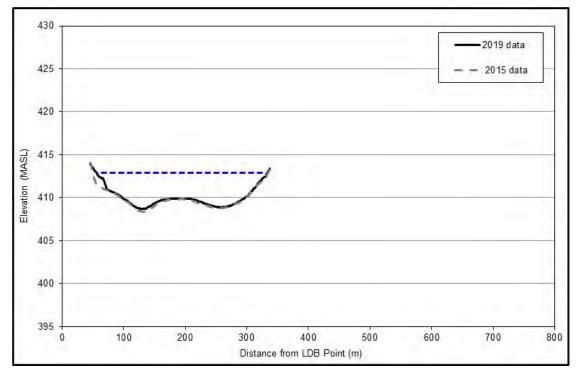


Figure B6: River cross-section at Transect #US07, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

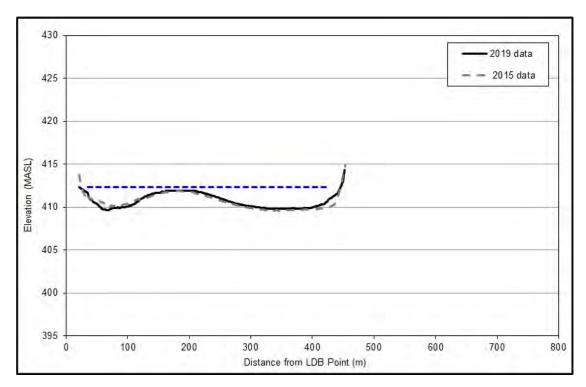


Figure B7: River cross-section at Transect #US06, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

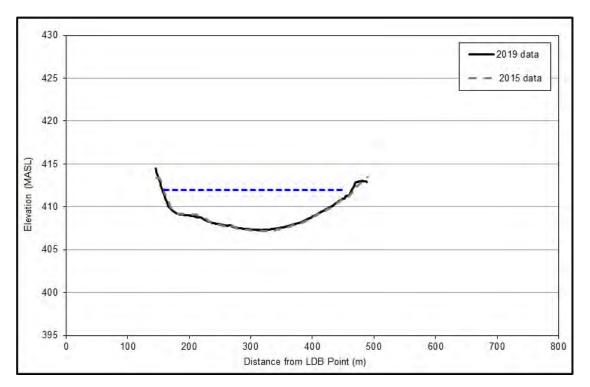


Figure B8: River cross-section at Transect #US05, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

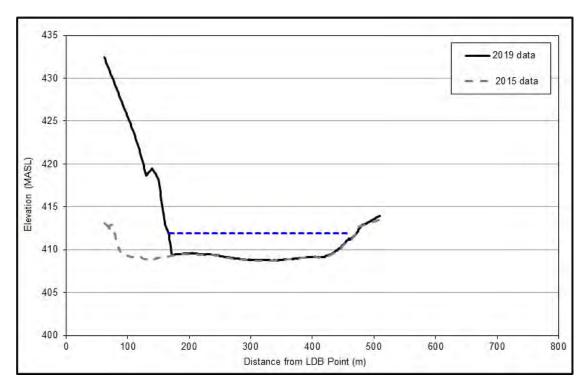


Figure B9: River cross-section at Transect #US04, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

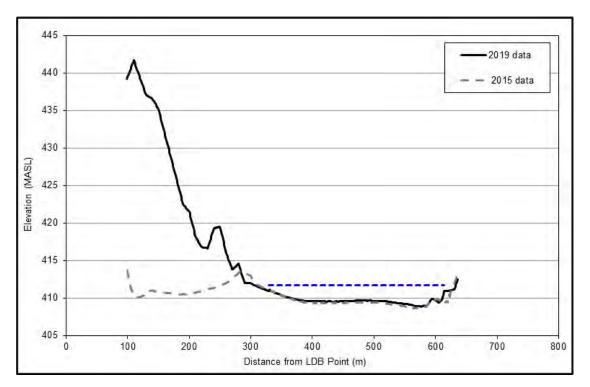


Figure B10: River cross-section at Transect #US03, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

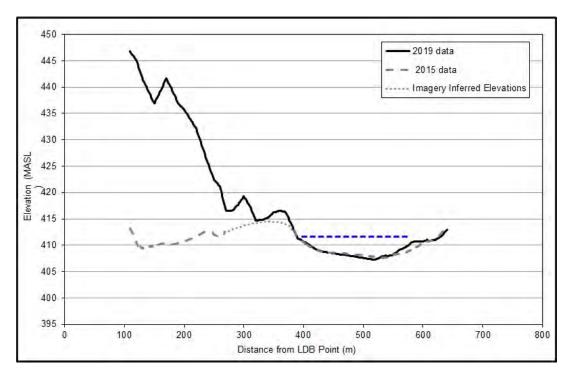


Figure B11: River cross-section at Transect #US02, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

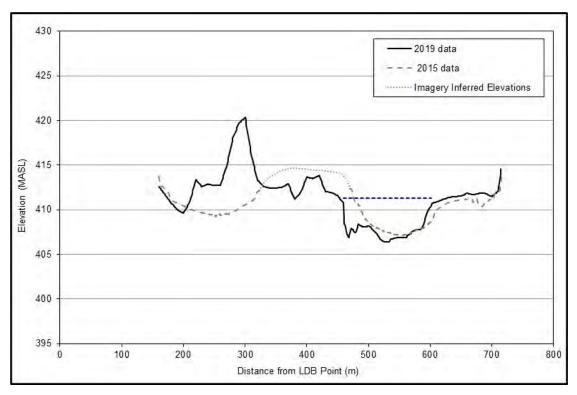


Figure B12: River cross-section at Transect #US01, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

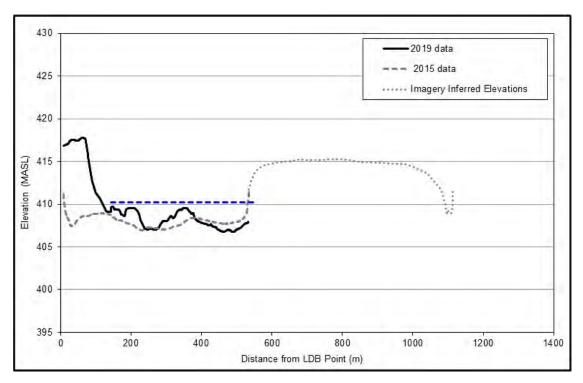


Figure B13: River cross-section at Transect #DS01, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

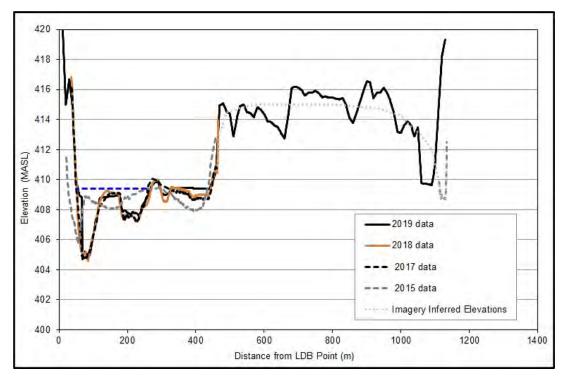


Figure B14: River cross-section at Transect #DS03, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

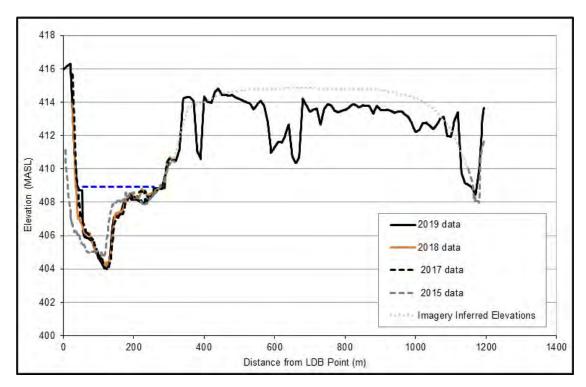


Figure B15: River cross-section at Transect #DS04, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

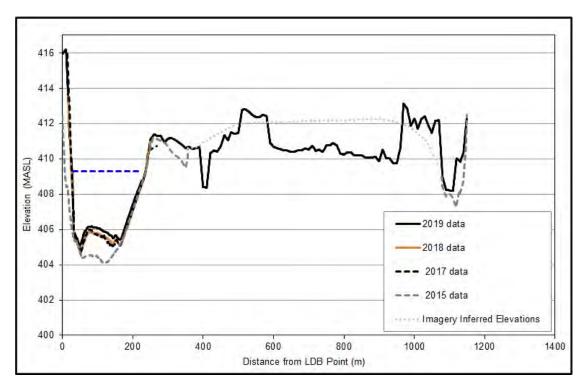


Figure B16: River cross-section at Transect #DS05, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

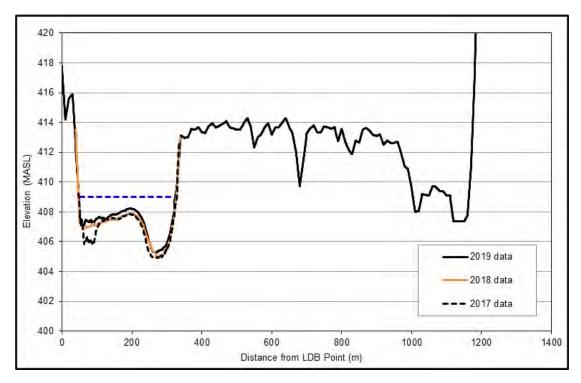


Figure B17: River cross-section at Transect #DS06a, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

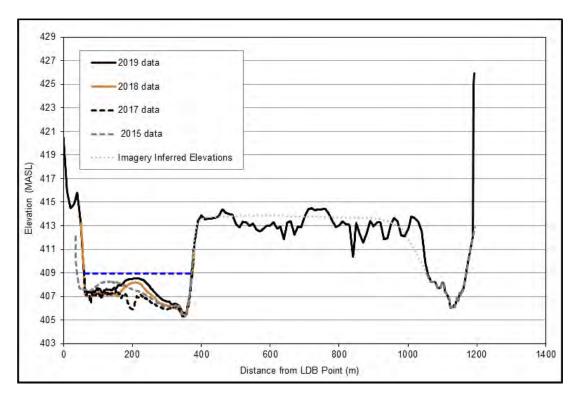


Figure B18: River cross-section at Transect #DS06, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

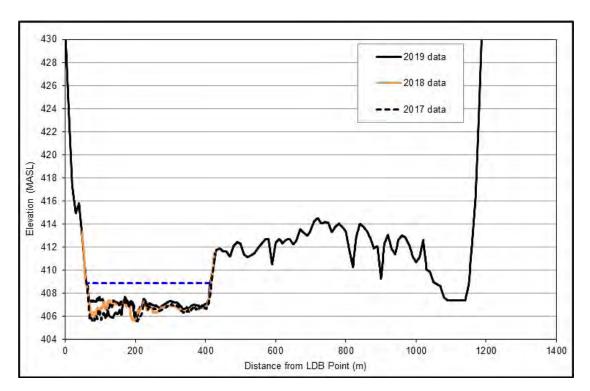


Figure B19: River cross-section at Transect #DS06b, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

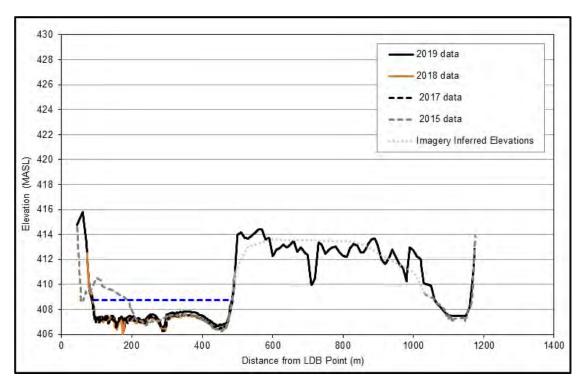


Figure B20: River cross-section at Transect #DS07, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

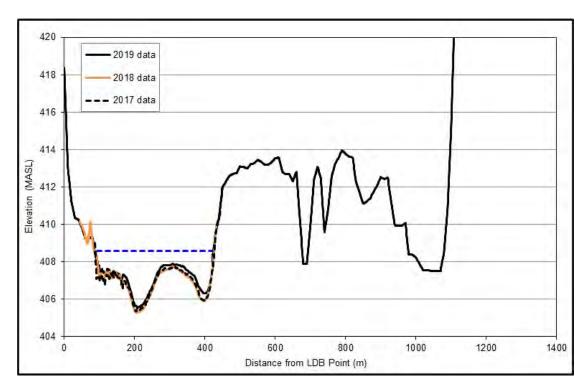


Figure B21: River cross-section at Transect #DS07b, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

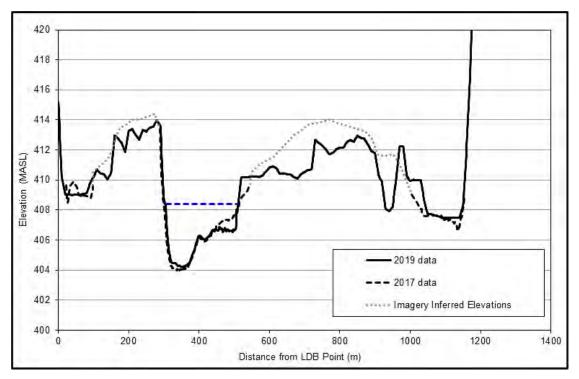


Figure B22: River cross-section at Transect #DS07a, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

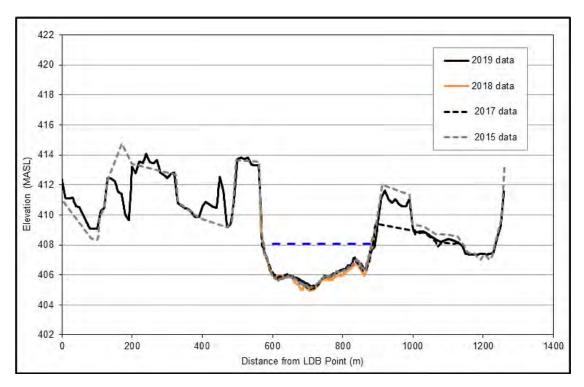


Figure B23: River cross-section at Transect #DS08, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

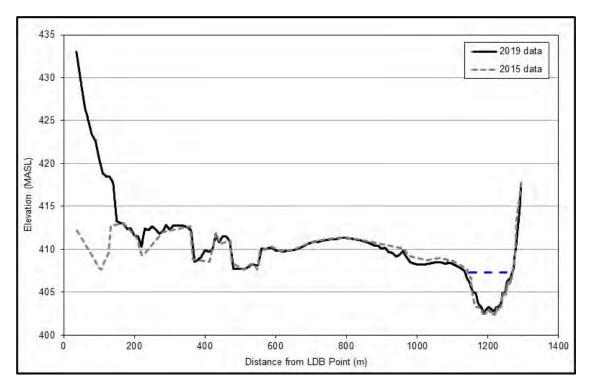


Figure B24: River cross-section at Transect #DS09, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

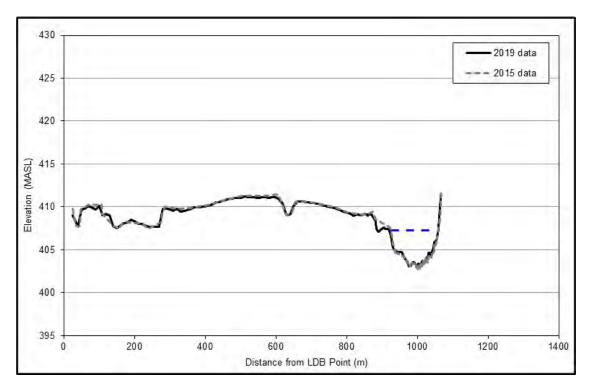


Figure B25: River cross-section at Transect #DS10, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

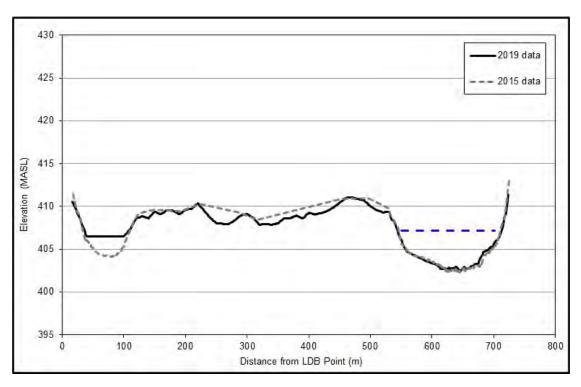


Figure B26: River cross-section at Transect #DS11, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

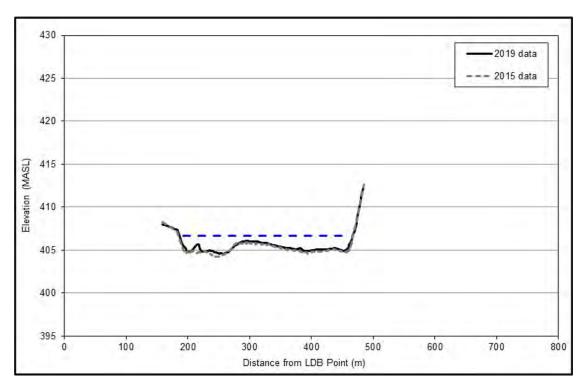


Figure B27: River cross-section at Transect #DS12, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

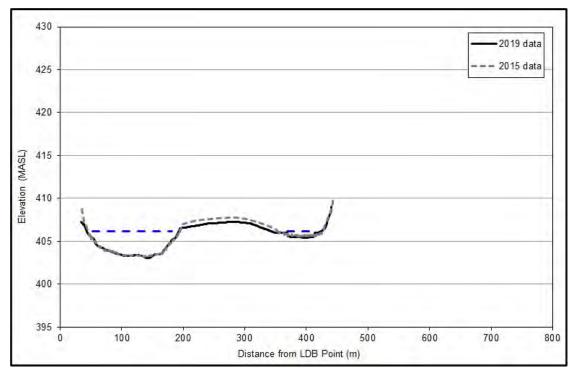


Figure B28: River cross-section at Transect #DS13, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

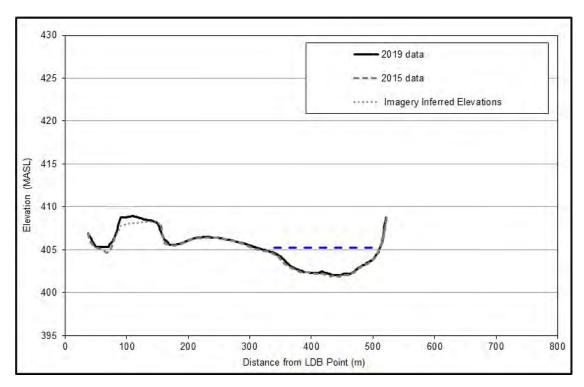


Figure B29: River cross-section at Transect #DS14, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

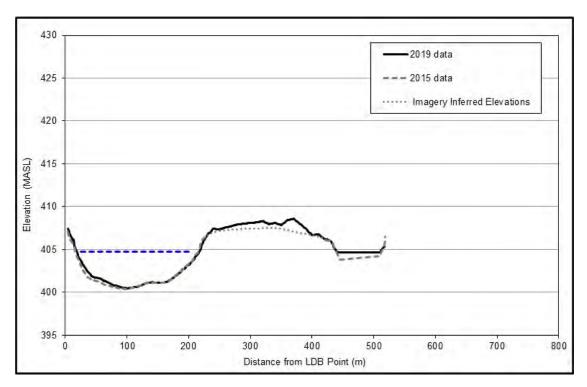


Figure B30: River cross-section at Transect #DS15, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

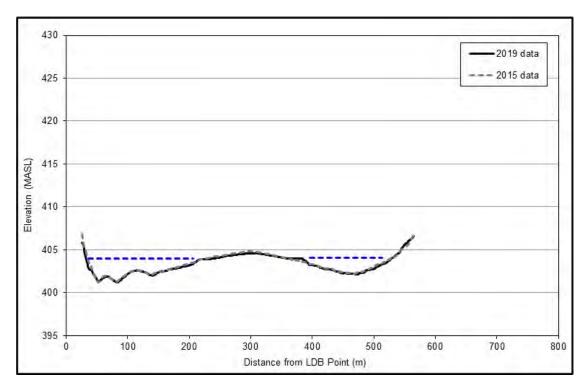


Figure B31: River cross-section at Transect #DS16, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

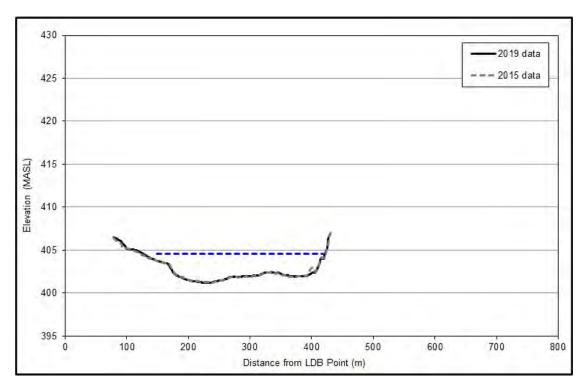


Figure B32: River cross-section at Transect #DS17, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

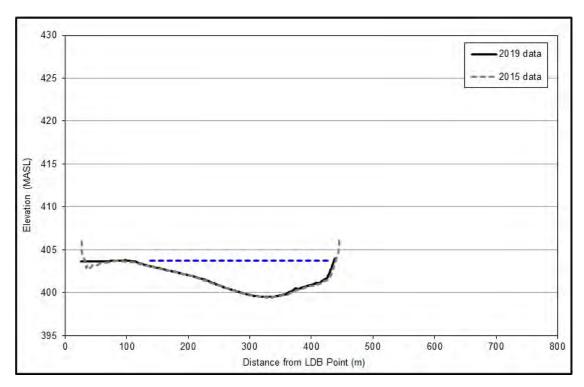


Figure B33: River cross-section at Transect #DS18, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

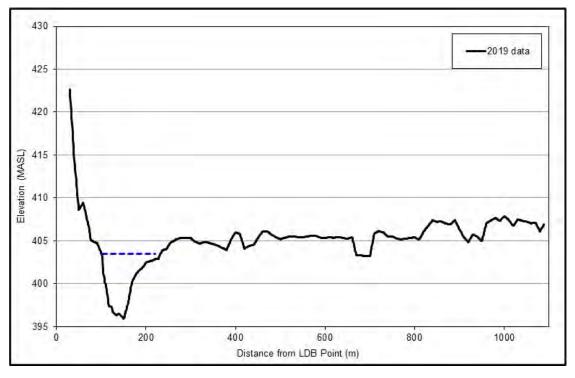


Figure B34: River cross-section at Transect #DS19, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

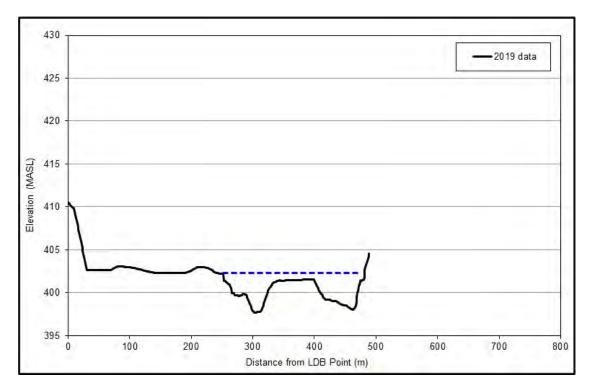


Figure B35: River cross-section at Transect #DS20, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

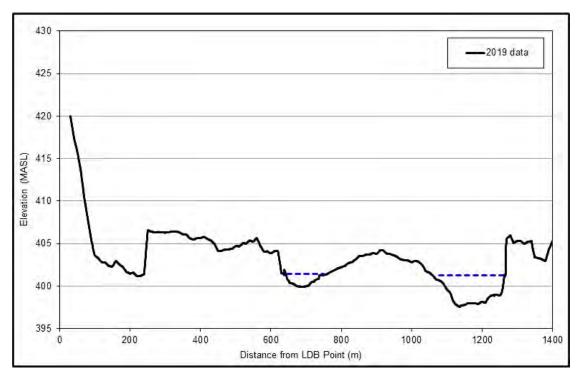


Figure B36: River cross-section at Transect #DS21, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

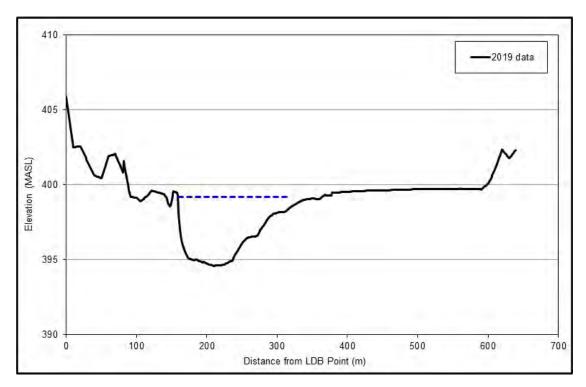


Figure B37: River cross-section at Transect #DS22, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

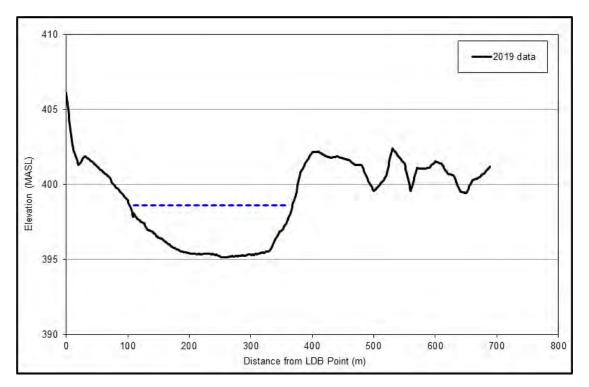


Figure B38: River cross-section at Transect #DS23, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

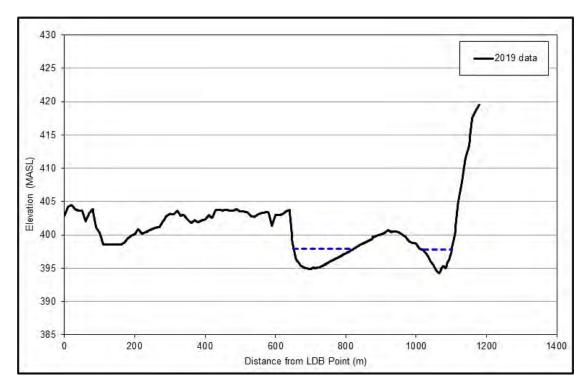


Figure B39: River cross-section at Transect #DS24, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

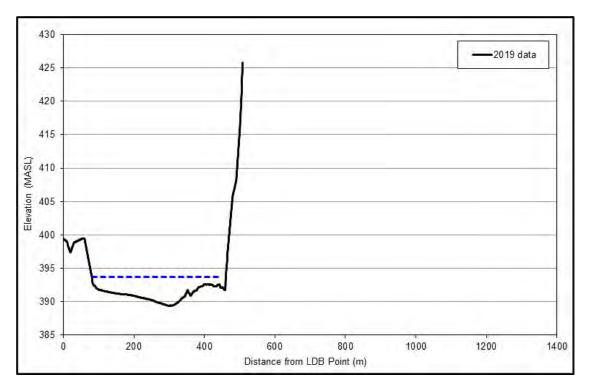


Figure B40: River cross-section at Transect #DS25, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

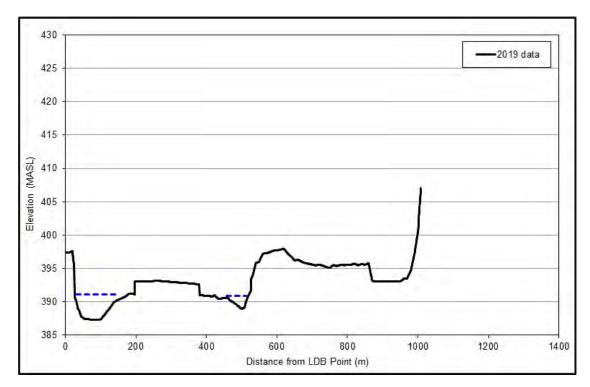


Figure B41: River cross-section at Transect #DS26, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

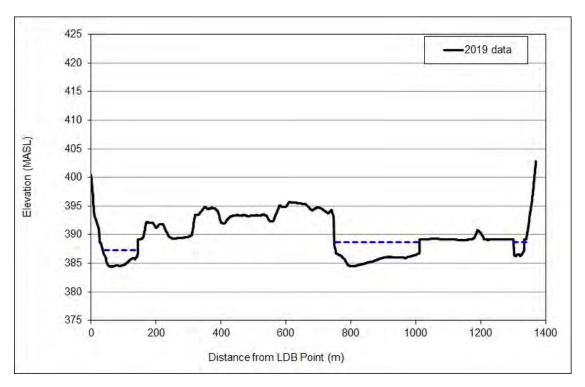


Figure B42: River cross-section at Transect #DS27, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

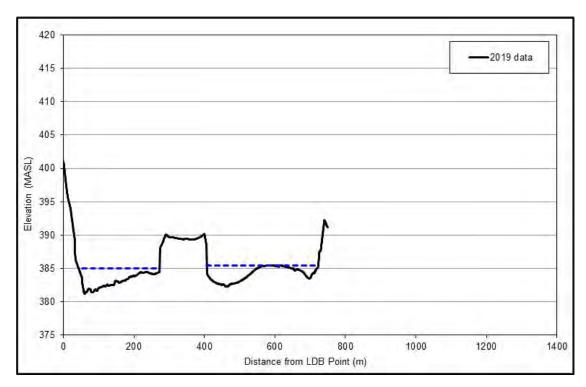


Figure B43: River cross-section at Transect #DS28, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.
The blue dotted line denotes water levels at the time of the 2019 survey.

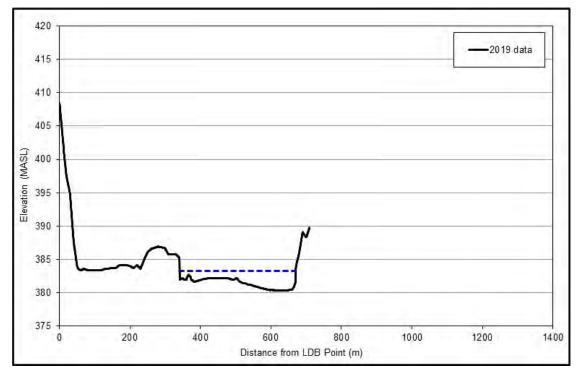


Figure B44: River cross-section at Transect #DS29, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

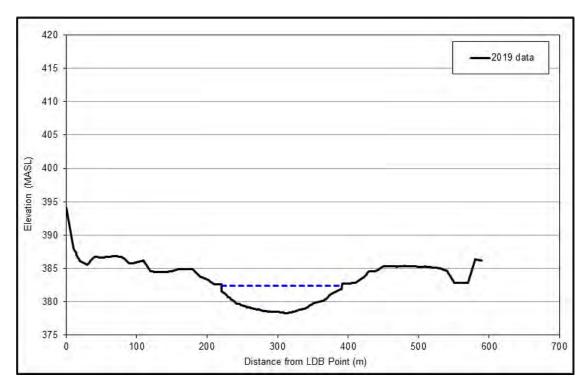


Figure B45: River cross-section at Transect #DS30, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

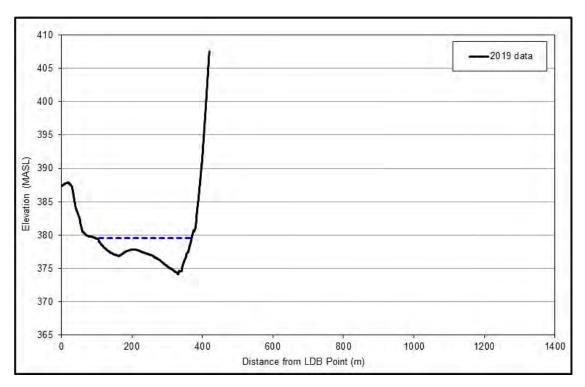


Figure B46: River cross-section at Transect #DS31, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

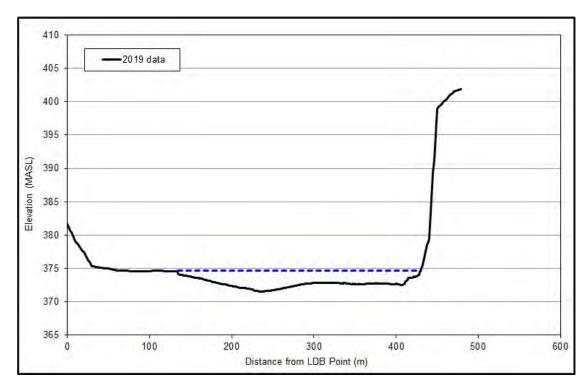


Figure B47: River cross-section at Transect #DS32, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

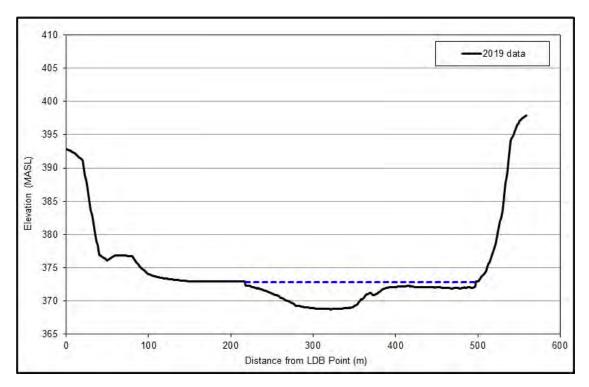


Figure B48: River cross-section at Transect #DS33, Peace River Physical Habitat Monitoring Program (Mon-3), 2019. The blue dotted line denotes water levels at the time of the 2019 survey.

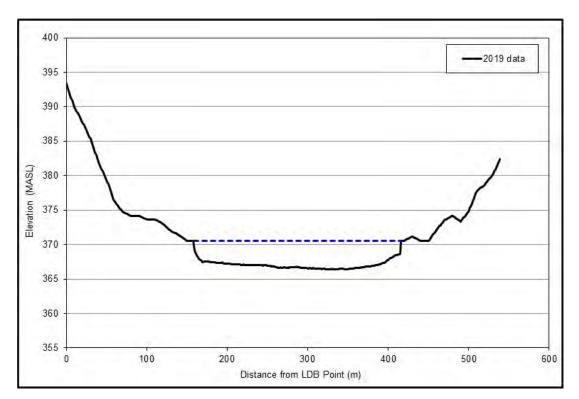


Figure B49: River cross-section at Transect #DS34, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

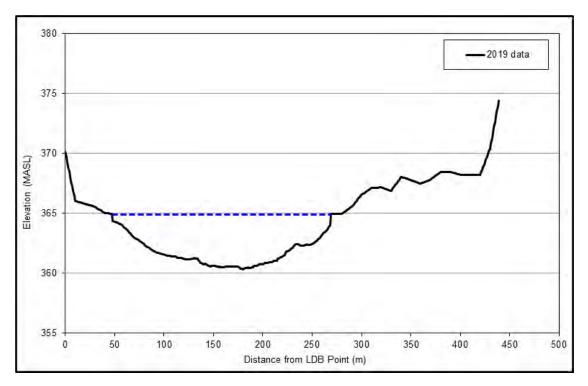


Figure B50: River cross-section at Transect #DS35, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

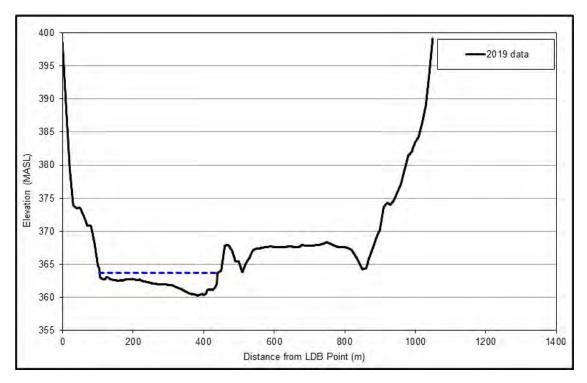


Figure B51: River cross-section at Transect #DS36, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

The blue dotted line denotes water levels at the time of the 2019 survey.

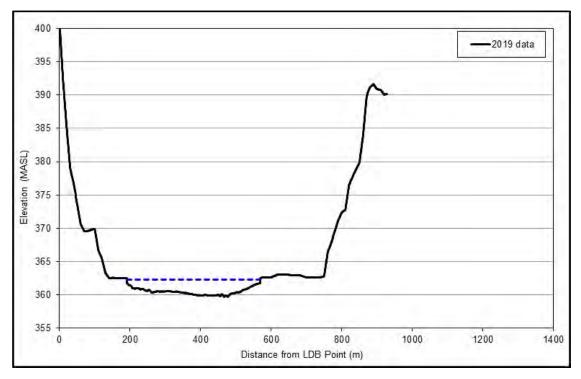
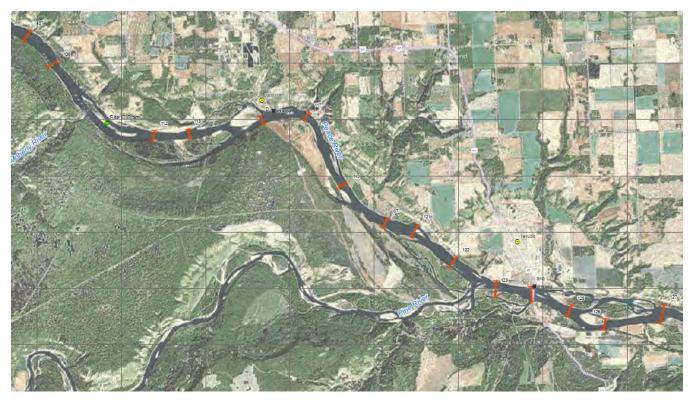
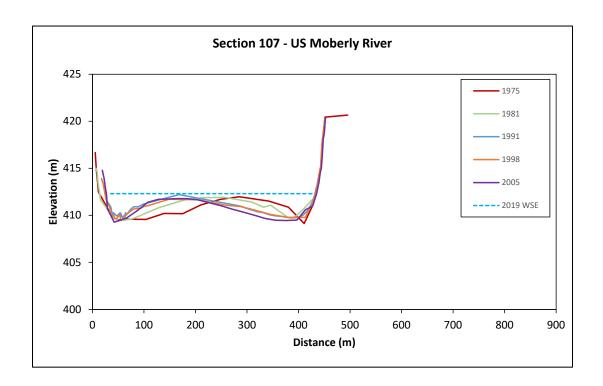
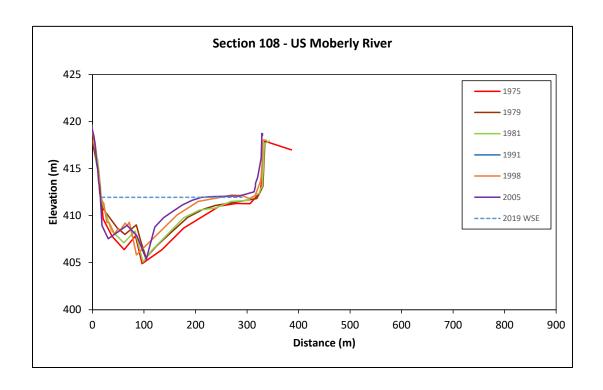
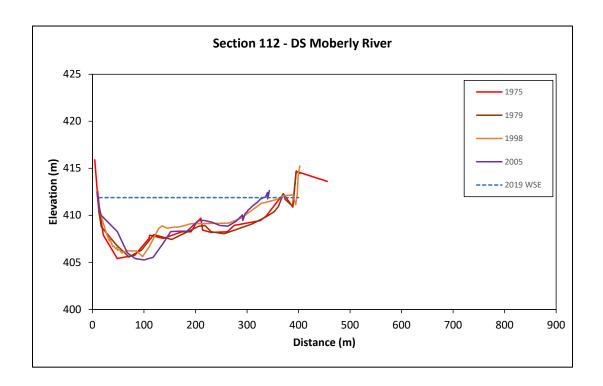


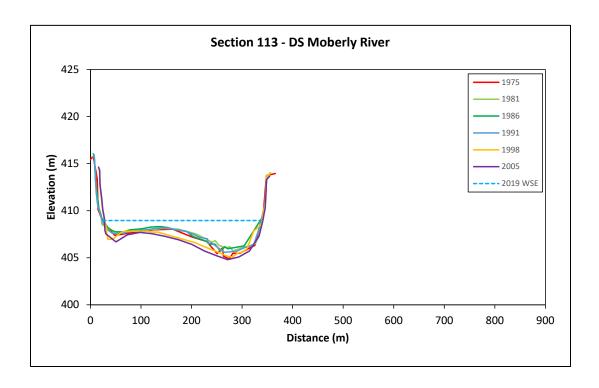
Figure B52: River cross-section at Transect #DS37, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

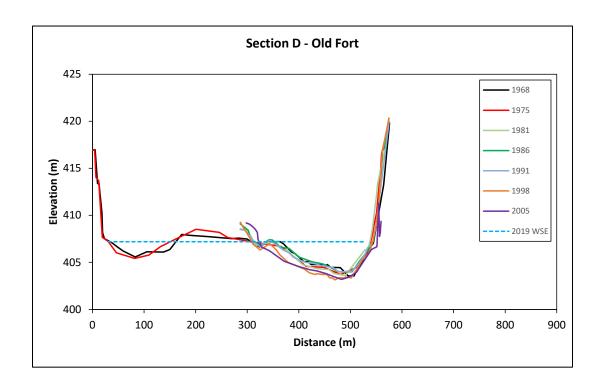
The blue dotted line denotes water levels at the time of the 2019 survey.

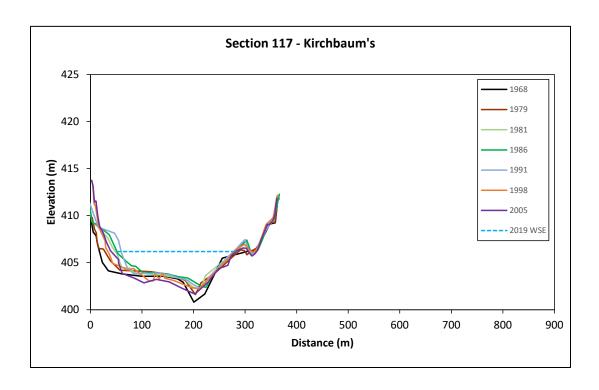
HISTORICAL CROSS-SECTIONS

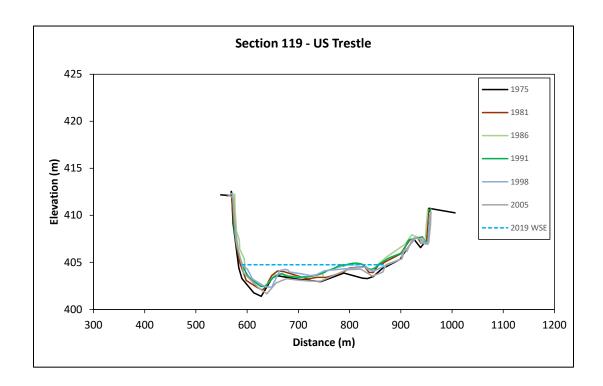
This section presents the historical cross-sections surveyed on Peace River between 1968 and 2005. The cross-section locations are shown in Figure 53.

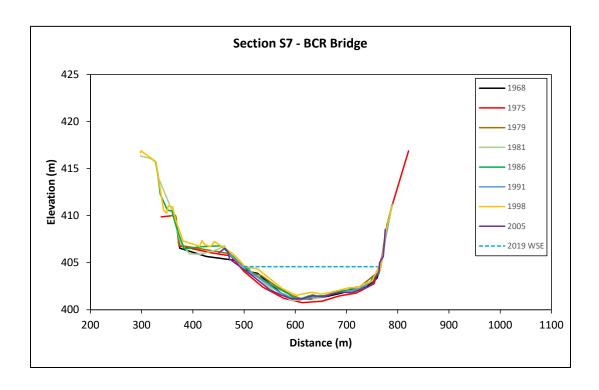





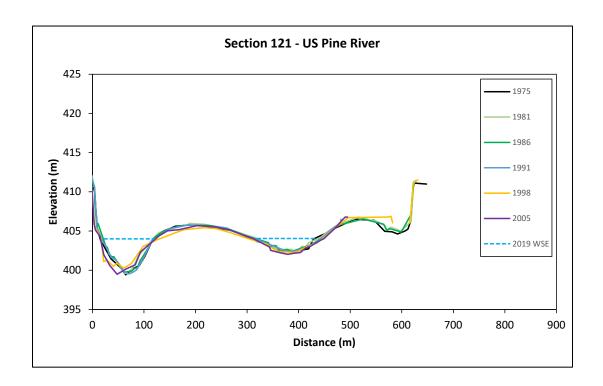

Figure 53: Historical Cross-Section Locations

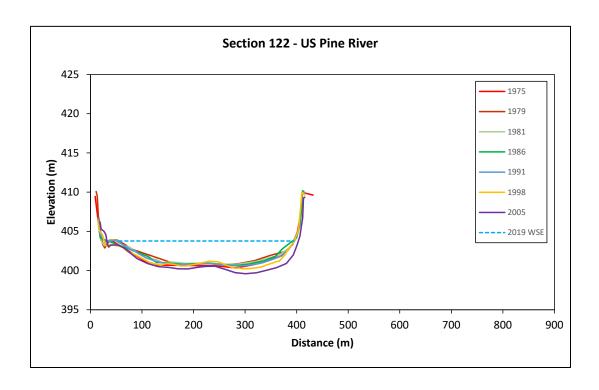


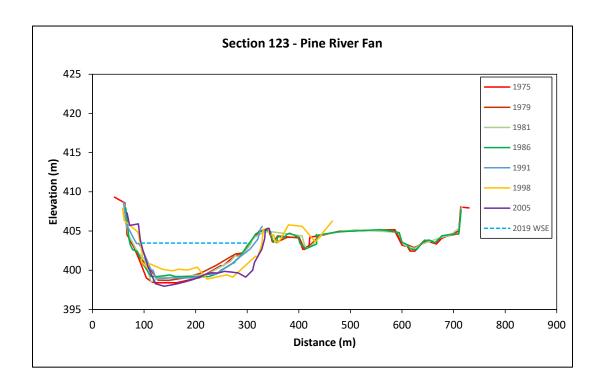


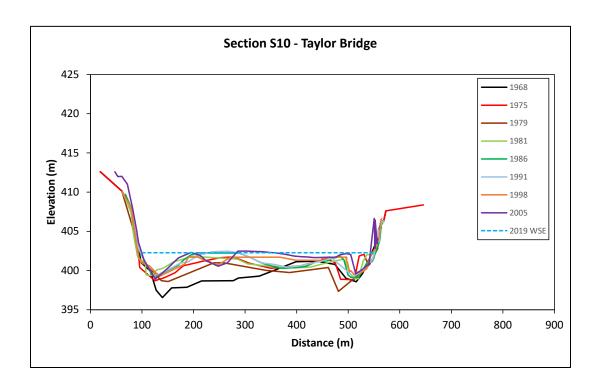


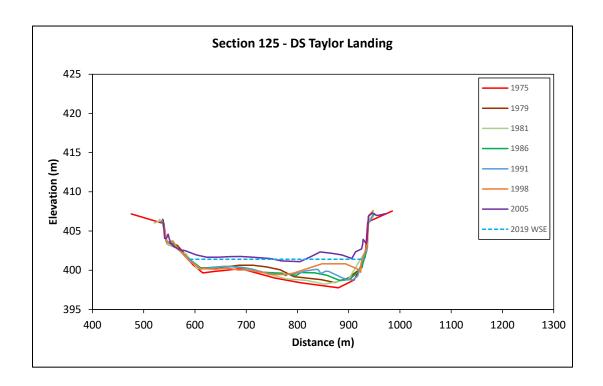


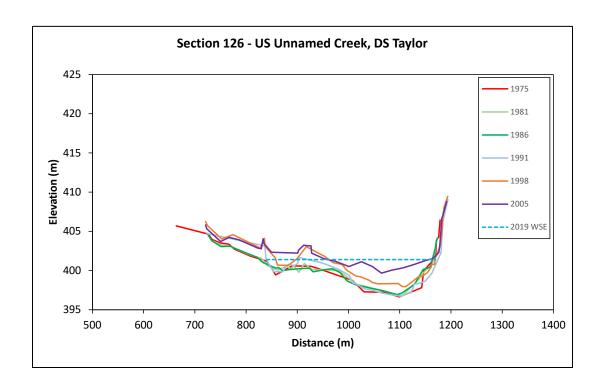


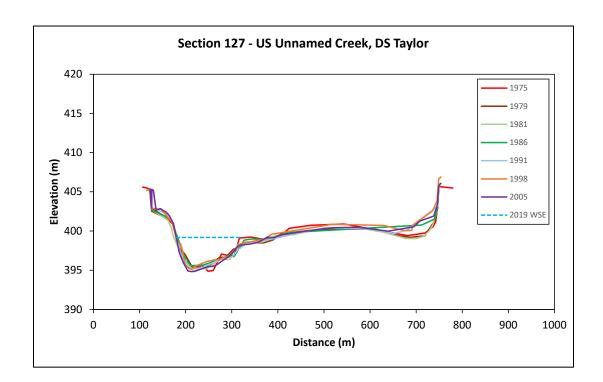












31 December 2020 19121767-011-R-Rev0

APPENDIX C

Grain Size Data

APPENDIX C Grain Size Measurement Data

Table C1: Size classes used for the grain size analysis during BC Hydro's Peace River Physical Habitat Monitoring Program, 2019 (Wentworth 1922).

Material	Size range (mm)
silt/clay	0 - 0.062
very fine sand	0.062 - 0.125
fine sand	0.125 - 0.25
medium sand	0.25 - 0.5
coarse sand	0.5 - 1
very coarse sand	1 - 2
very fine gravel	2 - 4
fine gravel	4 - 8
medium gravel	8 - 16
coarse gravel	16 - 32
very coarse gravel	32 - 64
small cobble	64 - 90
medium cobble	90 - 128
large cobble	128 - 180
very large cobble	180 - 256
small boulder	256 - 512
medium boulder	512 - 1024
large boulder	1,024 – 2,048
very large boulder	2,048 – 4,096

1

Table C2: Grain size data (in mm) collected during BC Hydro's Peace River Physical Habitat Monitoring Program, 2019.

1 32 52 0.8 65 25 0.8 140 50 0.06 68 55 0.8 70 25 0.5 48 120 0.1 2 45 42 1 30 40 1 60 42 0.06 35 90 2 20 27 0.7 70 55 0.5 3 10 32 1 40 220 2 110 62 0.08 90 100 1 30 38 1 90 35 3 4 24 12 3 60 32 3 190 65 0.1 80 45 9 35 60 2 120 130 7 5 18 22 32 25 160 126 0.3 42 50 40 29 7 90 90 0.2 6 29 26 40 24 26 38 1 110 35 15 50 90 80 7 27 25 100 22 160 90 2 125 35 60 22 100 45 8 30 24 20 22 36 110 56 50 30 2 125 35 60 22 100 45 8 30 24 20 22 36 110 56 50 30 25 32 100 45 9 28 19 32 17 130 150 90 45 45 50 40 40 11 41 24 25 20 70 110 92 55 60 80 95 70 11 41 24 25 20 70 110 92 55 60 80 95 70 12 35 39 65 10 60 90 140 150 21 35 180 50 13 60 130 35 27 120 110 86 50 55 38 35 50 14 20 20 50 32 60 30 46 80 30 15 60 80 15 30 45 60 29 62 40 32 80 40 60 30 15 60 80 16 20 25 37 24 100 50 48 110 77 20 100 40 17 29 45 21 20 20 20 30 45 80 30 55 46 80 30 15 18 24 95 40 10 60 160 160 52 32 50 15 46 120 19 30 22 33 40 90 100 105 40 40 40 70 170 18 24 95 46 47 47 47 40 90 47 40 40 40 70 170 19 30 22 32 40 25 87 80 30 22 22 25 40 40 40 40 40 70 170 21 29 29 32 40 25 87 80 30 22 22 25 40 40 40 40 40 40 40 4	Count	U	S-12 M	IC	U	S-11 M	С	U	S-10 R	В	U	S-10 M	С	U	S-09 M	С	u	IS-08 R	В
2	1	32	52	0.8	65	25	0.8	140	50	0.06	68	55	0.8	70	25	0.5	48	120	0.1
31			_	1															
4																			
S																			
6 29 26 40 24 28 38 1 110 35 15 50 90 80 7 7 27 25 100 22 160 90 2 125 35 60 22 100 45 8 30 24 20 22 35 110 55 50 30 55 65 100 45 100 48 11 10 29 11 130 130 150 90 45 18 55 80 50 100 10 19 39 32 40 90 35 130 25 32 110 75 111 41 12 42 25 32 10 10 89 45 60 80 95 70 110 89 255 60 80 95 70 110 80 30 15 60 80 15 100 40	_																		
T	_																		0.2
8																			
9	_									_									
10																			
11	_																		
12																			
13		35									140								
14	13	60	130		35	27		120	110		85			55	38		35	50	
16	14	20	20					60	30		45	80			15			80	
17	15	30	45		60	29		62	40		32	80		65	100		75	40	
17																			
19 30 28 38 18 28 100 105 40 40 65 35 120	17		45	İ	21	20		20	30		43	35			40		70	170	
20 29 32 40 25 87 80 30 22 22 25 40 40 21 29 70 48 17 120 40 150 100 30 45 190 120 22 29 26 34 10 70 180 180 60 50 35 40 80 23 45 67 60 22 70 28 50 105 30 85 90 75 24 35 63 27 12 40 90 125 80 38 80 50 110 25 50 25 32 17 180 140 140 45 80 35 100 135 26 35 30 32 32 15 120 120 100 35 35 150 100 185 28 35	18	24	95		40	10		60	160		52	32		50	15		45	120	
21 29 70 48 17 120 40 150 100 30 45 190 120 22 29 26 34 10 70 180 180 60 50 35 40 80 23 45 67 60 22 70 28 50 105 30 85 90 75 24 35 63 27 12 40 90 125 80 38 80 50 110 25 50 25 32 17 180 140 140 45 80 35 100 135 26 35 30 32 32 25 55 120 120 100 35 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35	19	30	28		38	18		28	100		105	40		40	65		35	120	
22 29 26 34 10 70 180 180 60 50 35 40 80 23 45 67 60 22 70 28 50 105 30 85 90 75 24 35 63 27 12 40 90 125 80 38 80 50 110 25 50 25 32 17 180 140 140 445 80 35 100 135 26 35 30 32 32 55 120 120 100 35 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70	20	29	32		40	25		87	80		30	22		22	25		40	40	
23 45 67 60 22 70 28 50 105 30 85 90 75 24 35 63 27 12 40 90 125 80 38 80 50 110 25 50 25 32 17 180 140 140 45 80 35 100 135 26 35 30 32 35 150 105 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150	21	29	70		48	17		120	40		150	100		30	45		190	120	
24 35 63 27 12 40 90 125 80 38 80 50 110 25 50 25 32 17 180 140 140 45 80 35 100 135 26 35 30 32 32 55 120 120 100 35 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 33 43 35 20	22	29	26		34	10		70	180		180	60		50	35		40	80	
25 50 25 32 17 180 140 140 45 80 35 100 135 26 35 30 32 32 55 120 120 100 35 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35	23	45	67		60	22		70	28		50	105		30	85		90	75	
26 35 30 32 32 55 120 120 100 35 35 150 105 27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41	24	35	63		27	12		40	90		125	80		38	80		50	110	
27 32 29 18 14 120 20 65 70 25 45 70 90 28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 <td< td=""><td>25</td><td>50</td><td>25</td><td></td><td>32</td><td>17</td><td></td><td>180</td><td>140</td><td></td><td>140</td><td>45</td><td></td><td>80</td><td>35</td><td></td><td>100</td><td>135</td><td></td></td<>	25	50	25		32	17		180	140		140	45		80	35		100	135	
28 35 115 20 27 30 150 130 25 50 80 90 100 29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37	26	35	30		32	32		55	120		120	100		35			150		
29 52 70 15 11 85 80 45 100 110 45 95 35 30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 <t< td=""><td>27</td><td></td><td></td><td></td><td>18</td><td></td><td></td><td>120</td><td>20</td><td></td><td>65</td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>90</td><td></td></t<>	27				18			120	20		65						70	90	
30 75 39 35 16 150 70 60 80 19 12 45 40 31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td></td<>	-													50					
31 55 70 20 22 80 60 150 70 65 150 60 80 32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79	_		70			11		85	80		45	100							
32 43 35 20 36 45 85 100 30 40 25 60 50 33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10	_																		
33 24 41 30 22 80 70 95 80 65 50 95 30 34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25																			
34 40 27 60 160 20 140 90 60 125 100 100 80 35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80																			
35 36 37 60 29 55 105 80 80 30 90 55 80 36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45																			
36 44 25 50 18 55 110 35 75 28 40 50 30 37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56	\vdash																		
37 34 20 30 30 46 110 135 120 78 140 130 260 38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30	_																		
38 25 79 29 17 65 85 60 95 80 28 70 65 39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_																		
39 26 10 48 60 52 70 110 65 40 65 80 150 40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25	_																		
40 23 25 30 27 100 32 40 115 50 40 80 100 41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 60 48 39 50	_																		
41 17 80 37 90 65 120 95 85 35 90 120 65 42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105	_																		
42 39 45 50 27 30 120 60 120 22 40 70 80 43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75	-			-															
43 16 56 41 31 140 50 22 80 37 35 80 85 44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75																			
44 32 30 37 55 95 120 55 90 30 60 45 135 45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75																			
45 29 60 48 50 75 130 110 85 21 30 75 80 46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75	_																		
46 24 25 13 51 115 130 50 110 30 85 60 60 47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75																			
47 49 25 12 32 43 80 40 75 60 55 80 95 48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75	_																		
48 39 50 32 50 37 150 30 100 35 60 105 105 49 32 48 35 40 52 140 25 40 20 110 120 75																			
49 32 48 35 40 52 140 25 40 20 110 120 75																			
	-																		
	50	30	150		17	37		70	55		130	80		55	70		85	75	

Table C2: Continued.

Count	U	S-08 M	С	U	IS-06 R	В	U	S-04 R	В	u	IS-02 R	В	U	S-01 R	В	D	S-02 M	С
1	20	40	0.6	45	85	0.06	28	30	0.06	90	25	0.5	90	55	0.06	65	52	1
2	10	40	0.8	50	150	0.1	35	50	0.1	80	65	1	120	90	0.1	30	70	3
3	50	50	1	100	80	0.2	75	25	0.2	15	90	3	55	80	0.2	46	95	5
4	30	18	3	60	85	0.4	60	24	0.4	70	45	7	30	85	0.4	40	60	11
5	45	20	0.3	70	90	3	40	32	0.5	60	40	4	55	25	1	62	75	
6	20	30		20	90		70	70	1	30	50		50	70	5	60	60	
7	85	30		130	15		110	55		45	95		65	40		86	46	
8	12	30		65	120		100	12		50	105		55	30		90	65	
9	35	40		70	27		40	35		58	115		43	35		50	76	
10	25	45		75	100		30	170		48	75		27	43		70	92	
11	25	10		60	115		80	40		100	100		38	40		72	82	
12	32	60		110	50		18	45		45	105		40	95		82	95	
13	35	60		95	27		28	120		30	90		75	45		28	70	
14	70	40		150	14		50	40		40	115		40	75		32	62	
15	37	35		75	30		16	40		32	45		57	72		26	75	
16	26	25		40	27		45	47		35	40		53	43		52	36	
17	40	20		60	48		90	75		65	32		115	44		66	53	
18	26	45		50	115		18	30		40	20		100	75		97	86	
19	43	120		65	15		52	8		52	40		28	100		82	39	
20	55	55		80	50		36	48		40	32		80	70		36	60	
21	60	55		100	37		47	65		60	122		55	60		29	47	
22	20	45		50	110		17	85		75	21		115	80		70	86	
23	40	40		110	40		38	80		80	90		105	40		25	115	
24	35	100		110	50		52	70		47	50		70	45		76	82	
25	18	20		120	90		18	100		75	26		45	90		85	70	
26	55	60		130	95		44	30		95	25		90	80		52	80	
27	25	40		20	30		22	100		70	45		110	110		65	30	
28	25	100		90	100		95	120		50	25		90	24		42	68	
29	23	42		70	80		80	20		45	30		33	45		40	85	
30	85	40		40	260		70	55		95	50		85	85		85	80	
31	95	19		40	40		15	30		55	75		55	90		90	80	
32	32	22		55	55		24	89		35	75		45	60		85	65	
33	20	32		40	50		70	26		110	85		47	50		42	60	
34	35	25		90	20		49	30		70	80		70	60		75 55	60	
35	26	30		80	37		40	50		35	40		62	40		55 45	87	
36 37	19 37	40 35		40 55	120 90		32 72	95 25		48 45	45 113		90 35	100 40		45 78	92 90	
38	36	30		30	60		24	25 115		45 85	113		35	40		68	68	
39	20	28		70	70		38	25		75	30		48	33		75	40	
40	29	45		50	150		20	40		27	40		115	64		110	70	
41	29	40		85	120		85	110		70	80		30	50		95	56	
42	30	120		75	140		20	50		35	45		60	38		47	37	
43	45	38		30	80		100	50		17	36		23	35		45	92	
44	40	120		50	55		32	50		65	14		70	95		88	70	
45	45	42		70	70		30	100		50	55		27	75		75	22	
46	70	40		65	21		29	48		140	42		40	35		60	22	
47	40	36		75	29		20	100		18	77		80	50		110	52	
48	120	32		115	35		150	260		80	26		75	48		85	30	
49	70	18		80	120		100	55		100	220		25	78		75	42	
50	40	28		75	55		110	55		55	94		60	70		75	61	
-00	.0							0		0					l	, ,	,	1

Table C2: Continued.

Count	D	S-03 M	С	D	S-09 M	С	Е	S-14 R	В		DS14M0		Е	S-15 R	В	D	S-17 M	IC
1	35	34	0.2	38	18	0.5	37	32	0.5	27	87	0.5	25	35	3	40	27	0.06
2	90	105	0.5	23	25	0.5	20	90	0.5	100	30	2	75	62	7	55	43	0.06
3	40	25	1	80	50	2	80	28	3	40	75	5	105	46	9	43	28	0.1
4	50	45	3	83	80	5	21	40	8	40	42	7	57	95	13	22	34	0.1
5	55	77	5	110	30	9	95	23	10	83	20	9	35	70	17	22	27	1
6	100	25		46	36		90	60		42	55		35	35		40	18	0.5
7	27	90		50	46		58	10		40	90		110	60		50	40	0.5
8	45	70		90	29		12	18		40	48		65	70		34	90	0.06
9	70	72		75	36		19	16		45	160		120	55		43	15	2
10	45	26		120	55		35	72		35	130		94	130		52	61	
11	30	62		26	26		20	15		190	25		80	40		34	26	
12	35	18		55	30		43	15		70	125		140	85		33	24	
13	30	85		29	28		32	77		37	25		100	50		65	145	
14	80	80		105	60		46	18		69	57		115	55		55	50	
15	40	55		55	50		65	32		27	18		44	38		56	50	
16	75	55		46	70		90	72		90	160		50	40		27	117	-
17	50	65		100	36		60	35		75	40		115	20		42	44	-
18	25	38		105	110		42	28		23	26		75	60		26	45	-
19	57	60		55	100		75	70		60	140		42	30		25	45	
20	70	80		85	50		75	48		95	90		57	37		30	48	-
21	60	49		110	35		70	13		39	45		75	110		18	50	1
22	60	52		60	22		42	17		70	71		88	35		26	30	1
23	30	75		30	105		26	27		55	56		70	70		47	45	1
24	90	21		85	100		63 75	25		140	24		170	78		17	19	-
25	75	16		60 54	25		75 54	60		78	84		54	80		18	29	
26 27	40 90	50 24		44	95 90		22	25 45		35 87	102 56		45 100	60 65		28 40	36 80	
28	38	27		35	90		72	27		25	34		75	48		40	50	1
29	65	42		38	110		74	21		130	105		32	29		42	50	
30	70	70		50	57		22	85		190	70		42	74		70	45	
31	36	43		80	64		25	122		36	66		35	105		26	40	
32	16	32		50	47		45	64		65	78		50	100		60	27	+
33	42	22		100	44		60	66		19	76		68	50		25	26	
34	30	79		86	76		58	25		31	69		28	40		30	40	
35	70	76		120	36		32	60		41	80		55	45		35	50	
36	35	25		32	35		37	47		52	34		150	70		110	40	†
37	60	10		52	56		44	43		38	20		25	76		40	25	
38	105	75		22	36		55	50		78	47		37	100		110	48	
39	38	80		16	40		90	14		17	27		40	30		60	25	
40	47	65		79	90		45	35		24	60		56	85		100	30	
41	80	70		24	130		25	36		26	78		48	46		50	35	
42	17	65		90	110		92	56		50	73		90	48		40	26	
43	18	37		95	85		68	86		240	53		46	40		42	24	
44	90	50		37	110		46	80		52	40		120	85		30	35	
45	60	74		58	70		60	56		70	17		36	35		50	70	
46	85	105		12	140		80	52		40	23		30	100		35	47	
47	30	45		105	130		52	60		40	20		36	45		100	55	
48	80	47		115	70		82	15		15	33		50	68		65	35	
49	40	70		40	90		80	60		45	70		52	30		30	40	
50	30	50		45	34		25	66		35	87		70	54		35	100	

Table C2: Continued.

1 47 48 1 30 100 0.1 98 67 0.06 70 42 0.06 100 38 0.0 2 34 98 2 20 105 0.2 76 50 0.9 85 58 0.9 75 100 0.0 3 105 27 3 50 35 0.3 39 55 1 95 37 1 60 45 0. 4 37 75 9 80 60 3 65 56 3 70 40 3 34 78 0. 5 45 35 12 81 105 14 34 102 21 50 57 7 70 40 10 6 52 100 73 85 7 77 95 12 39 80 12 95 26 0. 7 40 85 22 65 30 110 100 105 40 75	6 15 1 25 1 10 20 1 20 1 22 1 18 3 28	60 0.3 20 0.7 20 1.3 57 1 15 5 58 67 14
3 105 27 3 50 35 0.3 39 55 1 95 37 1 60 45 0. 4 37 75 9 80 60 3 65 56 3 70 40 3 34 78 0. 5 45 35 12 81 105 14 34 102 21 50 57 7 70 40 10 6 52 100 73 85 7 77 95 12 39 80 12 95 26 0. 7 40 85 22 65 30 110 100 105 40 75 0. 8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85	25 1 10 20 1 22 1 18 3 28 5 10	20 1.3 57 1 15 5 58 67 14
4 37 75 9 80 60 3 65 56 3 70 40 3 34 78 0. 5 45 35 12 81 105 14 34 102 21 50 57 7 70 40 10 6 52 100 73 85 7 77 95 12 39 80 12 95 26 0. 7 40 85 22 65 30 110 100 105 40 75 0. 8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11	1 10 20 4 22 4 18 8 28 5 10	57 1 15 5 58 67 14
5 45 35 12 81 105 14 34 102 21 50 57 7 70 40 10 6 52 100 73 85 7 77 95 12 39 80 12 95 26 0. 7 40 85 22 65 30 110 100 105 40 75 0. 8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50	20 1 22 1 18 3 28 5 10	15 5 58 67 14
6 52 100 73 85 7 77 95 12 39 80 12 95 26 0. 7 40 85 22 65 30 110 100 105 40 75 0. 8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 <td< td=""><td>1 22 1 18 3 28 5 10</td><td>58 67 14</td></td<>	1 22 1 18 3 28 5 10	58 67 14
7 40 85 22 65 30 110 100 105 40 75 0. 8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71	1 18 3 28 5 10	67 14
8 55 78 88 64 35 85 75 30 80 56 0. 9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71	3 28 10	14
9 52 45 58 100 75 48 50 85 22 110 1. 10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71	5 10	+
10 65 50 57 70 75 42 44 105 85 45 11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71		
11 85 90 70 55 45 100 26 105 55 100 12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71	50	20
12 85 100 100 120 50 68 52 42 60 36 13 100 122 135 27 48 65 55 92 85 71		24
13 100 122 135 27 48 65 55 92 85 71	37	37
	10	50
14 73 27 17 68 45 05 82 37 110 42	14	16
17 10 21 11 00 70 50 02 31 110 42	12	55
15 60 25 80 140 42 92 57 40 60 40	15	53
16 85 107 35 55 35 120 32 57 45 95	14	75
17 56 73 90 54 48 50 56 32 46 115	14	24
18 120 75 72 85 55 55 45 29 25 68	8	28
19 42 78 28 80 100 21 65 105 80 87	35	40
20 75 27 42 80 62 67 72 110 36 87	40	10
21 17 35 70 40 56 77 40 100 56 80	12	40
22 45 55 50 60 40 87 40 90 108 39	18	32
23 100 19 110 60 58 100 70 100 40 110	10	110
24 78 60 50 54 66 56 39 20 84 64	45	44
25 70 32 100 40 75 70 22 68 90 50	24	75
26 55 50 135 53 78 32 76 170 90 92	6	30
27 85 20 130 115 98 70 32 52 100 92	29	12
28 29 84 80 30 42 72 40 46 44 76	17	15
29 78 42 150 50 55 73 65 34 64 45	28	30
30 40 45 100 90 25 50 25 48 20 82	15	20
31 38 100 120 36 90 80 80 24 37 65	15	30
32 72 80 90 37 105 78 80 22 120 40	16	25
33 75 82 75 35 80 65 80 62 85 57	58	19
34 60 45 90 50 110 77 42 65 68 66 35 40 45 30 45 50 05 05 03 60 05 67	28	22
35 40 45 30 45 50 95 92 60 95 67 36 53 85 90 25 50 50 35 100 87 68	20 42	20
36 53 85 90 25 50 50 35 100 87 68 37 58 50 50 62 60 60 65 55 28 76	5	38
37 58 50 50 62 60 60 65 55 26 76	23	55
38 68 40 60 113 43 160 70 40 70 60 39 82 105 50 80 90 55 45 106 87 45	25	65
39 82 103 30 80 90 33 43 108 87 43 40 79 54 35 57 65 30 70 50 56 90	20	48
40 79 34 33 37 63 30 70 30 30 90 41 55 25 40 55 64 75 52 96 95 80	15	10
41 33 23 40 33 64 73 32 90 93 30 42 68 40 70 36 75 90 53 115 75 95	34	15
43 85 60 110 24 50 38 60 130 94 90	63	70
44 39 55 52 27 47 160 37 100 45 37	18	25
45 45 56 49 82 30 85 140 70 110 72	43	29
46 68 45 44 25 40 80 105 90 62 85	28	30
47 95 32 52 120 25 85 24 90 80 57	34	20
48 125 57 45 20 100 100 23 90 100 92	19	43
49 135 80 35 80 45 65 58 75 110 34	35	38
50 75 90 40 68 48 100 115 18 95 70	30	29

Table C2: Continued.

Count	D	S-25 M	С	D	S-26 M	С	D	S-27 M	С	D	S-28 M	IC	D	S-29 M	С
1	120	32	0.2	24	37	0.06	24	35	0.06	54	39	0.06	20	47	0.06
2	39	25	0.7	35	22	0.1	45	52	0.1	30	30	0.1	30	35	0.1
3	65	15	3	25	32	0.2	50	40	0.2	55	65	0.2	22	18	0.2
4	22	50	7	40	32	1	17	28	0.6	54	44	8	43	37	0.4
5	70	42	15	70	39	10	14	22	0.9	40	56	9	20	25	5
6	34	49	10	60	17	0.45	38	32	0.7	32	37	5	36	26	2
7	34	85		28	25	0.7	35	36	5	28	48		18	30	0.1
8	20	17		40	10	4	32	88		70	47		24	54	
9	42	80		32	13		100	65		40	47		60	40	
10	85	70		26	68		68	115		35	22		25	35	
11	20	32		18	12		12	77		36	24		40	30	
12	55	62		31	32		46	32		55	38		18	40	
13	45	27		17	46		71	25		55	68		12	38	
14	90	39		65	32		40	54		60	40		32	34	
15	26	34		40	40		65	96		52	30		35	40	
16	20	42		80	28		22	35		20	32		11	7	
17	19	52		70	10		84	90		51	33		14	14	
18	20	40		55	36		70	56		86	50		24	28	
19	60	55		16	22		130	95		25	46		20	25	
20	45	110		52	24		54	45		60	57		26	10	
21	16	56		27	37		90	35		48	45		34	13	
22	56	60		32	86		50	60		45	22		13	58	
23	70	45		60	74		55	57		35	40		10	13	
24	67	80		45	37		86	160		55	14		11	40	
25	140	25		70	88		48	32		50	43		8	23	
26	34	90		22	25		102	75		30	32		19	30	
27	57	75		32	12		76	49		37	40		42	28	
28	56	55		65	19		125	40		30	57		16	18	
29	19	60		30	60		67	38		30	50		35	17	
30	60	40		52	30		30	73		62	18		34	15	
31	38	65		80	46		22	60		38	40		7	10	
32	39	55		55	32		57	65		22	54		12	35	
33	36	65		16	12		21	74		34	42		47	13	
34	25	40		57	22		30	80		46	54		22	11	
35	35	24		40	12		50	59		30	54		38	43	
36	27	100		38	95		25 24	50		32	42	-	43	5	
37	29	75		57 45	42			33		18	47		33	35	
38	44	20		45	20		30	25		42 44	18		17 8	35	
40	57 45	67 89		50 60	28 40		80 48	110 25		20	55 50		34	26 28	
41	26	42		48	72		40	35		42	54		22	14	
41	35	80		68	24		19	140		42	50		18	38	
43	37	74		26	42		65	40		56	37	-	35	35	
44	21	26		29	19		30	38		35	42		35	44	
45	52	47		29	23		22	84		30	67	-	43	12	
46	38	18		35	72		45	57		50	48	 	28	20	
47	57	50		31	27		16	62		79	78		45	14	
48	37	52		80	40		36	150		75	24		28	33	
49	75	34		49	46		26	40		42	36		20	25	
50	15	65		38	27		40	32		40	62	-	20	28	
50	10	U		50	<u> </u>		+∪	JZ		+∪	02		20	20	

Table C2: Concluded.

Count	D	S-30 R	В	D	S-31 M	С	DS	S-31 M	C2	D	S-32 M	С	D	S-33 L	В
1	55	36	0.5	105	37	0.06	35	25	0.06	75	20	0.06	52	110	0.06
2	80	46	1	40	76	0.5	38	58	0.2	28	105	0.08	110	70	0.8
3	10	36	2	58	60	0.7	19	30	0.5	72	45	0.9	140	30	0.1
4	30	27	3	50	48	0.2	29	55	0.7	95	30	0.2	75	35	8
5	22	27	5	45	65	7	75	70	4	36	12	12	110	45	
6	22	47		28	40		28.3	44	0.11	53	45	6	87	70	
7	48	77		92	82		35	14	0.3	65	81		57	90	
8	55	24		42	66		43	18		85	50		65	45	
9	25	50		40	52		38	20		70	42		46	52	
10	80	70		45	52		45	10		48	60		95	110	
11	100	40		40	66		50	19		39	29		40	16	
12	70	80		45	35		40	22		110	60		95	42	
13	35	24		60	76		50	31		72	90		34	92	
14	65	52		29	14		13	13		45	53		130	58	
15	95	36		82	65		15	38		117	140		75 05	80	
16 17	18 35	34 54		37 110	55 87		37 36	23 25		92 97	25 125		85 45	45 25	
18	22	38		60	42		14	12		15	55		40	52	
19	25	70		65	42		18	53		90	60		75	110	
20	50	40		25	39		49	22		42	95		120	98	
21	35	20		58	56		15	29		115	18		75	37	
22	15	70		75	42		65	30		41	100		110	42	
23	40	40		72	110		32	22		47	105		140	70	
24	60	20		62	88		39	40		18	22		50	25	
25	75	60		44	160		28	25		24	72		80	85	
26	85	47		57	30		32	28		95	135		50	22	
27	40	45		65	130		24	28		98	32		48	27	
28	30	26		75	73		18	27		115	80		95	105	
29	29	18		100	35		23	11		110	72		35	75	
30	17	28		53	70		22	36		115	110		55	190	
31	32	53		17	87		48	10		106	28		130	63	
32	30	34		32	70		37	44		140	42		62	50	
33	65	34		52	60		25	18		42	45		110	80	
34	20	65		50	46		13	47		37	47		55	41	
35	43	67		82	36		10	22		29	42		42	95	
36	25	21		36	38		38	29		52	40		57	32	
37	50	52		73	120		9	15		122	28		100	80	
38	28	49		117	100		25	40		60	24		70	40	
39	90	62		75 66	54		55	20		81	90		100	85	
40	12	29		66	31		25	50		82	29		70	74	
41 42	37 56	40 24		60 26	23 30		45 25	33 46		75 93	22 70		38 40	34 72	
42	28	30		26 74	29		∠5 18	35		19	52		38	110	
44	40	20		59	29		10	24		45	120		75	50	
45	65	12		16	35		33	15		29	25		40	45	
46	90	17		92	65		11	40		102	54		80	52	
47	60	54		66	50		38	18		55	18		62	81	
48	46	36		66	26		36	26		56	80		52	190	
49	20	64		37	70		12	70		65	35		34	100	
50	60	65		135	49		18	47		120	100		60	70	

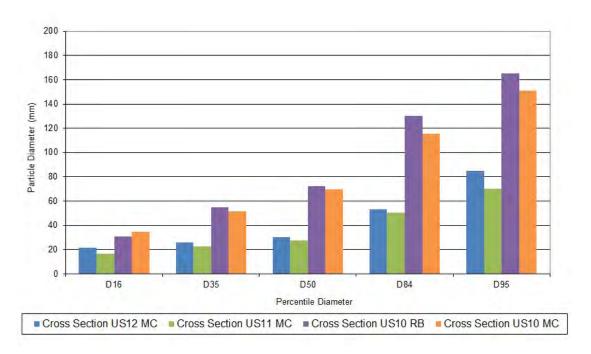


Figure C1: Sample percentile diameter, Cross Sections US-12 MC, US-11 MC, US-10 RB, and US-10 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

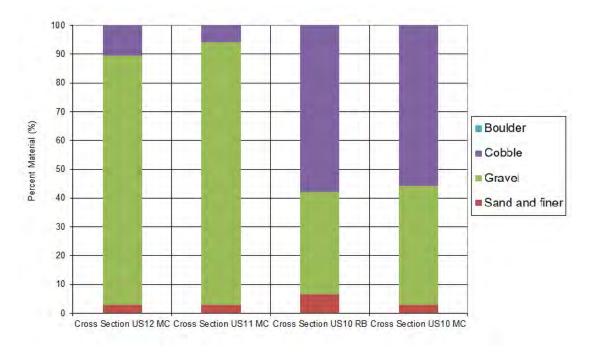


Figure C2: Percent material by substrate type, Cross Sections US-12 MC, US-11 MC, US-10 RB, and US-10 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

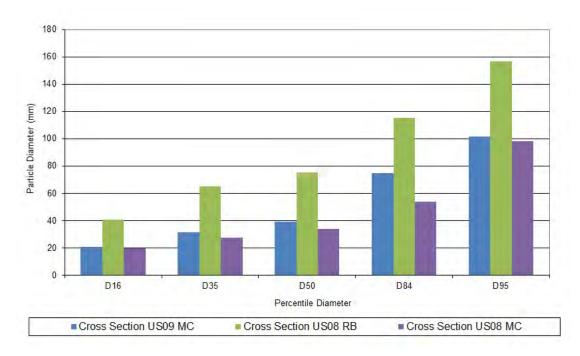


Figure C3: Sample percentile diameter, Cross Sections US-09 MC, US-08 RB, and US-08 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

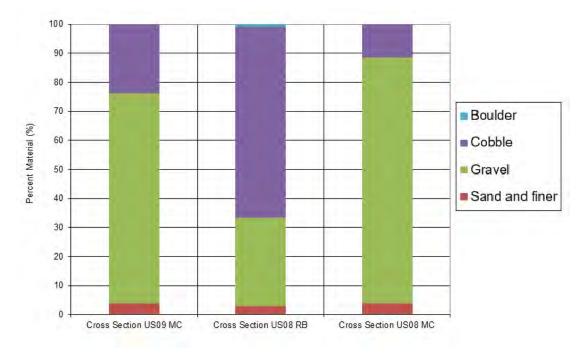


Figure C4: Percent material by substrate type, Cross Sections US-09 MC, US-08 RB, and US-08 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

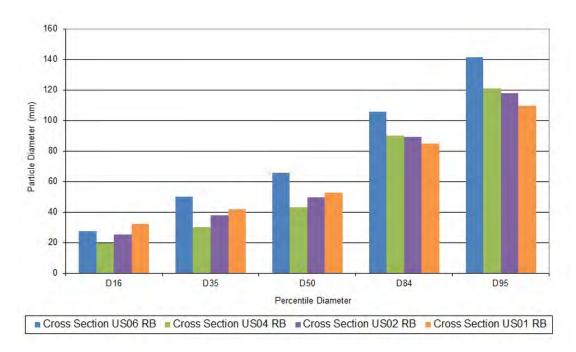


Figure C5: Sample percentile diameter, Cross Sections US-06 RB, US-04 RB, US-02 RB, and US-01 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

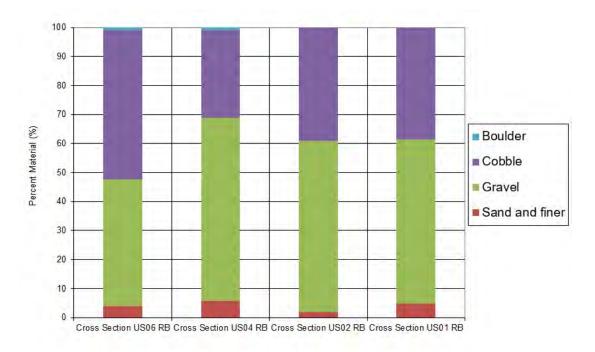


Figure C6: Percent material by substrate type, Cross Sections US-06 RB, US-04 RB, US-02 RB, and US-01 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

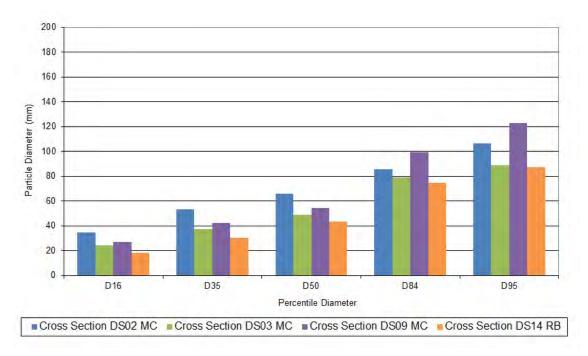


Figure C7: Sample percentile diameter, Cross Sections DS-02 MC, DS-03 MC, DS-09 MC, and DS-14 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

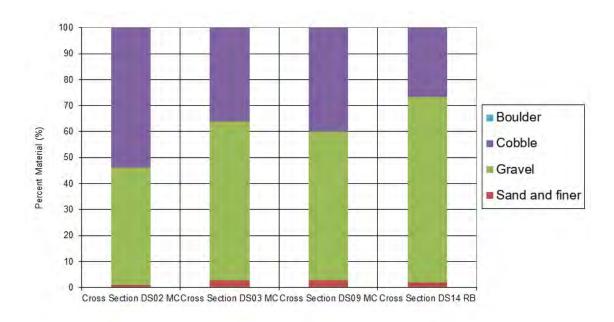


Figure C8: Percent material by substrate type, Cross Sections DS-02 MC, DS-03 MC, DS-09 MC, and DS-14 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

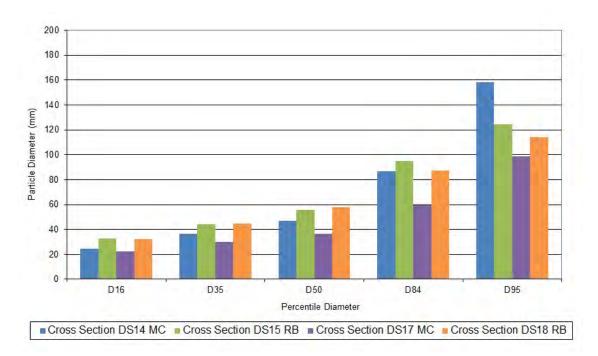


Figure C9: Sample percentile diameter, Cross Sections DS-14 MC, DS-15 RB, DS-17 MC, and DS-18 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

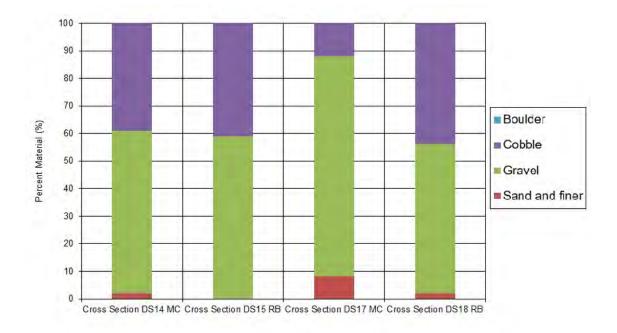


Figure C10: Percent material by substrate type, Cross Sections DS-14 MC, DS-15 RB, DS-17 MC, and DS-18 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

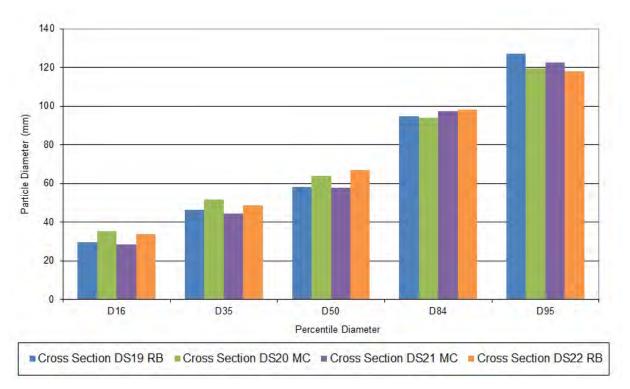


Figure C11: Sample percentile diameter, Cross Sections DS-19 RB, DS-20 MC, DS-21 MC, and DS-22 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

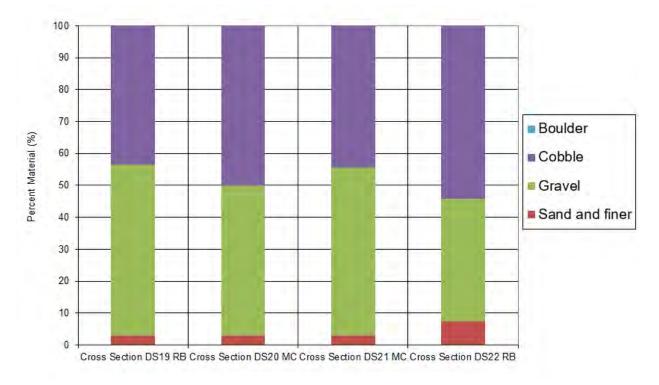


Figure C12: Percent material by substrate type, Cross Sections DS-19 RB, DS-20 MC, DS-21 MC, and DS-22 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

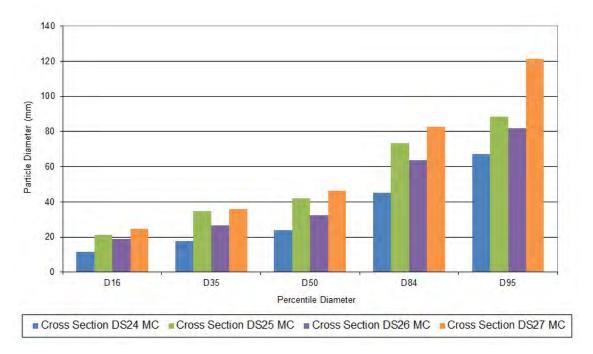


Figure C13: Sample percentile diameter, Cross Sections DS-24 MC, DS-25 MC, DS-26 MC, and DS-27 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

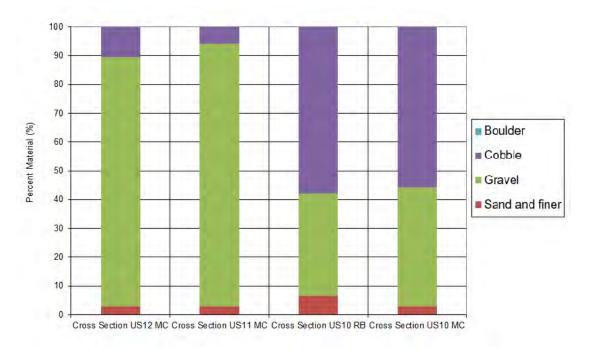


Figure C14: Percent material by substrate type, Cross Sections DS-24 MC, DS-25 MC, DS-26 MC, and DS-27 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

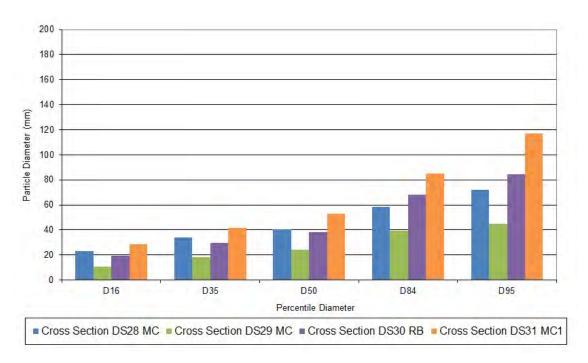


Figure C15: Sample percentile diameter, Cross Sections DS-28 MC, DS-29 MC, DS-30 RB, and DS-31 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

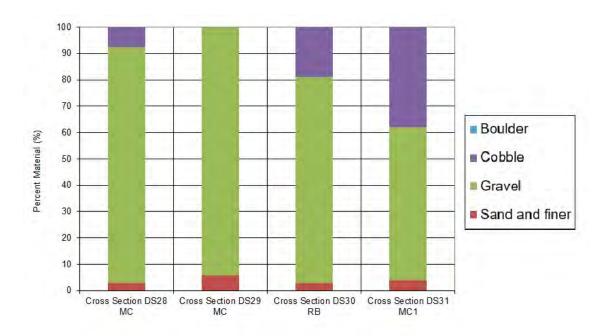


Figure C16: Percent material by substrate type, Cross Sections DS-28 MC, DS-29 MC, DS-30 RB, and DS-31 MC, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

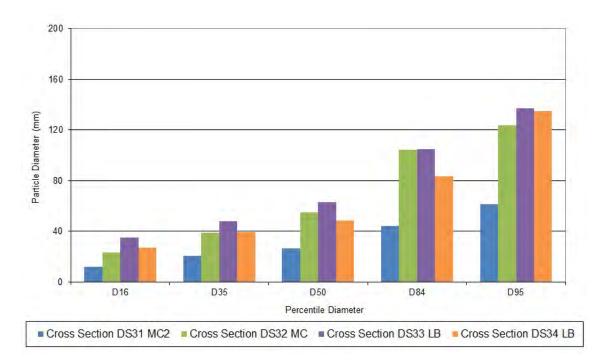


Figure C17: Sample percentile diameter, Cross Sections DS-31 MC2, DS-32 MC, DS-33 LB, and DS-34 LB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

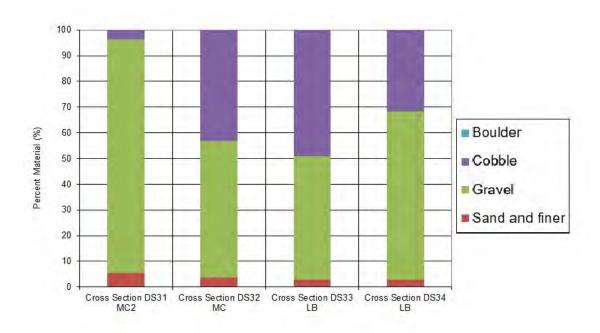


Figure C18: Percent material by substrate type, Cross Sections DS-31 MC2, DS-32 MC, DS-33 LB, and DS-34 LB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

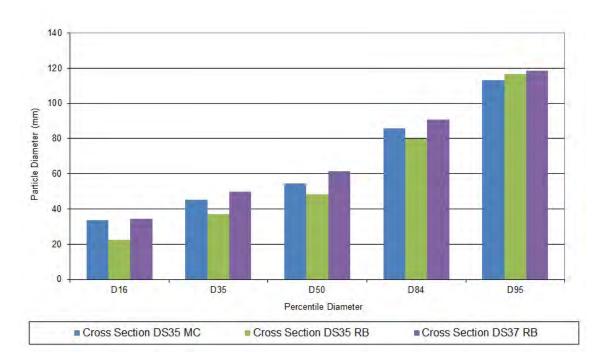


Figure C19: Sample percentile diameter, Cross Sections DS-35 MC, DS-35 RB, and DS-37 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

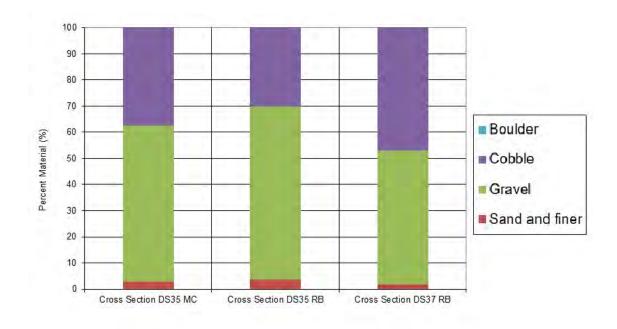


Figure C20: Percent material by substrate type, Cross Sections DS-35 MC, DS-35 RB, and DS-37 RB, Peace River Physical Habitat Monitoring Program (Mon-3), 2019.

golder.com