Appendix C

Site C ARD/ML Management Plan – 2020 Water Quality Annual Report

Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, L3 Creek, Left Bank Debris Boom and L2 Powerhouse 2020 Annual Report

PRESENTED TO BC Hydro

MARCH 4, 2021 ISSUED FOR USE FILE: ENG.VMIN03021-03

> Tetra Tech Canada Inc. 150, 1715 Dickson Avenue Kelowna, BC V1Y 9G6 CANADA Tel 250.862.4832 Fax 250.862.2941

This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at midstream and discharge locations along River Road ditch near Blind Corner and below Howe Pit, in proximity to the South Bank Initial Access Road (SBIAR), and along the L3 Creek catchment. These locations have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. This water quality sampling program is conducted in accordance with BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP), App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020) Acid Rock Drainage and Metal Leachate Management Plan(BC Hydro, 2020), which specifies requirements for road cut monitoring. This water quality program is one component of numerous water quality monitoring programs, including regular monitoring in the Peace River receiving environment, reported under separate cover (Ecofish, 2020a).

Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area, for evaluation of effectiveness of mitigations, effectively making the slope non-PAG, and the Left bank Debris Boom (LBDB).

The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources. Throughout the report the "RB" and "LB" nomenclature refers to right and left riverbanks (when facing downstream), respectively.

In accordance with the CEMP, App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020) Acid Rock Drainage and Metal Leachate Management Plan, results for the monitoring program locations are evaluated against the current British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater short-term (FST) acute values. Evaluation against the dissolved copper concentration guideline utilizes measured Dissolved Organic Carbon (DOC) and the BC Biotic Ligand Model software provided by the BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch (BCMoE).

Water quality measurements collected at discharge locations along River Road and downstream locations at SBIAR that exceed the BCAWQG-FST are reported to BC Hydro within 24 hours of receiving the results. The complete results of sampling at all locations is presented in a monthly routine memo to BC Hydro. The results of monthly monitoring are compiled and tracked for changes over time with special interest in metals associated with ARD-ML drainage, e.g. iron, aluminum, arsenic, cadmium, cobalt, copper, manganese, silver, and zinc. The results of time series trend analysis are also evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater long-term (FLT) chronic values for trend monitoring over time.

River Road

A total of twelve (12) monitoring locations have been established in the River Road catchment near Blind Corner to monitor the effectiveness of the limestone riprap in the ditch line and on the rock slope, and to observe longer term influences from the Potentially Acid Generating (PAG) outcrop at Blind Corner and potential run-off/seepage from Howe Pit (non-Site C impacted area) on the water collected in the River Road ditch. Sampling was attempted on a routine monthly basis from seven of the River Road catchment locations, 1) in the lower chimney drain (LBRR-LC), 2) the upper chimney drain (LBRR-UC); 3) upstream of the lower chimney drain within the River Road ditch (LBRR-12+500), 4) the end of the diversion pipe (LBRR-EDP) that diverts water down-gradient into the River Road ditch between culverts, 5) at the discharge of culvert RR-11 (LBRR-DD), 6) RR-9 culvert (LBRR-RR9) and 7) RR-8 culvert (LBRR-RR8). In situ testing only is conducted at four additional locations within the River Road ditch at LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920.

During 2020, outside of dry or frozen conditions, lab samples were collected from River Road during eight (8) sampling events resulting in a sum of eighteen samples. Two samples were collected from LBRR-DD (February, April), six samples from LBRR-EDP (February, March, April, June, July, September), one sample from LBRR-LC (April), two samples from LBRR-UC (July, August), six samples from LBRR-12+500 (February, March, April, June, September, October), and one sample from LBRR-RR9 (February). No lab samples were collected from RR8 in 2020. No in situ tests were completed at RR8 or LBRR-12+430 locations during 2020, therefore, in situ testing was conducted in ten of the twelve locations during 2020.

Of the total eighteen samples collected from River Road locations in 2020, exceedances to the BCAWQG-FST were measured for total arsenic (3), total iron (7) and dissolved aluminum (2). These exceedances were not located at discharge locations. No discharge location exceedances were measured in 2020 from River Road.

Water quality measurements along River Road have indicated that run-off water quality is influenced by active acid rock drainage and metal leaching (ARD-ML) processes within the River Road ditch catchment, particularly from the Blind Corner shale slope. Although flows are generally low and ephemeral, and the ditch is lined with limestone, there is some potential for run-off to impact downstream water quality. As per CEMP App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020), it is recommended that water quality monitoring is continued on a monthly basis at the established locations within the River Road catchment. Continuous monitoring will enable the effectiveness of mitigation strategies that are implemented on the shale at Blind Corner.

SBIAR

A total of five (5) monitoring locations are established at the SBIAR location, including the western upstream and downstream SBIAR ditches (RBSBIAR-DS, RBSBIAR-US), eastern upstream and downstream SBIAR ditches (RBSBIAR-EUS), and within a preserved portion of the Peace River side channel downgradient of the SBIAR facility (RBSC-DS), to monitor for potential long-term influence on water quality from construction of the SBIAR facility. The side channel remains hydraulically connected to the Peace River. Surface water from SBIAR is conveyed to Relocated Surplus Excavation Material (RSEM) R6 for management prior to being discharged to the Peace River. Sampling at the SBIAR monitoring locations was conducted monthly in 2017, 2019 and 2020, and quarterly in 2018.

During 2020, outside of dry or frozen conditions, lab samples were collected from SBIAR during twelve (12) sampling events (January through December) resulting in a sum of forty-five (45) samples. Nine (9) samples were collected from RBSBIAR-DS and ten (10) at RBSBIAR-US (February, April through November, December (US only)), seven (7) samples from RBSBIAR-EUS (May through November), eight (8) samples from RBSBIAR-EDS (April through November) and ten (11) samples from RBSC-DS (January through September, November, December).

In situ testing was completed on a monthly basis with sufficient water available in, at the most, twelve (12) months between January to December 2020.

During 2020, measured BCAWQG-FST exceedances at downstream locations included total iron (April) and dissolved aluminum (April, September) at RBSBIAR-DS, and total iron (April, June), dissolved aluminum (May, June), total arsenic (April) and total zinc (April, June) at RBSBIAR-EDS.

The upstream ditches measured one BCAWQG-FST exceedance in total iron (February) at RBSBIAR-US and no exceedances at RBSBIAR-EUS. The RBSC-DS location measured BCAWQG-FST exceedances in both total and dissolved iron (September), dissolved aluminum (July), and total manganese (May, August, September).

L3 Creek

The catchment for L3 Creek includes RSEM L3 which is currently not considered, nor permitted, for placement of construction related PAG material. Due to the potential influence on L3 Creek discharge water quality from naturallyimpacted water originating in the Howe Pit area and naturally impacted inflow from L4 Creek, the water quality within the L3 Creek catchment is being monitored in context of ARD-ML management. A total of five (5) monitoring locations have been established in the L3 Creek catchment, including a baseline location up-gradient of RSEM L3 (LBL3C-3.32), slightly upstream from the L4 Creek confluence, LBL3C-1.65, along L4 Creek, LBL4C-0.18, a midstream location below the confluence of L4 Creek and below the Gulley Road box culvert (LBL3C-1.43), and the discharge LBL3C-0.02.

During 2020, outside of dry or frozen conditions, lab samples were collected from L3 Creek catchment during ten (10) sampling events (February through November) resulting in a sum of thirty-four (34) samples. Eight (8) samples were collected from LBL3C-0.02 (April through November), ten (10) samples from LBL3C-1.43 (February through November), three (3) samples from LBL3C-1.65 (April through June), five samples from LBL3C-3.32 (April through August), and eight (8) samples from LBL4C-0.18 (April through November).

In situ testing was completed on a monthly basis with sufficient water available in, at the most, ten (10) months between February to November 2020.

Of the total thirty-four samples collected from L3 Creek catchment locations in 2020, twenty-six samples were collected from L3 Creek and eight samples were collected above the L3 and L4 Creek confluence, from L4 Creek. In the four sample locations in L3 Creek, occurrences of exceedances to the BCAWQG-FST were measured for total iron (8), dissolved aluminum (9), total zinc (4), dissolved copper (1), total arsenic (3) and total silver (3). In the one L4 Creek location, LBL4C-0.18, occurrences of exceedances to the BCAWQG-FST were measured for total iron (8), dissolved iron (5), dissolved aluminum (7), dissolved cadmium (5), total cobalt (5), total zinc (6), dissolved copper (4), total arsenic (1), total manganese (5), and below the acceptable BCAWQG-FST guideline for pH (5).

Left Bank Debris Boom

Sample locations were established and first sampled on October 8, 2020 to characterize water quality in the LBDB area for ARD-ML monitoring, named LBP Pond and LB Side Channel E and W. The purpose of sampling is to monitor PAG contact water from shale exposed during construction. The LBDB area will convey water at some point to discharge into the river or be collected in a ditch then infiltrate to the river, therefore, water quality sampling at LBDB provides data during subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels. The LBDB PAG slope exposures will eventually be completely inundated with the headpond formation.

The three locations were visited on October 8, November 20, and December 14, although in situ and lab sampling only occurred at LBP Pond (October 8 and November 20, 2020) and Side Channel E (October 8, 2020) outside of frozen conditions. The LB Side Channel W location has not been sampled due to back flooding or frozen conditions.

The LBP Pond samples reported elevated levels of iron, manganese, zinc, and aluminum relative to the BCAWQG-FST values. The one sample from the LB Side Channel E location noted eleven exceedances of the BCAWQG-FST values, for total arsenic, boron, cobalt, iron, manganese, zinc and dissolved aluminum, cadmium, copper and iron, and a low acidic pH of 3.01 below the accepted range (6.5-9.0) of the BCAWQG-FST guidelines. Additional monitoring at both locations in 2021 is needed to identify the consistency in these results.

L2 Powerhouse Area

Two sample locations were established in the L2 Powerhouse area adjacent to the powerhouse on the Right Bank and first sampled on October 8, 2020 and sampling continued on November 20, December 4, and December 14, 2020 at the L2 Powerhouse area. The L2 area was identified for sampling due to the exposure of a shale (PAG) slope during excavation for the Powerhouse. The sample locations are established to evaluate water quality related to the area and the potential impact from the PAG slope.

Dissolved aluminum concentrations at the L2-US (non-discharge) station exceeded the BCAWQG-FST guideline value in three of four sample events in 2020.

TABLE OF CONTENTS

EXEC	UTIV	E SUM	MARY	I
1.0	INTR	ODUCI	FION	. 1
2.0	MON 2.1 2.2 2.3	Monitor Analytic	G PROGRAM SET-UP AND PURPOSE ing Program Requirements and Comparison Criteria cal Program Parameters iry of Parameters of Interest	2 2
3.0	SAM 3.1 3.2 3.3 3.4	Descrip Descrip Descrip	tion of River Road Sample Locations tion of South Bank Initial Access Road Locations tion of L3 Catchment Sample Locations tion of Sampling Locations Added in 2020 Left Bank Debris Boom L2 Powerhouse	5 6 7 7
4.0	4.1 4.2 4.3	Weathe Classifi	NDITIONS. In Conditions - Temperature and Precipitation	8 9
5.0	WAT 5.1 5.2	Sample Quality 5.2.1 5.2.2 5.2.3 5.2.4 River R 5.3.1 5.3.2 5.3.3 5.3.3 5.3.4	ALITY MONITORING PROGRAM RESULTS Events in 2020. Control and Quality Assurance Program. Overview of QA/QC Program Laboratory QA/QC. Tetra Tech QA/QC. QA/QC Program Results oad Water Quality Monitoring. In Situ Measurements and Field Observations. Freshwater Short-Term Maximum Exceedances Trend Monitoring. Freshwater Long-term Average Exceedances	11 12 12 12 13 14 15 15 16
	5.4	5.4.1 5.4.2 5.4.3 5.4.4	Water Quality Monitoring In Situ Measurements and Field Observations Freshwater Short-Term Maximum Exceedances Trend Monitoring Freshwater Long-term Average Exceedances ek Catchment Water Quality Monitoring In Situ Measurements and Field Observations Freshwater Short-term Maximum Exceedances Trend Monitoring Freshwater Long-term Average Exceedances	17 17 17 18 24 24 25 25 25 26

	5.6	Left Bank	Debris Boom	29	
		5.6.1 Fi	eld Observations and In Situ Measurements	30	
		5.6.2 Fr	reshwater Short-term Maximum Exceedances	30	
		5.6.3 Tr	rend Monitoring	30	
	5.7	L2 Powerh	nouse	30	
		5.7.1 Fi	eld Observations and In Situ Measurements	31	
			reshwater Short-term Maximum Exceedance		
		5.7.3 Tr	rend Monitoring	31	
6.0	CONCLUSIONS AND RECOMMENDATIONS			32	
	6.1	6.1 River Road Water Quality Monitoring		32	
	6.2 SBIAR Water Quality Monitoring				
	6.3	Water Quality Monitoring	34		
	6.4	Left Bank	Debris Boom Monitoring	36	
	6.5	L2 Powerh	nouse Water Quality Monitoring	36	
7.0	CLOSURE				
REFE		CES		1	

APPENDIX SECTIONS

FIGURES

- Figure 1 River Road Monitoring Locations
- Figure 2 SBIAR Monitoring Locations
- Figure 3 L3 Creek Monitoring Locations
- Figure 4 BC Hydro Site C Meteorological and Air Quality Stations
- Figure 5 Turbidity and TSS Measured in the Peace River

RIVER ROAD

- Figure 6 pH at RR Locations
- Figure 7 Total Alkalinity at RR Locations
- Figure 8 Acidity at RR Locations
- Figure 9 Sulphate at RR Locations
- Figure 10 a) TSS and b) TDS at RR Locations
- Figure 11 a) Total and b) Dissolved Aluminum at RR Locations
- Figure 12 a) Total and b) Dissolved Iron at RR Locations
- Figure 13 a) Total and b) Dissolved Arsenic at RR Locations
- Figure 14 a) Total and b) Dissolved Cadmium at RR Locations
- Figure 15 a) Total and b) Dissolved Cobalt at RR Locations
- Figure 16 a) Total and b) Dissolved Copper at RR Locations
- Figure 17 a) Total and b) Dissolved Zinc at RR Locations

RBSBIAR

- Figure 18 pH at RBSBIAR Locations
- Figure 19 Total Alkalinity at RBSBIAR Locations
- Figure 20 Acidity at RBSBIAR Locations

- Figure 21 Sulphate at RBSBIAR Locations
- Figure 22 a) TDS and b) TSS at RBSBIAR Locations
- Figure 23 a) Total and b) Dissolved Aluminum at RBSBIAR Locations
- Figure 24 a) Total and b) Dissolved Iron at RBSBIAR Locations
- Figure 25 a) Total and b) Dissolved Arsenic at RBSBIAR Locations
- Figure 26 a) Total and b) Dissolved Cadmium at RBSBIAR Locations
- Figure 27 a) Total and b) Dissolved Cobalt at RBSBIAR Locations
- Figure 28 a) Total and b) Dissolved Copper at RBSBIAR Locations
- Figure 29 a) Total and b) Dissolved Zinc at RBSBIAR Locations
- Figure 30 a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc

L3 CREEK

- Figure 31 pH at L3 Creek Locations
- Figure 32 Total Alkalinity at L3 Creek Locations
- Figure 33 Acidity at L3 Creek Locations
- Figure 34 Sulphate at L3 Creek Locations
- Figure 35 a) TSS and b) TDS at L3 Creek Locations
- Figure 36 a) Total and b) Dissolved Aluminum at L3 Creek Locations
- Figure 37 a) Total and b) Dissolved Iron at L3 Creek Locations
- Figure 38 a) Total and b) Dissolved Arsenic at L3 Creek Locations
- Figure 39 a) Total and b) Dissolved Cadmium at L3 Creek Locations
- Figure 40 a) Total and b) Dissolved Cobalt at L3 Creek Locations
- Figure 41 a) Total and b) Dissolved Copper at L3 Creek Locations
- Figure 42 a) Total and b) Dissolved Zinc at L3 Creek Locations

TABLES

- Table 1
 Water Sampling Locations and In Situ and Lab Events
- Table 2
 Daily and 7-Day Mean Temperature and Precipitation
- Table 3 Classification of Flows in Ditch
- Table 4Daily Mean Turbidity and TSS Measurements within the Peace River 2020
- Table 5 2020 Quality Assurance/Quality Control for Water Quality Sample Results
- Table 6In Situ Water Quality Sampling along the River Road Ditch
- Table 7Summary of Water Quality Exceedances (BCAWQG-FST) along River Road from Water
Sampling Events in 2020
- Table 8
 In Situ Water Quality Measurements Along the South Bank Initial Access Road
- Table 9Summary of Water Quality Exceedances (BCAWQG-FST) RBSBIAR from Water Sampling
Events in 2020
- Table 10Minimum, Maximum and Mean Values for Measurements at Discharge and Downstream
Locations in 2020
- Table 11
 In Situ Water Quality Measurements Along L3 Creek
- Table 12 Summary of Water Quality Exceedances (BCAWQG-FST) Along L3 Creek from Water Sampling Events in 2020
- Table 13 In Situ Water Quality Sampling at the Left Bank Debris Boom

- Table 14Summary of Water Quality Exceedances (BCAWQG-FST) at the Left Bank Debris Boom
from Water Sampling Events in 2020
- Table 15
 In Situ Water Quality Sampling at the L2 Powerhouse Area
- Table 16Summary of Water Quality Exceedances (BCAWQG-FST) at the L2 Powerhouse Area from
Water Sampling Events in 2020

PHOTOGRAPHS

- Photo 1 River Road discharge location, LBRR-DD, October 20, 2020.
- Photo 2 River Road LBRR-EDP location, June 21, 2020.
- Photo 3 River Road LBRR-LC location, October 20, 2020.
- Photo 4 River Road LBRR-UC location, May 27, 2020.
- Photo 5 River Road LBRR-12+500 location, June 21, 2020.
- Photo 6 River Road LBRR-12+600 location, October 20, 2020.
- Photo 7 River Road LBRR-12+700 location, May 27, 2020.
- Photo 8 River Road LBRR-12+810 location, October 20, 2020.
- Photo 9 River Road LBRR-12+920 location, June 21, 2020.
- Photo 10 River Road RR8 location, June 21, 2020.
- Photo 11 River Road RR9 location, May 27, 2020.
- Photo 12 RBSBIAR-US upstream west ditch, June 22, 2020.
- Photo 13 RBSBIAR-DS downstream west ditch, June 22, 2020.
- Photo 14 RBSBIAR-EUS upstream east ditch, October 20, 2020.
- Photo 15 RBSBIAR-EDS downstream east ditch, September 28, 2020.
- Photo 16 RBSC-DS side channel location, June 22, 2020.
- Photo 17 L3 Creek LBL3C-0.02 discharge location, June 21, 2020.
- Photo 18 L3 Creek LBL3C-1.43 lower midstream location, May 28, 2020.
- Photo 19 L3 Creek LBL3C-1.65 upper midstream location, June 21, 2020.
- Photo 20 L3 Creek LBL3C-3.32 upstream location, October 21, 2020.
- Photo 21 L4 Creek LBL4C-0.18 location, June 21, 2020.
- Photo 22 Left Bank Debris Boom LBP Pond location, December 14, 2020.
- Photo 23 Left Bank Debris Boom Side Channel E location, December 14, 2020.
- Photo 24 Right Bank L2 Powerhouse Area L2 DS downstream location, October 8, 2020.
- Photo 25 Right Bank L2 Powerhouse Area L2 US upstream location, October 8, 2020.

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Surface Water Analytical Laboratory Result Tables

ACRONYMS & ABBREVIATIONS

Acronyms/Abbreviations	Definition			
ARD	Acid Rock Drainage			
ARD-ML	Acid Rock Drainage and Metal Leaching			
BCMoE	BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch			
BCAWQG	British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture			
°C	Degrees Celsius			
CEMP	Construction Environmental Management Plan			
DOC	Dissolved Organic Carbon			
FB	Field Blank			
FST	Freshwater Short-Term Maximum			
FLT	Long-term Maximum			
L/s	Litres per second			
3DB Left Bank Debris Boom				
LBRR	Left Bank River Road (referring to Sample ID)			
Lorax	Lorax Environmental Services Ltd.			
mg/L	milligrams per litre			
ML	Metal Leaching			
PAG	Potentially Acid Generating			
PRHP	Peace River Hydro Partners			
ppm	parts per million			
RBSIBAR	Right bank South Bank Initial Access Road (referring to Sample ID)			
RPD	Relative Percent Difference			
RSEM	Relocated Surplus Excavation Material			
SBIAR	South Bank Initial Access Road			
ТВ	Travel Blank			
µg/L	micrograms per litre			
WQG	Water Quality Guideline			

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of BC Hydro and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than BC Hydro, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at locations along River Road ditch near Blind Corner and below Howe Pit, in proximity to the South Bank Initial Access Road (SBIAR), and along the L3 Creek catchment. These locations have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area and the Left bank Debris Boom (LBDB). The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources. Water sampling locations are shown in the attached maps in Figures 1 through 3 and summarized with UTM coordinates in attached Table 1.

Monitoring locations were established by Tetra Tech in conjunction with BC Hydro personnel. Where possible, they are coincident with the locations and station names used in 2016 by Lorax Environmental Services Ltd. (Lorax) for water quality monitoring on behalf of Peace River Hydro Partners (PRHP). Photos of the water sampling locations during 2020 are included in the Photographs (1 through 25) section of the Appendix.

This report documents the sampling events conducted monthly between January and December of 2020 and the results of water quality monitoring. Results are discussed in the context of acid rock drainage and metal leaching (ARD-ML) management and mitigation.

The water conveyance facilities at River Road ditch near Blind Corner and SBIAR are identified as having potential for direct ARD-ML impacts due to exposure of shale bedrock during construction related activities. The catchment for L3 Creek includes RSEM L3 which is currently not considered, nor permitted, for placement of construction related PAG material. Due to potential influence on discharge water quality from the Howe Pit area and inflow from L4 Creek, the water quality within the L3 Creek catchment is being monitored in context of ARD-ML management.

The L3 Creek catchment is not identified as a waterway with potential for ARD-ML impacts arising from construction related activities. Water quality monitoring has been conducted within this catchment to monitor discharge water quality and to maintain a record for potential future use. The BCAWQG-FST values were also used as a benchmark for monitoring the water quality at the discharge location (LBL3C-0.02) from L3 Creek.

The Left Bank Debris Boom (LBDB) anchor area commenced water quality sampling on October 8, 2020 to establish upstream (LBP Pond) and downstream (Channel E and W) monitoring of PAG contact water from shale exposed during construction. The LBDB area will convey water at some point to discharge into the river or be collected in a ditch then infiltrate to the river, therefore, water quality sampling at LBDB provides data during subsequent phases of increased elevation of the Peace River during water diversion through the Diversion Tunnels.

The L2 Powerhouse area commenced water quality sampling on October 8, 2020 to establish upstream (L2 US) and downstream (L2 DS) to characterize water quality and for ARD-ML monitoring in the L2 Powerhouse area and adjacent to the powerhouse on the Right Bank.

2.0 MONITORING PROGRAM SET-UP AND PURPOSE

Water quality sampling has been scheduled during the third week of each month during 2017, 2018, 2019 and 2020 to support a continuous monitoring record for reportable water quality compliance. Completion of the sampling event has been conducted monthly except under frozen or dry conditions. The 2020 monitoring period commenced on

January 23, 2020, by Tetra Tech and BC Hydro personnel and was completed on December 20-21, 2020. Each sampling event was documented by field notes and photographs, including during dry and frozen conditions.

2.1 Monitoring Program Requirements and Comparison Criteria

Requirements for the development and implementation of the water quality monitoring programs are mandated under the Environmental Assessment Certificate – Condition 3, and the Federal Decision Statement – Condition 7. Reporting of the program results are required on an annual basis. These requirements were carried forward and presented in the BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP) Appendix E, Section 5.2.1.7 (Rev 7, Sep 4, 2020) Acid Rock Drainage and Metal Leachate Management Plan. Rev 7 included additions to off-site items, but no changes were made to Appendix E from previous revisions.

In accordance with the CEMP App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020), analytical results for the River Road and SBIAR road cut monitoring locations are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater short-term maximum (FST) values¹. Water quality measurements recorded at the discharge or downstream locations with exceedances to the BCAWQG-FST were reported to BC Hydro within 24 hours of receiving lab results, and a Routine Memo prepared on a monthly basis to summarize field in situ and analytical lab results. The monthly results are compiled for long-term trend analysis in trend charts. The long-term trends data is evaluated against the BCAWQG freshwater long-term (FLT) chronic values in Appendices B1 to B5.

The BC Biotic Ligand Model software (BC MoE, 2019) was used during the 2020 monitoring period to acquire the dissolved copper BCAWQG-FST and -FLT guidelines for each sample. Prior to August 2019, the guideline value was for total copper.

2.2 Analytical Program Parameters

An off-site laboratory analytical program was designed to measure a suite of parameters suitable for screening the water quality against the BCAWQG-FST for surface water. The sampling and analytical procedures implemented during 2020 were commensurate with Tetra Tech's 2017, 2018 and 2019 monitoring periods and the program previously implemented in 2016 by Lorax for parameters, analytical methods, and detection limits. Lab analysis was conducted for total and dissolved elements (metals), hardness, pH, alkalinity, acidity, total suspended and total dissolved solids, and anions including sulphate, nitrogen species, chloride, and dissolved organic carbon (DOC). Samples were collected in a set of clean bottles provided by the lab and were submitted for analysis.

Analysis was conducted for the following parameters:

- Total Metals, Low Level (including Hg);
- Dissolved Metals, Low Level (including Hg);
- Hardness;
- pH;

¹ The British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture document has been updated frequently during the course of the monitoring program, and has undergone revisions in March 2016, January 2017, March 2018, and August 2019. Screening of the monthly water quality results are performed against the contemporary guideline values. During the 2020 monitoring program, water quality results were evaluated against the August 2019 guidelines.

- Alkalinity: Total/Species (CO₃²⁻, HCO₃⁻, OH⁻);
- Acidity;
- Solids: Total Suspended (TSS) and Total Dissolved (TDS);
- Anions: Nitrogen species (nitrite, nitrate, ammonia), Sulphate, Chloride; and
- Dissolved Organic Carbon (DOC) not collected prior to the September 24, 2019 event.

2.3 Summary of Parameters of Interest

Some of the key indicators that were monitored during this program are described below. Although some of these parameters do not have BCAWQG-FST guidelines, they can be useful indicators to potential changes in water chemistry related to ARD-ML processes.

Alkalinity and pH are important water quality parameters to indicate the ratio between residual alkalinity and acidity in solution and are key indicators for onset of acidic conditions within neutral to alkaline waters when monitored over time. Neutralization of acidity by carbonate, and to a lesser degree silicate, minerals can temporarily increase alkalinity through release of the bicarbonate ion into solution, thereby buffering pH at a near constant value. Bicarbonate will continue to react, and deplete, with any residual acidity. Once all carbonate and bicarbonate sources are depleted, alkalinity no longer is available to neutralize acidity and pH will drop. An indicator for accelerating acid generating processes is when increasing alkalinity is observed without proportional change to pH. The BCAWQG-FST guideline for pH ranges from 6.5-9.0. There is no guideline for alkalinity or acidity.

Water clarity is measured as turbidity (nephelometric turbidity units, NTU) or as total suspended solids (TSS), which is an indicator of the amount of sediment (generally accepted as silt sized particles and coarser, or >0.45 µm in diameter), contained within the water column. TSS can increase if sediment loading occurs due to erosion, or due to rapid precipitation of secondary minerals from chemical reactions such as neutralization of acidic water. The bulk chemistry of water with high TSS tends to mimic the chemical composition of the source sediment being eroded, or in the case of mineral precipitation tends to be high in iron as iron-oxide minerals are the most common secondary mineral to form. Rapid temporal changes to TSS measurements within a catchment due to formation of secondary minerals can indicate presence of active ARD-ML reactions. The BCAWQG-FST guideline is based on deviations to background TSS.

Measurements such as total dissolved solids (TDS), electrical conductivity (EC) and salinity are indicators for the concentration of dissolved components and/or ions in solution. Sudden or gradual increases in these parameters can indicate changes in water chemistry such as an increase in reactive ions or dissolved metals as a result of potential metal leaching processes. Changes to these parameters in association with changes to pH or alkalinity may also indicate active metal leaching processes. BCAWQG-FST guidelines are not specifically stated for these parameters.

Dissolved sulphate can originate from anthropogenic sources, microbial processes and through chemical processes related to degradation of rock forming minerals in environments with potential for acid generation through the oxidation of primary sulphide (e.g., pyrite) or dissolution of sulphate minerals (e.g., gypsum). Elevated sulphate concentrations may indicate oxidation, or weathering, of potentially acid generating (PAG) materials in proximity to sample collection locations, however, may also indicate influence from regional groundwater sources. Water quality with elevated sulphate and pH > 7.0 may indicate ARD-ML processes with sufficient acid neutralizing materials, whereas sulphate with decreasing pH may indicate a shortage of acid neutralizing materials. Sulphate is commonly

reactive with several cations and metal ions under ambient environmental conditions forming both soluble and non-soluble mineral precipitate.

Marine shales such as the local Shaftsbury Formation commonly contain sulphide minerals (mainly pyrite, FeS₂) and may also have primary sulphate minerals such as anhydrite (CaSO₄), gypsum (CaSO₄·2H₂O), or barite (BaSO₄), and/or other sulphate minerals. Preliminary characterization determined that the primary sulphur species in the shale was sulphide with some detectable sulphate (Klohn Crippen Berger, 2015). Based on this mineral association and site observations, it is possible that groundwater contacting fractured bedrock could contain naturally elevated sulphate concentrations. Only one well from the Dam Construction Site was reported in the baseline groundwater sampling conducted as part of the project's Environmental Impact Statement (Hemmera Envirochem Inc. and BGC Engineering Inc., 2012) which did indicate groundwater contained elevated sulphate. Ongoing groundwater monitoring up-gradient and down-gradient of RSEM R5a and R5b measure elevated sulphate concentrations that remain below the BCAWQG-FLT guideline, as reported in The Site C Clean Energy Project, 2020 Q4 Groundwater Quality, Monitoring Report for RSEM R5a and R5b (Lorax, 2020). These results indicate the ongoing presence of sulphate in the groundwater systems. It is noted that the down-gradient monitoring wells at RSEM R5b were screened in overburden materials above the bedrock contact. All wells were removed in September 2020 prior to river diversion. The guideline value for sulphate is not stated in the short-term BCAWQG-FST guideline, however, a long-term average guideline value is stated (variable with hardness) and is referenced in this report.

Water hardness is derived from the total concentration of calcium and magnesium ions in solution, and often reported as mg/L of dissolved CaCO₃) is known to mitigate the effect of certain metals on aquatic organisms, and the guidelines are presented with equations derived from experimental data for sulphate and numerous metals (cadmium, copper, fluoride, lead, manganese, silver and zinc that tests a range of hardness specific to each metal or sulphate). Water hardness classification on-site is Hard to Very Hard and is often measured above the guideline threshold used to calculate BCAWQG-FST guideline values. Where the ambient hardness values exceed the guideline limited listed for BCAWQG, the exceedance criteria have been calculated using the upper limit "capped" hardness value instead of the measured ambient hardness. The BC Approved WQG Summary Report (MoE, 2019) states that a site-specific assessment may be necessary when ambient hardness values are outside the range tested in the BCAWQG.

Water quality screening efforts have focused on elements with BCAWQG-FST guidelines, which include pH, ammonia, chloride, nitrite, total concentrations of arsenic, boron, cobalt, iron, lead, manganese, molybdenum, silver, and zinc, and dissolved concentrations of aluminum, cadmium, and iron. Dissolved copper was added, and total copper removed from the BCAWQG-FST guidelines in August 2019, which was implemented immediately and continued through the 2020 monitoring period.

Changes in concentrations of some elements or metals, reported as both total and dissolved, can have various implications for water quality under ARD-ML conditions. The solubility of individual elements can vary with pH. Geochemical modelling completed by Klohn Crippen Berger (2015) identified copper, cobalt, cadmium, and zinc as having high probability of leaching into solution of site water during oxidation of the local shale bedrock under oxic acid rock generating and metal leaching conditions.

Formation of iron-oxide precipitate is a widely recognized indicator of active ARD-ML processes. Total iron concentrations are associated with ARD-ML due to liberation of ferric iron from the oxidation of primary iron bearing sulphides. Subsequent formation of iron-oxide or iron hydroxide minerals can precipitate when acidic waters are neutralized and may be present as suspended solids or can form scaling on reactive surfaces such as limestone.

Aluminum is abundant in rock forming minerals and can be released as part of oxidation and degradation of rocks during ARD-ML processes. Aluminum is soluble in acidic water and is typically not soluble in neutral and alkaline waters. Aluminum, as Al³⁺, can also contribute to the acidity along with H⁺. When concentrations of aluminum are

measured in detectible concentrations in neutral or alkaline water, it is possible that the formation of very fine aluminum hydroxide clays may occur in previously acidic waters that have been neutralized (Javier Sánchez España, 2007). As a result, aluminum hydroxide mineral species (e.g., polymorphs of gibbsite or hydrargillite) can form on rock surfaces and are indicators of acid generating conditions.

Concentrations of aluminum, iron and copper are typically low in neutral pH drainage, however, elements such as antimony, arsenic, cadmium, molybdenum, selenium, and zinc can be present in neutral pH drainage. Neutral pH metal leaching is an important mechanism to be observed on the Site C project as several of these neutral pH soluble elements are prevalent in the shale bedrock. These elements can be concentrated within secondary mineral formation on shale bedrock during prolonged period of low moisture, then released into run-off water in elevated concentration during high precipitation events.

Under BCAWQG, the intention of freshwater long-term (FLT; "chronic") WQG's are for the protection of the most sensitive species and life stage against sub-lethal and lethal effects for indefinite explores, and uses an averaging period, whereas the freshwater short-term (FST; "acute") WQG's are intended to protect against severe effects, e.g., lethality, to the most sensitive species and life stage over a defined short-term exposure period approach (BC Approved WQG Summary Report, 2019). Working water quality guidelines (WWQG) have not been assessed as part of this monitoring program.Sufficient flowing water permitted monthly samples to be collected during the 2020 monitoring period for ten months at RBSBIAR-US (February, April through December), nine months at RBSBIAR-DS (February; April through November, eight months at RBSBIAR-EDS (April to November), seven months at RBSBIAR-EUS (May to November), and eleven months at RBSC-DS (January through September, November and December). In all twelve months of the 2020 monitoring period, a minimum of one sample location in the SBIAR catchment was sampled outside of frozen and/or dry no flow conditions. Field observations were documented each month. Results for each monthly sampling event were plotted on time series charts for trend analysis.

3.0 SAMPLE LOCATIONS

3.1 Description of River Road Sample Locations

A total of twelve (12) monitoring locations have been established in the River Road catchment near Blind Corner.

Sample locations were initially established in 2017 along the River Road ditch for in situ testing, primarily as a means of monitoring the effectiveness of the limestone riprap and to observe longer term trends related to the PAG outcrop at Blind Corner and run-off/seepage from Howe Pit. Laboratory and in situ testing were conducted at three main locations in 2017, including 1) the lower chimney drain (LBRR-LC), 2) upstream of the lower chimney drain within the River Road ditch (LBRR-12+500), and 2) at the discharge of culvert RR-11 (LBRR-DD). In situ samples from 2017 to 2020 have been conducted at locations LBRR-12+430, LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920.

In April 2018, the establishment of three additional locations: LBRR-EDP, LBRR RR9 and LBRR-RR8 were added to the water quality monitoring program. LBRR-EDP is located at the end of a diversion pipe installed on March 19, 2018; the inlet is within the River Road ditch at station LBRR-12+430 to divert water down-gradient into the River Road ditch towards culverts RR9 and RR8. The pipe bypasses the lower chimney drain (LBRR-LC), which continues to discharge from culvert RR-11, and bypasses L3 Creek, which continues to discharge from culvert RR-10. The purpose of the diversion pipe is to address erosion and sediment control by transport of run-off water into an elongated ditchline to reduce flow velocities and to promote settlement of suspended sediment. Inlets to culverts RR9 and RR8 are slightly elevated from the ditch base which will allow water to pond within the ditch and infiltrate

or discharge via the culverts only if water levels reach sufficient height. Both culverts are made of HDPE materials. The monitoring program includes collection of discharge from these LBRR-RR8 and LBRR-RR9 culverts, however, no discharge was observed during the 2020 sampling events.

Sampling was attempted on a routine monthly basis from six of the River Road catchment locations in 2020, and laboratory analyses were conducted on samples collected when flowing water was observed. The analyses results were used to understand water quality prior to mixing and discharging into the Peace River. These seven locations are located: in the upper chimney (LBRR-UC), lower chimney drain (LBRR-LC), upstream of the lower chimney drain within the River Road ditch (LBRR-12+500), the discharge (LBRR-DD), at the end of the diversion pipe (LBRR-EDP), and at the LBRR-RR8 and LBRR-RR9 culverts.

In situ observations and measurements were routinely collected at eleven locations within the River Road ditch when flowing water was observed.

The established River Road monitoring locations are shown in Figure 1 and photos of the locations are included in the Photographs (Photos 1 to 11) section of the Appendix. Water quality lab data results are provided in Appendix B, Table B1 and discussed in Section 5.3.

3.2 Description of South Bank Initial Access Road Locations

A total of five (5) monitoring locations have been established in and with proximity to the SBIAR catchment. The sample locations have been established to monitor water quality flowing through the SBIAR road cut. The sample locations will also monitor the potential changes to water quality in the side channel down-gradient of the SBIAR construction (RBSC-DS). Sample locations allow for data collection of long-term characterization of SBIAR water management from the upstream location in the west ditch (RBSBIAR-US) and the downstream location in the west ditch (RBSBIAR-DS). Upstream and downstream sampling locations (RBSBIAR-EUS and RBSBIAR-EDS, respectively) were added in 2018 and continue to be monitored. In situ and laboratory analysis are conducted at all five locations.

It is noted that the water flowing from RBSBIAR-DS does not have a direct downstream receptor; the water flows from SBIAR into a limestone armoured spillway into a ditch which conveys to the RSEM R6 pond. There is an intensive water quality monitoring program in the pond (continuous in situ measurements of pH, conductivity; daily lab analysis for all parameters) conducted prior to discharge by Lorax (Lorax, 2020) Ecofish (Ecofish 2020a) and others, as well as Peace River receiving environment monitoring conducted by Ecofish (Ecofish, 2020a) and others.

The RBSC-DS location is sampled as a verification point to check for potential influence from, or direct connectivity with, the PAG contact water that is collected within the SBIAR facility and diverted to the RSEM R6 pond. The RBSC-DS is not a discharge location but may be connected to the Peace River depending on the river level. Groundwater and local surface run-off contribute to the local water quality; however, this location remains hydraulically connected to the Peace River which is interpreted as the primary influence of local water quality, particularly TSS measurements.

The SBIAR sampling locations were monitored on a monthly basis and water quality samples were collected for twelve months between January and December 2020.

The established SBIAR monitoring locations are shown in Figure 2 and photos of the locations are included in the Photographs (Photos 12 to 16) section of the Appendix. Water quality lab data results are provided in Appendix B, Table B2 and discussed in Section 5.4.

3.3 Description of L3 Catchment Sample Locations

The catchment for L3 Creek includes RSEM L3 which is currently not considered, nor permitted, for placement of construction related PAG material. Due to potential influence on discharge water quality from the Howe Pit area and inflow from L4 Creek, the water quality within the L3 Creek catchment is being monitored in context of ARD-ML management.

Five monitoring locations are established within the L3 and L4 Creek catchment to characterize water quality along the creeks and at the discharge location. A baseline location up-gradient of RSEM L3 (LBL3C-3.32) is 3.32 km from the L3 Creek discharge location. One midstream location, LBL3C-1.65, is above and one midstream location, LBL3C-1.43, is below the confluence of L4 Creek and Gulley Road box culvert. The LBL3C-1.65 and LBL3C-1.43 locations are 1.65 km and 1.43 km, respectively, from the L3 Creek discharge location, and are monitored to characterize changes through the drainage towards the downstream discharge location at culvert RR-10 (LBL3C-0.02), located 20 metres from the L3 Creek discharge location.

L4 Creek is a naturally incised gully which is located downstream from the off-site 85th Avenue Industrial Lands gravel quarry work that continued to be conducted significantly during 2020. One monitoring location established in L4 Creek, LBL4C-0.18, is 180 metres upstream from the confluence with L3 Creek. Comparison of the measurements from the L3 and L4 Creek monitoring locations are used to characterize the mixed waters monitored at the L3 Creek midstream location, LBL3C-1.43.

The L3 Catchment monitoring locations are shown in Figure 3 and representative photos are included in the Photographs (Photos 17 to 21) section of the Appendix. Water quality lab data results are provided in Appendix B, Table B3 and discussed in Section 5.5.

3.4 Description of Sampling Locations Added in 2020

3.4.1 Left Bank Debris Boom

Sample locations were established and first sampled on October 8, 2020 to characterize water quality in the LBDB area for ARD-ML monitoring. named LBP Pond and LB Side Channel. The purpose of sampling is to monitor PAG contact water from shale exposed during construction in March 2020, and that drains to the Peace River.

Water quality sampling at LBDB provides data to apply to understanding of water discharge and flooding in subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels.

The three locations were visited on October 8, November 20, and December 14, although in situ and lab sampling only occurred at LBP Pond (October 8 and November 20, 2020) and Side Channel E (October 8, 2020) outside of frozen conditions.

A representative photo of the LBDB locations is included in Photographs (Photos 22 and 23) section of the Appendix. Water quality lab data results are provided in Appendix B, Table B4 and discussed in Section 5.6.

3.4.2 L2 Powerhouse

Two sample locations were established in the L2 Powerhouse area adjacent to the powerhouse on the Right Bank and first sampled on October 8, 2020 and sampling continued on November 20, December 4, and December 14, 2020 at the L2 Powerhouse area. The L2 area slope is mitigated by covering of the slope that effectively makes it

a non-PAG contact surface. The water quality monitoring program has been put in place to verify that the mitigation applied is working and that non-PAG contact water is observed in this area. Water conveyed to AFDE RSEM R6 pond from the L2 Powerhouse area is otherwise non-PAG contact.

Water from the L2 Area is pumped to the water treatment plant in the area and then to the sediment ponds in R6, where it is eventually pumped to the Peace River. In the winter, the water is not piped to R6, but rather is recycled from the water treatment plant. water quality samples were collected from the upstream (L2 US) and downstream (L2 DS) in the L2 Area located adjacent to the powerhouse on the Right Bank (Figure 2).

The L2 DS sample location is adjacent to the L2 Powerhouse, specifically collected from the pump tubing on the west side of the culvert and approx. 1-2 m from the south rock ditch wall and 1-2 m from the culvert. The L2 US station is located upstream from the L2 Powerhouse.

A representative photo of the L2 Area is included in the Photographs (Photos 24 and 25) section of the Appendix. Water quality lab data results are provided in Appendix B, Table B5 and discussed in Section 5.7.

4.0 LOCAL CONDITIONS

4.1 Weather Conditions - Temperature and Precipitation

The minimum, maximum, and average daily temperature and the seven-day temperature range preceding each sampling event were summarized in attached Table 2. The total precipitation measured for the seven days preceding each sample event and the precipitation on the day prior to and the day of the sample event were summarized. The temperature and precipitation data was sourced from BC Hydro's Site C Meteorological and Air Quality Station (Figure 4; BC Hydro, 2019), Station 7C Site C North Camp, with results summarized in the attached Table 2.

The range of mean, minimum and maximum temperatures recorded during sampling events is summarized in Table 4-1.

	Month	Temperature (°C)	Month	Temperature (°C)
	Lowest		Highest	
Mean	14-Dec	-16.5	30-Jul	19.8
Minimum	20-Nov	-19.0	21-Jun	14.7
Maximum	14-Dec	-15.7	30-Jul	25.1

Table 4-1: Range of Temperatures Recorded during Sampling Events in 2020

Sampling events in all months during 2020 were conducted on dry days with no precipitation, except for August 24 (2.94 mm), October 8 (3.54 mm), October 20 (0.05 mm), December 20 (0.44 mm) and December 21 (0.06 mm). Precipitation for the Site C area was recorded in the previous seven days for sampling events in January (3.62 mm), February (0.62 mm), March (2.42 mm), April (0.52 mm), May (23.39mm), June (61.11 mm), August (20.54 mm), September (6.41), October (3.04 and 5.14 mm), November (13.11 and 0.25 mm), and December (0.25 mm, 0.34 mm, and 6.17 mm) during the 2020 monitoring period. Sampling events with the most significant precipitation recorded in the previous seven days to sampling events occurred in June (61.11 mm), May (23.39 mm) and August

(20.54 mm). A summary of mean daily temperature recorded on sampling events, and precipitation recorded during both the prior seven (7) days and during the sampling event is provided in Table 4-2.

Routine Memo No.	Sample Event No.	Sample Event Date	Mean Daily Temperature (°C)	Precipitation for 7 days prior to Sample Event (mm)	Precipitation on Sample Event (mm)
1	1	23-Jan-20	-7.7	3.62	0.00
I	2	27-Feb-20	5.3	0.62	0.00
2	3	25-Mar-20	-1.9	2.42	0.00
3	4	16-Apr-20	9.6	0.52	0.00
0	4	17-Apr-20	7.0	0.32	0.00
4	5	27-May-20	13.7	23.39	0.00
4	5	28-May-20	14.4	23.39	0.00
5	6	21-Jun-20	18.3	61.11	0.00
5	0	22-Jun-20	16.0	01.11	0.00
6	7	29-Jul-20	18.7	0.00	0.00
0	1	30-Jul-20	19.8	0.00	0.00
7	8	23-Aug-20	14.5	20.54	0.00
I	0	24-Aug-20	12.6	20.54	2.94
	9	28-Sep-20	13.2	6.41	0.00
8		29-Sep-20	10.3	0.41	0.00
	10	08-Oct-20	5.6	3.04	3.54
	11	20-Oct-20	-4.9	5.14	0.05
9		21-Oct-20	-7.2	- 5.14	0.00
	12	20-Nov-20	-16.2	13.11	0.00
10	13	30-Nov-20	0.7	0.25	0.00
10	14	14 04-Dec-20 7.1 0.25	0.00		
	15	14-Dec-20	-16.5	0.34	0.00
11	16	20-Dec-20	-0.3	6.17	0.44
		21-Dec-20	-3.1	0.17	0.06

Table 4-2: Sample Event Temperature and Precipitation

4.2 Classification of Seasonal Flows in Ditch

Residence time for water is low in the SBIAR and River Road ditches due to their small catchment size. The climate data was used to evaluate water availability and potential water source for flows that were observed in the ditches.

The flows in ditches at SBIAR and River Road are susceptible to seasonal change and flow rate is highly influenced by local precipitation events, thus the classification of flow in ditches can assist to interpret the source and subsequent chemical fluctuations in water sampled (attached Table 3). For example, flows in ditches can be attributed to shallow or regional groundwater, spring freshet or surface run-off, dependant on the season and amount of precipitation recorded in the previous 24-hours and 7-days to the sampling event. This association may

be less apparent in L3 Creek due to a larger catchment size and residence time for water within the drainage, however, it is interpreted that similar trends may be observed.

Regional bedrock groundwater in locations sampled are suspected to have elevated concentrations of dissolved sulphates due to groundwater interaction with local pyritic-shale bedrock and local bacteria, and may, to some degree, be responsible for the high sulphate-content pervasive in water samples following minimal precipitation during the previous 7-day and 24-hours to the sampling event (e.g., January 23, February 27, March 25, April 16-17, July 29-30, September 28-29, October 8 and 20-21, November 30 and December 4, 14 and 20-21, 2020).

When significant precipitation has occurred in the previous 7-days, but minimal precipitation within the prior 24-hour period to the sampling event, the flows in ditches can result from shallow groundwater flow, mainly through unconsolidated overburden. Significant precipitation in the preceding seven days to and during the June (61.11 mm), and moderately during the May 27-28 (23.39 mm) and August 23-24 (20.54 mm) sampling event correlates with a spike in TSS and turbidity measured in the Peace River (Table 4) and higher levels of TSS and conductivity measured in water quality samples collected from the SBIAR and L3 Creek monitoring locations.

During spring freshet and snow melt, sampling events (e.g., April and May 2020) can be classified as having a 'dilution' effect to the water chemistry, although increased TSS from turbid high flows can counteract this effect. To the contrary, during more arid seasons with little to no precipitation occurring in the previous 7-days and 24-hours (e.g., March, April, July, November, December 2020), flows in ditches can be attributed to regional groundwater baseline seepage. In this event, when precipitation and sampling occur following dry periods, the surface chemistry of the rocks will be washed into the ditches and be concentrated. No significant rainfall events were coincident to sampling events in 2020, and only two events were coincident with minimal 2.94 mm (August) and 3.54 mm (October 8) rainfall. Significant rainfall, however, occurred 5-6 days prior to the June 21-22 event (61.11 mm) and moderate precipitation 2-days prior to the August 23-24 event (20.54 mm) and 4-7 days prior to the May 27-28 event (23.39 mm), no rainfall was coincident on the sampling event. If there had been an occurrence of moderate to significant rainfall prior to and including a sampling event in 2020, this would produce increased turbidity and flow in the ditches, having short-term effects on measurements such as TDS, TSS and potentially total metal concentrations from flushing of exposed slopes and ditch fill material.

The classification of seasonal flows in ditches, therefore, are important to consider when interpreting fluctuations and exceedances in parameters measured in water quality guidelines over the period of one year.

4.3 Peace River Turbidity and TSS

Turbidity of the Peace River is monitored by BC Hydro through a series of data loggers situated both upstream and downstream of the Main Civil Works (MCW) construction area. Time series data of collected on the left and right banks of the Peace River up-gradient of the Moberly River (stations PAM-LB and PAM-RB, respectively) were provided to Tetra Tech by Ecofish Research Ltd (EcoFish, 2020b) to provide general understanding of influence by precipitation on natural sediment within the Peace River upstream from the construction area surrounding sampling events. Turbidity is measured in Nephelometric Turbidity Units (NTU) and Total Suspended Sediment (TSS) is an average (mg/L) determined by converting Left Bank and Right Bank NTU values to TSS using a TSS:Turbidity relationship and then averaging both TSS values. The TSS:Turbidity relationship of 0.73:1 was replaced with 0.72:1 after 6:00 am on November 4, 2020 (EcoFish, 2020b).

Measured turbidity gradually increases during early spring and freshet then decreases and levels off for the remainder of the year with exception to high precipitation events that are related to spikes in turbidity and TSS. In 2020, turbidity and TSS levels spiked concurrent with freshet in the April 16-17 and May 27-28 sampling events, and significant precipitation leading up to the June 21-22 sampling event (Figure 5; Table 4). No sampling events

in 2020 were coincided with a high precipitation event although three events (May, June, and August) had moderate to significant precipitation within the seven days previous to sampling. Figure 5 illustrates the variability in turbidity and TSS during 2020 (Ecofish, 2020b). The Appendix Table 4 and Figure 5 provide the data and graph prepared to illustrate variability in turbidity associating with sampling events.

The daily mean turbidity and TSS that is measured during and following freshet and high rainfall events measures significantly higher values on the Left Bank relative to the Right Bank. This is summarized as the average values for each of the April, May, June, and August 2020 events in Table 4-3.

Sample Event Date	Related to	NTU		TSS (mg/L)	
Sample Event Date	Related to	LB	RB	LB	RB
April 16-17	freshet	701.6	39.1	512.2	28.5
May 27-28	freshet	127.4	83.6	93.0	61.0
June 21-22	rainfall, high	667.2	546.8	487.0	399.2
Aug 23-24	rainfall, mod	176.0	32.3	128.5	23.6

Table 4-3:Elevated Turbidity and TSS during Sample Events in 2020

NTU: Nephelometric Turbidity Units

The data include turbidity measurements for the seven days prior, day prior, during, and day following the January through December sampling events in 2020 (Table 4). The turbidity data is converted to a value representing total suspended solids (TSS) using a preliminary factor developed by Ecofish using calibration of field measurements with laboratory data. Although the data have undergone initial verification and review for quality assurance, measurements may still have drift corrections applied, therefore, the TSS-turbidity relationship will continue to be updated following sample collection over time and all ranges of river conditions. Subsequent quality assurance and verification procedures may result in differences between what is currently provided and what will become the official record.

5.0 WATER QUALITY MONITORING PROGRAM RESULTS

5.1 Sample Events in 2020

A summary of each water quality sampling event and corresponding analytical results were reported monthly to BC Hydro in a routine memo for sixteen (16) sampling events in 2020, twelve (12) of which were at the RR, SBIAR and L3 Creek catchments (January 23, February 27, March 25, April 16/17, May 27/28, June 21/22, July 29/30, August 23/24, September 28/29, November 30 and December 19), and four (4) at the new LBDB and L2 Area locations (October 8, November 20, December 4 and 14, 2020).

Field notes documented at each monitoring location included date and time of field observations including estimated flow rate and water clarity, and a list of in situ tests completed with record of measurements for water temperature, hardness, alkalinity, pH, and electrical conductivity collected using a hand-held meter. (Tables 6, 8, 11, 13 and 15).

The attached Table 1 presents a summary of the dates of the sampling events and which locations had in situ or lab testing completed.

Laboratory results for all locations are provided in Appendix B (Tables B1 to B5).

5.2 Quality Control and Quality Assurance Program

5.2.1 Overview of QA/QC Program

The Quality Control (QC) program included experienced field staff familiar with the water quality monitoring program adhering to the British Columbia Field Sampling Manual, Part E: Water and Wastewater Sampling (Clark, 2003). New sample containers were acquired from the laboratory the day preceding the sampling event and all handling of the containers, sampling devices and equipment during sample collection was completed wearing new nitrile gloves to minimize potential for contamination of the samples. A new disposable syringe and 0.45 µm filter were used for each sample being submitted for dissolved metals, except when the concentration of TSS was observed as being high and field filtration was not possible. Samples not filtered and preserved in the field were identified and filtered at the laboratory. All samples were stored in a cooler filled with ice packs at a temperature between approximately 4°C and 8°C.

The Quality Assurance (QA) program incorporated use of a Travel Blank (TB), Field Blank (FB) and replicate sample to test for potential contamination during sample collection, handling, or laboratory preparation, and to evaluate the precision of laboratory analysis. Travel Blanks were prepared by the laboratory and field blanks were prepared in the field at sample collection sites by field staff using the same source water as was used for the travel blank.

5.2.2 Laboratory QA/QC

Analytical results were received monthly from ALS Labs. No external lab was contracted during the 2020 monitoring period. The lab implements a detailed QC program into the sample analysis which includes a series of checks and evaluations for consistency in the sample analysis. The QC program includes method blanks, certified reference materials, laboratory control samples and duplicates. The QC Lot reported on Assay Certificates consistently met internal ALS Data Quality Objectives.

5.2.3 Tetra Tech QA/QC

The analytical results of the QA samples were reviewed by Tetra Tech, and if potential contamination or concerns with analytical results were identified, they were discussed with the laboratory and/or the field sampler representatives, with reanalysis of samples completed for verification if necessary. During 2020, Travel and Field Blank data from the April 16-17, 2020 sampling event measured significant concentrations of values above the detection limit, which required a rerun by the lab resulting in the same lab result. After investigation, the lab found that the DI water provided by the lab for the TB and FB was not as deionized as it should have been. Furthermore, the Replicate sample from the same April 16-17 sampling event measured a significant amount (thirty-eight (38)) total and dissolved metals with an unacceptable Relative Percent Difference (RPD) > 30%. The lab re-filtered the samples and it was concluded that the errors had resulted from complications related to filtering procedures in the field and lab with highly elevated turbidity in the samples.

Table 5 lists the results of the QA program, including a summary of the RPD values. Replicate samples were evaluated using RPD, where an RPD value of less than 30% is considered an acceptable threshold for variation of surface waters. Blank samples were considered to 'fail' where any measured value was in concentrations above the reported detection limits for that parameter.

Tetra Tech also reviewed the data for more general anomalies and inconsistencies. The total and dissolved concentrations for the full suite of elements were continued to be compared since there are frequent occurrences of dissolved concentrations exceeding total concentrations. The results were screened for analytical error, then assessed for expected natural variability of surface waters. Most instances were due to measurements at or near

the analytical detection limit and could be explained by being within an acceptable range of error up to five times the lower detection limit for the respective element. Here, the total concentrations are considered equal to the dissolved concentrations.

5.2.4 QA/QC Program Results

Elemental concentrations measured at or slightly above the analytical detection limits in travel (TB) and field (FB) blanks occurred at times during the January to December 2020 monitoring period (the month of April 2020 was discussed separately in s. 5.2.3). Specifically, parameters measuring above detection limit were measured for total alkalinity (August TB and December 4 FB), bicarbonate alkalinity (August TB and December FB), ammonia (January FB), total mercury (March TB), total molybdenum (January FB), dissolved aluminum (March and August FB), dissolved barium (March TB) and dissolved mercury (March FB), summarized in Table 5.

The April 16, 2020 sampling event measured anomalous values in both the TB and FB for a significant number of parameters, which was determined to be sourced from an error at the ALS Labs with poor quality of distilled water provided for the TB and FB. Therefore, the TB and FB were not considered acceptable for further contamination checks.

Consistently, an average pH of 5.60 is measured across travel and field blanks collected between January to December 2020; this low pH result is typical for distilled water and is not identified to be an issue. The elemental concentrations measured above detection limit could be attributable to field contamination or calibration of analytical instrumentation. The majority of blank samples with elevated concentrations occurred with field blanks (73%) rather than travel blanks (27%), and similar anomalous elemental concentrations were not observed in their corresponding travel blank. Travel blanks were prepared by the laboratory and field blanks were prepared in the field at sample collection sites by field staff using the same source water as was used for the travel blank. If the source distilled water was contaminated, similar elemental anomalies would be expected in both the TB and the FB. The issues have been communicated with both the analytical laboratories and field personnel. Due to anomalous values being so close to detection limits and that particular elements were not recurring throughout the year; the accumulated error was not interpreted as a concern for this monitoring program.

Field replicate samples with differences of elemental concentrations above the acceptable threshold of RPD > 30% had occurrences for a variable number of parameters measured in January (7), February (0), March (1), April (38), May (1), June (2), July (0), August (2), September (1), 8-Oct (3), 20-Oct (0), 20-Nov (2), 30-Nov (2), 04-Dec (2), 14-Dec (0), and 20-Dec (7). Discrepancies are attributed to sediment disturbance during the collection of the first sample.

The April 17, 2020, sampling event QAQC check found that the replicate samples (LBL3C-1.65 and LBL3C-1.65-R) had significant occurrences of RPD > 30%, calculated for thirty-eight (38) parameters including thirty-three (33) total metals (AI, An, As, Ba, Be, Bi, Cd, Ce, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Mo, Ni, P, Rb, Se, Si, Sr, TI, Th, Sn, U, V, Zn, Zr) with an RPD between 56.6 to 198.6%, and five (5) dissolved metals (AI, Cr, Fe, Pb, Mo) with an RPD between 35.8 to 75.7%. Following communication with the field sampling personnel and ALS Laboratories, this discrepancy was attributed to the replicate sample containing sediment from disturbance during collection of the first sample. The replicate sample was therefore not considered a reliable comparison of the in situ conditions and laboratory analysis, therefore it was not included as a replicate in the statistics and reporting.

Occurrences of dissolved concentrations exceeding total concentrations in samples was calculated below the acceptable threshold of an RPD < 30%, although measurements above the acceptable threshold occurred in the following sampling events: June (aluminum, selenium, zirconium), July (zinc) and October 20 (cadmium, manganese, nickel, sulphur and zinc).

5.3 River Road Water Quality Monitoring

Sufficient flowing water permitted samples to be collected during 2020 from LBRR-DD (February, April, September), LBRR-12+500 (February, March, April, June, September, October), LBRR-EDP (February, March, April, June, July, September), RR9 (February), LBRR-UC (July, August) and LBRR-LC (April). Dry, freezing and/or low or no flow conditions prevented reliable sampling at the River Road monitoring locations for the remaining months of 2020. In situ measurements were not collected from each station consistently every month due to dry or frozen conditions. Field observations were documented each month and results for each monthly sampling event were plotted on time series charts for trend and qualitative correlation analysis.

A summary of water quality exceedances at River Road relative to BCAWQG-FST listed by monitoring location and month are listed in Table 7, and the screening results based on the laboratory data are tabulated in Appendix B1.

5.3.1 In Situ Measurements and Field Observations

The collection ditch on the cut-bank (north) side of River Road between approximately 12+340 and 12+960 (Blind Corner) was lined with limestone riprap in 2017 to assist with mitigating the potential effects of ARD-ML from PAG bedrock that was exposed during the initial road construction in 2015 and early 2016. Limestone was also placed between stations LBRR+920 and LBRR-DD to manage the pH of baseline drainage water at the outflow location. Limestone riprap within the ditch between road stations 12+600 and 12+900 continued to be maintained in 2018, including completion of a hydroseeding program and a limestone buttress as the tow of the shale slope at blind corner to support long-term erosion control and slope stability in March 2018. The hydroseed appeared to remain in place on the slope, however, germination was not successful at year's end. No maintenance activities were completed in 2020.

Potentially acidic leachate generated from the rock cut-slopes reacts with the alkaline limestone to help neutralize water as it passes through the riprap lined ditch. The ditch also serves to convey run-off water and fine sediment shed from River Road through the end-of-diversion pipe between 12+430 and LBRR-EDP where water is pooled and infiltrates or is discharged through culvert RR8 and RR9 into the Peace River if water levels exceed the inlet height of culverts. Water from the lower chimney ditch, LBRR-LC, is conveyed through culvert RR-11 to the discharge location, LBRR-DD, and ultimately to the Peace River.

Location LBRR-12+920 is located immediately up-gradient of the upper cut-off chimney and PAG exposure, whereas LBRR-12+810 is located immediately down-gradient the upper cut-off chimney and sits below the PAG exposure at Blind Corner. Notable decrease in water pH and alkalinity generally occurs between these stations with a gradual recovery from acidic to circumneutral pH and available alkalinity towards location 12+500.

The placed limestone riprap is effective at mitigating the pH of the drainage when there are fresh surfaces of limestone available for chemical reactions. The limestone material used as riprap along this road section has become progressively coated with a mineral precipitate (visually estimated as hydroxides containing calcium, iron and aluminum) due to chemical neutralization reactions and almost entirely encased by sludge due to settlement of suspended solids within the water. Additionally, the roadside portion of the ditch, particularly from LBRR-12+600 downstream to the inlet of the diversion pipe, is being encroached with sand and gravel sediment from grading activities on River Road which covers the limestone, further reducing its exposure to the run-off water. The effectiveness of the limestone to provide the neutralizing potential is considered to be negatively compromised by these coatings.

Values for pH, conductivity, hardness, alkalinity, water temperature, estimated flow and turbidity measured at the River Road monitoring locations are included in Table 6. At River Road during 2020, the range in water temperatures was 0.0 °C to 23.5 °C. Measurements of pH ranged between 7.30 to 8.87, alkalinity ranged between 40 and 240 ppm, hardness ranged between 100 to 800 ppm and conductivity between 183 to 2,518 μ S/cm.

Flows within the River Road ditch are ephemeral. During 2020, flow was noted at the LBRR-DD discharge location in February, April, and September 2020, at the LBRR-EDP location in February, March, April, June, and July 2020, at RR9 in February 2020, and no flow noted on RR8. During 2020, flow was observed in February and April at LBRR-LC (Lower Chimney; Midstream) and between April to September at LBRR-UC (Upper Chimney), flow was observed at the LBRR-12+500 and LBRR-LC. Dry or frozen conditions prevailed for the remainder of 2020. Along River Road, in 2020 flow was noted at the LBRR-12+500 location in February, March, April, June, September and October, and further up the LBRR ditch at LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920 during between four to eight months of the 12-month monitoring period.

In the River Road catchment, TSS measurement ranged from <1.0 mg/L (RR9, February; LBRR-12+500, September) to 2,390 mg/L (LBRR-12+500; April). Average TSS for 2020 was 538 mg/L, and each sample location showed variable TSS that was seasonally correlated with highs typically in April, lowest values in the summer months and an increase in early Fall. The source of TSS is primarily from River Road run-off, scouring of sediment deposited within the River Road ditch and washing from the cut-slopes.

5.3.2 Freshwater Short-Term Maximum Exceedances

Of the total eighteen (18) samples collected from River Road during 2020, elevated total metal concentrations above the BCAWQG-FST were measured for total arsenic, total iron, and dissolved aluminum. Neutral to alkaline laboratory pH values were measured during 2020 with pH ranging between 7.78 and 8.32.

At the discharge LBRR-DD location, there was a BCAWQG-FST exceedance in total iron in February and April 2020, and dissolved aluminum in February 2020. Other non-discharge locations along River Road measured BCAWQG-FST exceedances in total arsenic at LBRR-12+500 (March and April) and LBRR-EDP (April), total iron at LBRR-12+500 (February, March, April) and LBRR-EDP (February, April), and dissolved aluminum at LBRR-UC (August). No other exceedances were measured at River Road locations during 2020. The summary of exceedances is presented in Table 7 and summarized below. The complete data results from the samples are summarized in Appendix B1.

The exceedances are interpreted to be directly related to washing, or flushing, of sediment and secondary mineral precipitant during freshet (or precipitation following a dry period), as water contacted accumulated sediment within the ditch in addition to the exposed shale, colluvium and overburden cut-banks.

This result suggests active ARD-ML processes on exposed PAG at Blind Corner and within Howe Pit are influencing water quality when there is flowing water.

5.3.3 Trend Monitoring

Data results from 2017 to 2020 at River Road monitoring stations have been compiled and plotted for trend analysis. Please refer to Figures 6 to 17 for time series charts.

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and as discussed in Section 3.1 the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water within the River Road ditch. Event data characterizes the influences of seasonal conditions at the site.

Time series charts for pH and alkalinity, TSS and TDS, sulphate, total and dissolved aluminum, and total and dissolved iron at River Road were presented in the 2017 and 2018 annual reports (Tetra Tech 2017 and Tetra Tech 2018), but not in the 2019 annual report due to lack of water quality data in 2019 (Tetra Tech 2019). Water quality sampling has been inconsistent at the River Road locations since 2017 due to frequent low flow or frozen conditions. There is minimal data available from mid-2018 to the end of 2019, and variable amounts of data in 2017 and 2020 from different stations and times. The available data makes it challenging to discern seasonal trends at River Road. Additional data collection and ongoing time series trend analysis is needed to develop interpretation of trends.

The measured pH values collected at River Road have remained within an acceptable BCAWQG-FST range (pH 6.5 to 9.0) during 2020 sampling events that show more consistency in 2020 relative to more variability in pH during 2017 and 2018 when pH values varied below and above the acceptable BCAWQG-FST. During 2020, alkalinity and pH remain relatively consistent whereas acidity is more variable, especially at the LBRR-12+500 and LBRR-UC locations. The collection of acidity data is limited to primarily 2020 and will continue to be monitored.

During 2020, TDS and TSS values at River Road sample locations generally remain within range of measurements in 2017 through 2019. Although limited and inconsistent data is available, the LBRR-EDP location shows the highest TDS values in 2020 relative to the other RR locations sampled. During 2020, TSS values measured at LBRR-EDP and LBRR-12+500 locations follow similar and slightly higher concentrations at LBRR-EDP that follow similar trends in 2020, relative to differing concentrations measured from the limited data available in 2020. During 2020, sulphate concentrations measure within range of values collected from 2017 to 2018, which continue to straddle the BCAWQG-FLT guideline value of 429 mg/L (guideline variable based on hardness) at the LBRR-EDP location, whereas other sampled locations in 2020 along River Road, including LBRR-12+500 measured more consistent sulphate values that remained below the BCAWQG-FLT guideline.

During 2020, total and dissolved aluminum are variable and within to slightly below range of measurements in 2017 to 2018. Total aluminum, similar to TSS values, measured at the LBRR-EDP and LBRR-12+500 locations follow similar concentration and trends in 2020, relative to differing total aluminum concentrations measured at other River Road locations from the limited data available in 2020.

During 2020, total iron varies in concentration that measures below and above the BCAWQG-FST guideline and within range of measurements in 2017 to 2018. Total iron, similar to total aluminum and TSS values, measure similarly and follow a similar trend at the LBRR-EDP and LBRR-12+500 locations in 2020, which differs from total iron concentrations measured at other River Road locations from limited data available in 2020. During 2020, dissolved iron remains well below the BCAWQG-FST guideline at values at or just above detection limit, with more consistent values in dissolved iron relative to more variability in total iron at RR locations.

Metal concentrations for a number of elements, including total aluminum, total iron, total arsenic, total cobalt, total and dissolved copper, and total zinc showed a spike during freshet in March and April 2020 coincident with elevated TSS values. In 2020, metals generally measure within to lower than the range of values measured in 2017 and 2018.

5.3.4 Freshwater Long-term Average Exceedances

In addition to BCAWQG-FST (short-term) screening, laboratory results have been screened against the BCAWQG-FLT (long-term) guideline values, shown in Appendix B1 for River Road water quality data that reference results of the eighteen samples collected during the 2020 monitoring period.

5.4 SBIAR Water Quality Monitoring

Sufficient flowing water permitted monthly samples to be collected during the 2020 monitoring period for ten months at RBSBIAR-US (February, April through December), nine months at RBSBIAR-DS (February; April through November, eight months at RBSBIAR-EDS (April to November), seven months at RBSBIAR-EUS (May to November), and eleven months at RBSC-DS (January through September, November and December). In all twelve months of the 2020 monitoring period, a minimum of one sample location in the RBSBIAR catchment was sampled outside of frozen and/or dry no flow conditions. Field observations were documented each month. Results for each monthly sampling event were plotted on time series charts for trend analysis.

A summary of water quality exceedances at SBIAR relative to BCAWQG-FST listed by monitoring location and month are listed in Table 9, and the complete set of screening results based on the laboratory data are tabulated in Appendix B2.

5.4.1 In Situ Measurements and Field Observations

Values for water temperature, pH, total alkalinity and electrical conductivity measured at the SBIAR monitoring locations are included in Table 8.At the SBIAR locations during 2020, the range in water temperatures was 0.0 °C to 21.3 °C. Measurements of pH ranged between 6.80 to 9.03, alkalinity ranged between 40 and 240 ppm, hardness ranged between 250 to 800 ppm and conductivity between 554 to 1,630 μ S/cm. The range in water temperatures at the four ditch locations (0.00 to 21.3 °C) and the RBSC-DS side channel (4.2 to 17.2 °C) were recorded in 2020.

Flows in the SBIAR ditch system can vary between upstream (RBSBIAR-US and RBSBIAR-EUS) and downstream (RBSBIAR-DS and RBSBIAR-EDS) locations, with flows of approximately 0.10 L/s to 1.5 L/s, respectively. Seepage in the western cut-slope ditch is received partly from ponded water from Area 21. RBSC-DS is located in the side channel with connectivity to the Peace River where stagnant to minimal "flow" is observed.

Water levels at RBSC-DS are coincident with the actual levels of the Peace River. Table 4 shows the measured upstream turbidity, and converted TSS concentrations, within the Peace River. Increased turbidity measured in the Peace River results from precipitation events which can be correlated with TSS measurements collected from RBSC-DS. Thus, TSS measured at the RBSC-DS location (Figure 22b) are interpreted to be attributable to, or directly influenced by, the in-river turbidity measurements (Table 4).

5.4.2 Freshwater Short-Term Maximum Exceedances

Concentrations of total and dissolved iron, dissolved aluminum, total arsenic, total manganese, and total zinc were measured above the BCAWQG-FST at various locations and months during 2020 within the RBSBIAR catchment. At the downstream RBSBIAR locations, at RBSBIAR-DS occurrences of exceedances were reported for total iron (1) and dissolved aluminum (2); at RBSBIAR-EDS occurrences of exceedances were reported for total iron (2), total arsenic (1), total zinc (2) and dissolved aluminum (2) in 2020. At the upstream locations, one exceedance was reported at RBSBIAR-US for total iron (1), and no exceedance was reported at RBSBIAR-EUS.

The water flowing from RBSBIAR-DS and -EDS do not have a direct downstream receptor. In 2018, exceedances in the metals, total arsenic, copper, and zinc occurred solely at the upstream west ditch location, RBSBIAR-US (March 2018), whereas these same metals measure exceedances primarily in the downstream ditches in 2019 and 2020.

At the RBSC-DS side channel, exceedances to the BCAWQG-FST guidelines were measured for total iron (1), dissolved iron (1), total manganese (3) and dissolved aluminum (1) during 2020. These exceedances are considered to be transported by sediment entrainment from run-off and groundwater inflows and elevated

concentrations may be in association with algal development in the side channel; these concentrations are not interpreted to be directly influenced by construction related PAG contact water.

A summary of water quality exceedances relative to BCAWQG-FST listed by monitoring location in and month are listed in Table 9, and the screening results based on the laboratory data are tabulated in Appendix B, Table B2.

5.4.3 Trend Monitoring

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and, as discussed in Section 3.1, the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water with the SBIAR ditch. Recurring trends at SBIAR over the 2017, 2018, 2019 and 2020 monitoring periods may be preliminary indications of long-term trends and are discussed below.

Data results from 2017 to 2020 at SBIAR monitoring stations have been compiled and plotted for trend analysis. Please refer to Figures 18 to 29 for time series charts. A comparison of downstream vs. upstream concentrations of zinc in the west SBIAR ditch (Figure 30a) and east SBIAR ditch (Figure 30b) is provided for discussion of observed trends between upstream and downstream sample locations.

5.4.3.1 Alkalinity and pH

Alkalinity and pH values indicate that waters have remained alkaline from 2017 through 2020. Values for pH measured at RBSBIAR-DS range between 8.07 to 8.26 with a mean pH value of 8.13, and at RBSBIAR-EDS range between pH 7.90 to 8.06 with a mean pH value of 7.94 (Table 10). Alkalinity trends between the four ditch locations are variable yet follow relatively similar trends during the 2020 monitoring period; the alkalinity values are similar and higher within the east ditch (RBSBIAR-EUS/-EDS), whereas are similar and lower within the west ditch (RBSBIAR-US/-DS).

There is an overall increasing trend for alkalinity in both upstream and downstream (east and west) ditches between May to November 2020. The highest alkalinity values are measured at the RBSC side channel between January to December 2020 except for the late July 2020 sample when alkalinity was higher in the east ditch (RBSBIAR-EUS/-EDS) than at RBSC-DS. The late July sample also corresponds to a low point in acidity and TDS for the RBSC-DS sample.

Values for alkalinity at RBSBIAR-DS range between 135 mg/L and 242 mg/L CaCO₃ equivalent (mean value of 206 mg/L CaCO₃ equivalent), and at RBSBIAR-EDS range between 256 mg/L and 324 mg/L CaCO₃ equivalent (mean value of 281 mg/L CaCO₃ equivalent) (Table 10).

Measured pH at the side channel location RBSC-DS range between 7.76 and 8.26, and alkalinity ranges between 255 and 412 mg/L CaCO₃ equivalent. The RBSC-DS location generally measures higher alkalinity values and similar to slightly lower pH values that are more variable relative to the other SBIAR sampled ditch locations. There is low similarity in trends observed for pH and some similarity in an increasing trend between August to November for alkalinity between the side channel and the SBIAR waters.

5.4.3.2 Hardness

Water hardness measured at RBSBIAR-DS ranges between 234 and 331 mg/L, with a mean value of 286 mg/L, and at RBSBIAR-EDS ranges between 246 and 482 mg/L with a mean value of 353 mg/L. The water hardness was commonly above the upper threshold used by the BCAWQG-FST (250 mg/L) to guide calculation and exceedance criteria for various metal or element concentrations (e.g., total sulphate, lead, manganese, silver, zinc; dissolved cadmium). When the maximum hardness value is reached for elements that are hardness-dependent for

BCAWQG-FST guideline calculations, the respective maximum hardness values for the above-mentioned metal or elements are used as capped hardness values in the calculations. Elevated ambient water hardness values are also observed in measurements from other catchments on-site and likely is characteristic of elevated background conditions of hard soils and groundwater.

5.4.3.3 Total Suspended Sediment (TSS) and Total Dissolved Sediment (TDS)

TSS measurements at the downstream RBSBIAR-DS/-EDS and upstream RBSBIAR–US/-EUS locations are variable both between upstream and downstream, and between west and east ditches, thus have different trends during the 2020 sampling period (Figure 22b). The overall variability in TSS is attributable to the relatively small catchment and short residence time of waters within both the west and east RBSBIAR ditches and sensitivity to flux in surface water inputs from precipitation or seepage inputs from Area 21. TSS concentrations measured at RBSBIAR-DS range between <1.0 and 341 mg/L with mean value of 40.3 mg/L, and at RBSBIAR-EDS range between <1.0 and 5,390 mg/L TSS. Measured TDS concentrations ranged between 412 and 572 mg/L with mean value of 473 mg/L at RBSBIAR-DS, and between 495 and 818, with a mean value of 597 mg/L TDS at RBSBIAR-EDS.

During freshet in April 2020, the downstream RBSBIAR-EDS and RBSBIAR-DS locations measured elevated TSS values. TSS is highly variable and sensitive to the local conditions at the time of sampling. The upstream RBSBIAR-EUS and RBSBIAR-US locations measure lower TSS values than the downstream locations.

Measured TSS values within the RBSC-DS ranged between <3.0 and 12.9 mg/L with mean value of 6.28 mg/L, peaking to similar TSS values in April and July 2020 sampling events, and similarly to 2019 shows an increasing trend in early spring that levels off and decreases towards the fall and winter months. TSS values at RBSC appear to occasionally, but not always, have a similar trend as the downstream ditch locations, RBSBIAR-DS and RBSBIAR-EDS, showing an increase and decrease in the same months of April, May, September, but not other months in 2020.

Measured TDS values within the RBSC-DS ranged between 517 and 1,230 mg/L with mean value of 834 mg/L showing a wide variability with peak TDS values measured in May, June, and September 2020. Notably, TDS values also peaked in June and August 2019, June 2018, and July 2017, therefore may occur seasonally during warm and drier months.

In 2019, a trend for total zinc in the east and west SBIAR ditches showed that a potential progressive increase in metals was occurring, but this does not appear to continue during 2020. Conversely, qualitative observations during the 2020 monitoring period rather suggests variable or decreasing trends and lower occurrences of BCAWQG-FST exceedances during 2020 than in 2019. A correlation analysis exercise conducted in 2019 indicated a correlation between TSS levels with some total metal concentrations and increased TSS levels between the upstream and downstream monitoring locations were thought to result from active erosion from the cut-bank above the west and east SBIAR ditches. In 2020, the monitoring results do not indicate a continuance of an increasing trend and will continue to be monitored in the 2020 period.

5.4.3.4 Sulphate

Sulphate values measured at the upstream RBSBIAR-US/–EUS locations are commonly similar and significantly lower than in the downstream RBSBIAR-DS/-EDS locations noticeably during 2018, 2019 and for most, not all, of 2020, indicating a net increase downstream in sulphate from groundwater seepage, and local shale run-off (Figure 21). In July 2020, the upstream locations, RBSBIAR-US and RBSBIAR-EUS, anomalously spiked to higher levels than the downstream RBSBIAR-DS and RBSBIAR-EDS locations, followed by a return to previous lower sulphate values at RBSBIAR-EUS and continuation of elevated values at RBSBIAR-US July to November 2020.

Sulphate concentrations measured at RBSBIAR-DS ranged between 64.2 and 149 mg/L with mean value of 104 mg/L, and at RBSBIAR-EDS ranged between 29.2 and 223 mg/L with mean value of 115 mg/L. There is a seasonal trend of sulphate concentrations peaking in June or July of each year (2017 through 2020), which in 2020 occurred in June (RBSBIAR-EDS) and April (RBSBIAR-DS). The RBSC location commonly measures the highest sulphate concentrations relative to the RBSBIAR ditches between 2017 to 2020 with exception to July 2020.

Measured sulphate concentrations at the RBSC-DS location in 2020 varied widely between 87 and 563 mg/L with mean value of 311 mg/L. A seasonal trend may be evident whereby sulphate concentration peaks in late spring/early summer during June relative to lower sulphate values during the early spring and autumn/winter seasons. Sulphate concentrations at the side channel RBSC-DS location appear to be variable and not follow trends in the RBSBIAR ditches.

The BCAWQG-FLT guideline for sulphate is variable with ambient hardness for each sample location and is plotted on Figure 21 for the RBSBIAR-DS location for reference. The RBSC-DS location is the only sampling location that measures sulphate above the BCAWQG-FLT guideline in some months between 2017 to 2020.

5.4.3.5 Total and Dissolved Aluminum

Total aluminum concentrations during 2020 measured at RBSBIAR-DS ranged from 36.1 to 2,440 μ g/L with mean value of 368 μ g/L, and at RBSBIAR-EDS ranged from 5.7 to 11,500 μ g/L with mean value of 2,001 μ g/L. A seasonal trend from trailing four years suggests that total aluminum concentrations at RBSBIAR-DS peak in early freshet (March/April) and can either peak again in summer (June/August) and/or fall (September).

Dissolved aluminum concentrations during 2020 measured at RBSBIAR-DS ranged from 13.2 to 169 μ g/L with mean value of 62 μ g/L, and at RBSBIAR-EDS ranged from 1.5 to 404 μ g/L with mean value of 88 μ g/L. At these downstream RBSBIAR-DS and RBSBIAR-EDS locations, dissolved aluminum concentrations fluctuated below and above the BCAWQG-FST guideline value (100 μ g/L) during 2019 and 2020, whereas the upstream RBSBIAR-US and RBSBIAR-EDS locations remained below the guideline value. Dissolved aluminum concentration at RBSC-DS exceeded the BCAWQG-FST guideline once in July 2020, the first occurrence since monitoring commenced in 2017 through 2020.

Exceedances to the BCAWQG-FST guideline for dissolved aluminum at RBSBIAR-DS were measured twice during 2020, including April (103 μ g/L) and September (169 μ g/L) 2020, and twice at RBSBIAR-EDS including May (109 μ g/L) and June (404 μ g/L) 2020. Although variable, a decreasing trend or 'dip' in both total and dissolved aluminum at RBSBIAR-DS and RBSBIAR-EDS was observed in July 2020, which was similarly observed in the month prior of June during 2017 to 2019. Increases in total and dissolved aluminum are most apparent in July 2020 at RBSBIAR-EDS whereas is more variable at RBSBIAR-DS. The east and west downstream ditches RBSBIAR-DS/-EDS follow similar trends in 2019 and between June to November 2020, although differs in trend early 2020 between February to May 2020. The east downstream RBSBIAR-EDS ditch measures slightly higher in dissolved aluminum than the west downstream RBSBIAR-DS ditch from 2018 to June 2020, switching to higher concentrations in the west downstream RBSBIAR-DS ditch from July to November for the remainder of the year.

Although the downstream RBSBIAR-DS and RBSBIAR-EDS locations show similar trends in both total and dissolved aluminum, there is a more significant difference in concentrations between upstream and downstream for dissolved than total aluminum.

The RBSC-DS trends historically from 2017 to June 2020 were more similar to the upstream RBSBIAR-US/-EUS locations in dissolved aluminum values, that commonly measure near or below the detection limit (1.0 μ g/L) and significantly below the BCAWQG-FST guideline (100 μ g/L). In 2020, an exception to this trend occurred in July

2020 with a spike in dissolved aluminum measured at RBSC-DS to above the BCAWQG-FST guideline, then returning to previous normal range of values.

An overall decrease of total aluminum at RBSBIAR-US is observed to occur between spring and winter of the 2017, 2018 and 2020 monitoring periods, whereas an overall slight increase shows during the 2019 sampling period. Total aluminum measured at the RBSC-DS location is variable yet shows higher values between April to July 2020, and lower values in winter and fall months. The seasonal trends at RBSC-DS appear to differ from the four SBIAR ditch locations during 2020. Furthermore, an inverse trend in total and dissolved aluminum is noted in July by a sharp increase at RBSC-DS coincident with a sharp decrease measured in the RBSBIAR-EDS and RBSBIAR-DS downstream ditches.

Dissolved aluminum is more variable during 2020 than in previous years of 2017 through 2019 at the five RBSBIAR sample locations, whereas total aluminum appears equally as variable in both 2019 and 2020.

5.4.3.6 Total and Dissolved Iron

Total iron concentrations are variable during the 2020 monitoring period with concentrations at the RBSBIAR-DS location ranging between 53 to 7,730 µg/L with mean value 1,005 µg/L. At RBSBIAR-DS, exceedances to the BCAWQG-FST guideline (1,000 µg/L) for total iron concentration were measured once in April (7,730 µg/L) and significantly decreased to below guideline levels in the other sampled months of February to November 2020. At the downstream east ditch RBSBIAR-EDS location, exceedances to the BCAWQG-FST guideline (1000 µg/L) for total iron concentration were measured in April (32,600 µg/L) and June (6,550 µg/L) 2020 and decreased to below guideline levels in the other sampled months of May to November 2020. One exceedance to the BCAWQG-FST guideline for total iron concentration was measured at RBSBIAR-US (February), no exceedances were measured at RBSBIAR-EUS, and one exceedance at RBSC (September).

Dissolved iron concentrations measured well below the BCAWQG-FST guideline (350 μ g/L) ranging between < 10 to 63 μ g/L at the four ditch locations, RBSBIAR-EDS, RBSBIAR-DS, RBSBIAR-US and RBSBIAR-EUS through the 2020 sampling season. At RBSBIAR-DS, dissolved iron measured below or near detection limit of 10 μ g/L in four of the nine months sampled in 2020, ranging between <10 μ g/L to 39 μ g/L. At RBSBIAR-EDS, dissolved iron measured below detection limit, <10 μ g/L, in five of the eight months sampled in 2020, ranging between <10 μ g/L to 26 μ g/L. At RBSC-DS dissolved iron measured below the BCAWQG-FST guideline in ten of the eleven months sampled in 2020 ranging between 28 to 338 μ g/L, and above the BCAWQG-FST guideline once in September 2020 (518 μ g/L).

5.4.3.7 Metals: Arsenic, Cadmium, Cobalt, Copper, and Zinc

Metals such as arsenic, cadmium, cobalt, copper, and zinc are important indicators of ARD-ML processes and environmental changes in the water supply. In 2020, nine sampling events (February to November) occurred at the downstream west RBSBIAR-DS location, and eight sampling events (April to November) occurred at the downstream east RBSBIAR-EDS location, discussed below. Table 10 summarizes the minimum, maximum and mean concentrations for the following measurements and water quality data for the RBSBIAR monitoring locations is provided in Appendix Table B2.

At the downstream west RBSBIAR-DS, no exceedances were measured during 2020 for metals, including arsenic, cadmium, cobalt, copper, and zinc. At the downstream east RBSBIAR-EDS, three exceedances for two metals were measured during 2020, including total arsenic (April) and total zinc (April and June). No exceedances for arsenic, cadmium, cobalt, copper, and zinc were measured in February, May, July, August, September, October, and November 2020 sampling events at the downstream RBSBIAR-DS/-EDS ditch locations. No exceedances were

measured at the upstream RBSBIAR-US and -EUS locations in 2020 for the metals: arsenic, cadmium, cobalt, copper, and zinc.

Arsenic

Total arsenic concentrations measured during 2020 at RBSBIAR-DS ranged from 0.20 to 4.48 μ g/L with mean value of 0.78 μ g/L, and dissolved arsenic ranged from 0.15 to 0.49 μ g/L with mean value of 0.25 μ g/L. No BCAWQG-FST guideline exceedances in total arsenic occurred at the downstream west RBSBIAR-DS during 2020. One exceedance to the BCAWQG-FST guideline (5.0 μ g/L) for total arsenic was measured at the downstream east RBSBIAR-EDS during 2020 in April (14.7 μ g/L), whereas in the other seven sampled months total arsenic values ranged between 0.14 to 1.82 μ g/L below the BCAWQG-FST guideline. Trends for total arsenic at the downstream ditch locations, RBSBIAR-EDS and RBSBIAR-DS will continue to be observed in the upcoming 2021 monitoring period. Total arsenic concentrations in the upstream and RBSC locations remain within the same general range of total arsenic concentrations measured during 2017, 2018 and 2019.

Cadmium

Total cadmium concentrations measured during 2020 at RBSBIAR-DS ranged from 0.0294 to 0.683 μ g/L with mean value of 0.189 μ g/L, and dissolved cadmium ranged from 0.0258 to 0.126 μ g/L with mean value of 0.0758 μ g/L. Total cadmium measured at the downstream east RBSBIAR-EDS ranged from 0.0121 to 3.16 μ g/L with mean value of 0.763 μ g/L, and dissolved cadmium ranged from 0.0127 to 1.00 μ g/L with mean value of 0.205 μ g/L. No BCAWQG-FST guideline exceedances in dissolved cadmium occurred at any of the five RBSBIAR sample locations during 2020. Dissolved cadmium concentrations during 2020 at the downstream ditches measure within range of concentrations measured during 2017, 2018 and 2019.

Cobalt

Total cobalt concentrations measured at RBSBIAR-DS during 2020 ranged from 0.39 to 7.85 μ g/L with mean value of 2.45 μ g/L, and dissolved cobalt ranged from 0.42 to 3.55 μ g/L with mean value of 1.80 μ g/L. Total cobalt concentrations measured at RBSBIAR-EDS ranged from <0.10 to 43.7 μ g/L with mean value of 12.7 μ g/L, and dissolved cobalt ranged from <0.10 to 33.7 μ g/L with mean value of 8.09 μ g/L. No BCAWQG-FST guideline (110 μ g/L) exceedances in total cobalt occurred at any of the five RBSBIAR sample locations during 2020. Total cobalt concentrations during 2020 at the downstream ditches measure within range of concentrations measured during 2017, 2018 and 2019.

Copper

Total copper concentrations measured at RBSBIAR-DS during 2020 ranged from 0.99 to 17.42 μ g/L with mean value of 3.35 μ g/L, whereas dissolved copper ranged from 0.70 to 3.35 μ g/L with mean value of 1.28 μ g/L. Total copper concentrations measured at RBSBIAR-EDS during 2020 ranged from <0.50 to 69.1 μ g/L with mean value of 15.6 μ g/L, whereas dissolved copper ranged from 0.38 to 3.20 μ g/L with mean value of 1.04 μ g/L. No BCAWQG-FST guideline exceedances in dissolved copper occurred at any of the five RBSBIAR sample locations during 2020. Dissolved copper values show within range to slightly decreasing concentrations relative to the previous 2019 monitoring period and within range to slightly higher than the more limited data collected during 2017 and 2018.

Zinc

Total zinc concentrations measured at RBSBIAR-DS during 2020 ranged from 5.4 to 77.0 μ g/L with mean value of 23.8 μ g/L, whereas dissolved zinc ranged from 4.8 to 26.5 μ g/L with mean value of 11.8 μ g/L. Total zinc concentrations measured at RBSBIAR-EDS during 2020 ranged from 1.3 to μ g/L with mean value of 140.2 μ g/L, whereas dissolved zinc ranged from 1.3 to 82.7 μ g/L with mean value of 23.8 μ g/L. At RBSBIAR-DS, one exceedance to the BCAWQG-FST guideline (hardness-dependent range of 109.5 to 340.5 μ g/L) for total zinc was measured on March 22, 2019 (137 μ g/L). No exceedances to the BCAWQG-FST guideline in total zinc were measured at RBSBIAR-DS or the upstream RBSBIAR-US and RBSBIAR-EUS locations during 2020, whereas two exceedances in total zinc were measured at RBSBIAR-EDS, in April (474 μ g/L) and June (560 μ g/L). Total zinc values show within range to slightly decreasing concentrations relative to the previous 2019 monitoring period and within range to slightly higher than the more limited data collected during 2017 and 2018.

The chart shown in Figure 30a (RBSBIAR-DS/-US) and 30b (RBSBIAR-EDS/-EUS) depicts the ratio difference in total zinc concentration between the downstream vs upstream location in the west and east ditch, in order to measure the relative contribution of zinc to water from ARD-ML activity within each RBSBIAR ditch. A possible overall trend in total zinc concentration shows a progressive increase both seasonally in early spring freshet and summer within each of the previous sampling years of 2018 and 2019, and the overall maximum total zinc concentration reached in 2018 and 2019 progressively increased, but this increasing trend and overall maximum for total zinc does not appear to extend into the 2020 monitoring period. This metric will continue to be monitored going forward during the 2021 monitoring period.

5.4.3.8 Ammonia and Nitrogen Species

Ammonia (NH₄ as N) is subject to a temperature and pH-dependent BCAWQG-FST and BCAWQG-FLT guideline. Although no exceedances are measured to the BCAWQG-FST, it is observed that ammonia values measure higher in the downstream RBSBIAR ditches (RBSBIAR-DS/-EDS), with exception to the RBSC-DS location higher in July 2020, than in both the upstream ditches and the RBSC-DS side channel. During 2020, a spike in nitrite (NO₂ as N) and nitrate (NO₃ as N) occurred in June 2020 at the RBSBIAR-DS location, and in February at the RBSBIAR-US location (nitrite only). In previous years, nitrate and nitrite showed seasonal sharp peaks primarily at the RBSBIAR-DS in either June, July or August from 2017 through 2019, and a peak in ammonia in July 2019 coincided with a peak in monitored metals such as copper and cobalt. The source of ammonia and nitrogen species is unknown although it could possibly be related to nearby agricultural inputs into the water supply; no explosives are known on-site. This parameter will continue to be monitored in 2021.

5.4.3.9 Trend Monitoring Summary

Alkalinity and pH values indicate the waters tested in the SBIAR area have remained alkaline since the April 2017 sampling event. Alkalinity is more variable than pH through the 2017 to 2020 sampling periods. In 2020, an overall increase in alkalinity between April and December 2020 is observed in the four SBIAR ditch locations. The alkalinity measured at the RBSC-DS location is commonly the highest alkalinity value relative to the SBIAR ditches and appears more variable than the four SBIAR ditch locations during 2020. Acidity measured during 2020 remains within range of values collected since 2018. Acidity values commonly measure higher in the east ditch (RBSBIAR-EDS and RBSBIAR-EUS) than in the west ditch (RBSBIAR-DS and RBSBIAR-US).

Typically, the SBIAR ditches measure variable TSS and TDS values attributable to the relatively small catchment and short residence time of waters that are subsequently sensitive to flux in surface water inputs from precipitation. In 2020, TDS values have remained relatively constant at the four SBIAR ditch locations and more variable in the RBSC-DS side channel.

During 2020, sulphate measures within range of values collected since 2017. Sulphate values show a more consistent trend between August to December 2020 relative to early 2020 (January to July), and more variability during 2020 than in previous years of 2017 through 2019. At the RBSBIAR-US location, a progressive overall increase in sulphate is observed between April to December 2020. This is anomalous to previous years (2017 to 2019) and prior to June 2020, which measured sulphate at RBSBIAR-US to commonly have the lowest sulphate concentrations. Between August to December 2020, the RBSBIAR-US and RBSC-DS locations measure similarly and the highest sulphate values relative to the other downstream and upstream locations.

During 2020, total and dissolved aluminum measure within range of values collected since 2017 although dissolved aluminum shows more variability at sample locations in 2020. The east ditch commonly measures higher aluminum than in the west ditch sample locations which is in continuation of trends since 2018.

Total and dissolved iron measure within range of values collected since 2017. Overall iron concentrations are observed to be generally lower and with a slight decreasing trend in 2020 in comparison to higher variability and more BCAWQG-FST guideline exceedances measured in 2019. The RBSC-DS location commonly measures the highest dissolved and total iron concentrations compared to the SBIAR ditch locations.

During 2020, the concentrations of metals, such as arsenic, cadmium, cobalt, copper, and zinc measure within range of values in previous years of 2018 and 2019 and show a constant to decreasing trend in 2020.

Monthly sampling in the SBIAR catchment occurred during 2019 and 2020 and will need to continue to be monitored going forward into 2021 for effective observations of trends.

5.4.4 Freshwater Long-term Average Exceedances

Exceedances to the long-term BCAWQG-FLT guidelines (lower values) that do not exceed the short-term BCAWQG-FST (higher value) guidelines were measured at the downstream east and west ditches, RBSBIAR-EDS, and RBSBIAR-DS. Since long-term exceedances are not intended for screening of discreet events, long-term trends relative to the BCAWQG-FLT will be investigated during the 2021 monitoring period with the accumulation of further data.

5.5 L3 Creek Catchment Water Quality Monitoring

Sufficient flowing water through 2020 permitted samples to be collected for eight months (April to November) at the downstream LBL3C-0.02, eleven months (February to December) at the lower midstream LBL3C-1.43 location, three months (April to June) at the upper midstream LBL3C-1.65 location, five months (April to August) at the upstream LBL3C-3.32 location, and eight months (April to November) at the L4 Creek LBL4C-0.18 location. Field observations were documented each month. Results for each monthly sampling event were plotted on time series charts for trend analysis.

The L3 Creek catchment is not being monitored as a construction related PAG waterway. Water quality monitoring has been conducted within this catchment to monitor discharge water quality and to maintain a record for potential future use. The BCAWQG-FST values were also used as a benchmark for monitoring water quality at the discharge location (LBL3C-0.02) from L3 Creek.

A summary of water quality exceedances at SBIAR relative to BCAWQG-FST listed by monitoring location and month are listed in Table 12, and the screening results based on the laboratory data are tabulated in Appendix B3.

5.5.1 In Situ Measurements and Field Observations

Water flow estimated during water sampling events in 2020 range between 1.5 to 3.0 L/s from the LBL3C-0.02 location into the RR-10 culvert. Midstream water flow was estimated to range between 0.04 to 3.0 L/s at the LBL3C-1.43 location (Table 11).

The range in water temperatures at LBL3C-0.02 (0.5-14.6 °C), LBL3C-1.43 (0.4-14.5 °C), LBL3C-1.65 (2.4-14.5 °C), LBL3C-3.32 (0.6-16.0 °C), and LBL4C-0.18 (0.6-16.6 °C), with the lowest temperatures recorded in April 2020 and highest temperatures recorded in June and July 2020 (Table 11).

Turbidity was observed as clear within the L3 Creek locations throughout the 2020 monitoring program, except for turbid conditions recorded at LBL3C-0.02 (April), LBL3C-1.43 (April, June), LBL3C-1.65 (April, June), LBL3C-3.32 (April, June), and LBL4C-0.18 (April, June). Stagnant/clear conditions were observed in September 2020 at LBL3C-3.32 and LBL4C-0.18.

5.5.2 Freshwater Short-term Maximum Exceedances

Within the four L3 Creek sample locations during 2020, BCAWQG-FST exceedances were measured a minimum of one occurrence for total iron, dissolved aluminum, total zinc, dissolved copper, total arsenic, and total silver. At the one L4 Creek sample location during 2020, BCAWQG-FST exceedances were measured a minimum of one occurrence for total and dissolved iron, dissolved aluminum, dissolved cadmium, total cobalt, total zinc, dissolved copper, total arsenic, total manganese and pH below the guidelines. A summary of exceedances from BCAWQG-FST guideline screening results are located in Table 12 based on lab data provided in Appendix B, Table B3.

The LBL3C-0.02 discharge location measured exceedances in total iron (two samples) and dissolved aluminum (seven samples) during the eight months of sampling between April to November 2020. The LBL3C-1.43 lower midstream location measured exceedances in total iron (three samples), dissolved aluminum (one sample), and exceedances in one sample from April 2020 for total zinc, total arsenic, and total silver during the eleven months of sampling between February to December 2020. The LBL3C-1.64 upper midstream location measured exceedances in one sample from April 2020 for total zinc, dissolved copper, total arsenic, and total silver during the three months of sampling between April to June 2020. The LBL3C-3.32 upstream location measured exceedances in total iron (two samples), dissolved aluminum (one sample) and in one sample from April 2020 for total zinc, total arsenic, and total silver during the five months of sampling between April to August 2020.

The total iron exceedances measured in all five L3 and L4 Creek locations during 2020 are interpreted to be directly related to TSS concentrations within the creek. Management of TSS originating from RSEM L3 was more variable and under active monitoring, management, and mitigation from 2017 through 2019, and less variable with a decreasing trend during 2020. Dissolved iron exceeded the BCAWQG-FST guideline (350 µg/L) at the LBL4C-0.18 location for five months between July to November 2020, in contrast to minimal iron measured in the dissolved phase at the discharge, midstream or upstream L3 Creek locations which remained below the BCAWQG-FST guideline.

At LBL3C-0.02, dissolved aluminum was measured to exceed the BCAWQG-FST in seven of the eight months sampled in 2020 (April through November) and are interpreted to be primarily related to water inputs from both L4 Creek and from seepage into L3 Creek between sample location LBL3C-1.43 and LBL3C-0.02. Dissolved aluminum is potentially measurable as concentrations of aluminum hydroxide complexes in solution. Groundwater seepage from natural shale bedrock and the Howe Pit area is interpreted as the main input to this portion of the L3 Creek, with secondary inputs as surface run-off from the Howe Pit area.

5.5.3 Trend Monitoring

Recurring trends within the L3 catchment over the 2017, 2018, 2019 and 2020 monitoring periods may be indicative of long-term trends and are discussed below. Data results from 2017 to 2020 at L3 Creek monitoring stations have been compiled and plotted for trend analysis. Please refer to Figures 31 to 42 for time series charts.

Investigations aim to explain the occurrence of dissolved aluminum and total iron measured above detectible concentrations in the downstream location LBL3C-0.02 but not at comparable concentrations in the upstream L3 Creek locations, LBL3C-1.43 or LBL3C-3.32. Evidence of PAG outcrop in L4 Creek, reduced pH levels, and the occurrence of anomalous metal concentrations at the LBL4C-0.18 location indicate background water quality of local naturally occurring PAG contact waterways. L4 Creek waters are eventually diluted, or attenuated, by L3 Creek waters and PAG related metal concentrations are reduced downstream towards the LBL3C-1.43 location and LBL3C-0.02 discharge location.

5.5.3.1 Alkalinity and pH

Alkalinity and pH values measured in the four L3 Creek sampling locations indicate that the waters have remained alkaline between January and December 2020. In the L4 Creek, the LBL4C-0.18 location measured pH values below the BCAWQG-FST guideline (pH 6.5 - 9.0) for five months (July through November) coupled with low alkalinity and elevated acidity levels.

Measured pH at location LBL3C-0.02 ranged between 7.77 to 8.41 with mean value of 8.20, and alkalinity ranging between 73.5 and 275 mg/L CaCO₃ equivalent with mean value of 214 mg/L CaCO₃ equivalent. Generally, pH remained consistently neutral (with exception to the above-mentioned occurrences at LBL4C-0.18) in 2020 while alkalinity overall progressively increased between April and December 2020 and acidity was variable at L3 Creek sampling locations. Conversely, at LBL4C-0.18, pH decreased significantly in July 2020, alkalinity decreased significantly in July 2020 and acidity increased significantly in July 2020.

The trends in pH for 2017 to 2020 show overall consistency in pH in L3 Creek and more variability in pH at LBL4C-0.18 location. A seasonal trend in alkalinity shows a general increase occurs between March and December during 2018, 2019 and 2020 at L3 Creek locations which is not observed at L4 Creek. Acidity remains variable with no season trend observed in the years data was collected for acidity in 2019 and 2020.

5.5.3.2 Hardness

Water hardness measured at LBL3C-0.02 was consistently above the upper bound (250 mg/L) used by the BCAWQG-FST to guide criteria for metal concentrations except for April 17, 2020 (81.8 mg/L), with values ranging between 555 to 1,040 mg/L in May to November 2020, with mean value in 2020 of 774 mg/L (Table 10).

5.5.3.3 Sulphate

Sulphate measurements measured within L3 Creek show an increasing trend between April to December 2020). Although more variability in 2018 and 2019, sulphate shows a similar overall increasing trend in 2018, 2019 and 2020. Sulphate concentrations measured at LBL3C-0.02 during 2020, ranged between 30.2 to 895 mg/L with mean value of 667 mg/L.

Measured sulphate and TDS have similar trends that increase during each year between January to December in the 2017, 2018 2019 and 2020 monitoring periods. The similar trend in sulphate and TDS suggest that possibly elevated sulphate concentrations represent months where groundwater inputs dominate flow in L3 Creek and relate to the transition from freshet early in the season to regional groundwater input throughout the remainder of the year,

especially during the dry or minimal precipitation, e.g., July 2020, or summer and autumn months. Significant precipitation in the preceding seven days to the June 21-22, 2020 likely contributed to increased surface run-off that is related to the decrease in sulphate and TDS.

The BCAWQG-FLT guideline for sulphate is variable with ambient hardness for each sample. The FLT is plotted on Figure 34 at the LBL3C-0.02 location, for reference.

5.5.3.4 Total Suspended Sediment (TSS) and Total Dissolved Sediment (TDS)

TSS concentrations measured within L3 Creek show an overall decreasing trend at all locations between April to December 2020). TSS concentrations measured at LBL3C-0.02 ranged between 3.40 to 1,250 mg/L with a mean value of 166 mg/L. Concentrations were generally observed to be either similar or less at the discharge location (LBL3C-0.02) relative to the immediate upstream location (LBL3C-1.43) except for April 2020 and September 2020. It is believed that the decreasing trend in TSS from upstream to downstream locations is due to settlement.

TDS concentrations measured within L3 Creek show an overall increasing trend at all locations between April to December 2020. TDS concentrations measured at the LBL3C-0.02 location ranged between 282 and 1,720 mg/L with a mean value of 1,176 mg/L. A seasonal trend each year of 2018, 2019 and 2020 shows a sharp increase during freshet, a decrease in TDS in June/July, followed by a consistent to slightly increasing trend for the remainder of the year.

The increasing trend observed for TDS appears to be inverse to the decreasing trend for TSS in the 2018, 2019 and 2020 monitoring periods. As discussed in Section 3.1, the role of dominant input waters to flow conditions in L3 Creek strongly influences the measured water quality. Events resulting in high TSS measurements may be higher flows related to precipitation or recent precipitation in the form of shallow groundwater flow, whereas events resulting with high TDS and low TSS measurements may be related to low precipitation and high regional groundwater baseflow. As spring freshet wanes and the dominant influent water transitions to regional groundwater, trends in TDS and TSS are influenced. In 2018, 2019 and 2020, it is observed that freshet is related to low concentrations of TDS that gradually increase towards May and June then level off with some more minor variability for the remainder of the year.

5.5.3.5 Total and Dissolved Aluminum

Total aluminum concentrations in 2020 measured at the LBL3C-0.02 location ranged between 351 to 3,320 μ g/L with mean value of 904 μ g/L and shows variability.

Dissolved aluminum concentrations in 2020 measured at the LBL3C-0.02 location ranged between 57.9 to 203 μ g/L with mean value of 150.7 μ g/L. Seven months (May through November 2020) of a total eight measurements at LBL3C-0.02 exceeded the BCAWQG-FST guideline (100 μ g/L).

It is observed that dissolved aluminum concentrations are generally more consistent and higher at the discharge location LBL3C-0.02 relative to the LBL3C-1.43 location, likely due to input from impacted waters in the Howe Pit area related to exposure of shale or prolonged removal of the overburden cover.

During 2020, the upstream LBL3C-3.32 and upper midstream LBL3C-1.65 locations follow a similar trend and concentrations in dissolved aluminum when sampled between April and June 2020. The LBL4C-0.18 location consistently measures the highest dissolved and total aluminum concentrations in the L3 catchment from 2017 through 2020. Water quality measured at the LBL3C-0.02 location commonly measures ARD-ML influence from L4 Creek inflow and other inflow from likely Howe Pit to the downstream waters. The LBL3C-1.43 midstream location commonly measures more variability and lower dissolved aluminum than the LBL3C-0.02 discharge

location, indicating that the high inputs from L4 Creek are diluted at LBL4C-1.43 (downstream of the confluence with L4 Creek), followed by an increase that remains relatively consistent during the year at LBL3C-0.02.

5.5.3.6 Total and Dissolved Iron

Total iron values were measured at elevated concentrations throughout 2020 in continuation from 2017, 2018 and 2019 (with concentrations in 2020 measured at LBL3C-0.02 ranging between 334 to 6,530 µg/L with mean value 1,375 µg/L, resulting in two of eight sampling events measuring above the BCAWQG-FST guideline for total iron. Locations within the L3 catchment that had total iron concentrations measured above the BCAWQG-FST guideline during 2020 were at LBL3C-0.02 (April and June), LBL3-1.43 (April to June), LBL3C-1.65 (April), LBL3C-3.32 (April and June) and LBL4C-0.18 (April to November).

For all sampling events in 2020 at LBL3C-0.02, minimal iron was measured in the dissolved phase ranging between <10.0 to 229 μ g/L and mean value of 56.8 μ g/L. A trend is observed of an increase in dissolved iron values early (March/April) and late (November) 2019 and 2020 but values remain below the BCAWQG-FST guideline (350 μ g/L). Dissolved iron concentrations were measured above the BCAWQG-FST guideline at LBL4C-0.18 (July to November 2020), and no exceedances were measured at LBL3C-3.32, LBL3C-1.65, LBL3C-1.43 or LBL3C-0.02. At LBL4C-0.18, occurrences of exceedances in dissolved iron increased in 2020 (five) relative to 2019 (three), 2018 (three) and 2017 (one).

Throughout the monitoring period, water quality at the LBL3C-0.02 discharge location measures a consistent pH and, with an exception to dissolved aluminum, the dissolved metals remained low. Influence of ARD-ML processes on water within the catchment are limited to natural occurrences within L4 Creek and previous disturbance within Howe Pit. Input volume from L4 Creek is relatively low and generally diluted by L3 Creek water. Influent water volume from the Howe Pit area is uncertain, however, water quality between monitoring locations LBL3C-1.43 and LBL3C-0.02 is believed to be influenced by groundwater that is influenced by Howe Pit.

Investigations aim to explain the occurrence of dissolved aluminum and total iron measured above detectable concentrations in the downstream location LBL3C-0.02 but not at comparable concentrations in the upstream L3 Creek locations, LBL3C-1.43 or LBL3C-3.32. Evidence of PAG outcrop in L4 Creek, reduced pH levels, and the occurrence of anomalous metal concentrations at the LBL4C-0.018 location indicate background water quality of local naturally occurring PAG contact waterways. L4 Creek waters are eventually diluted, or attenuated, by L3 Creek waters and PAG related metal concentrations are significantly reduced towards and at the LBL3C-0.02 discharge location.

5.5.3.7 Metals: Arsenic, Cadmium, Cobalt, Copper, and Zinc

Metals such as arsenic, cadmium, cobalt, copper, and zinc are important indicators of ARD-ML processes and environmental changes in the water supply. Eight sampling events between April and November 2020 occurred during the monthly sampling at the downstream location, LBL3C-0.02, discussed below.

Total arsenic concentrations during 2020 measured at LBL3C-0.02 ranged from 0.46 to 3.75 μ g/L with mean value of 1.01 μ g/L, and dissolved arsenic ranged from 0.24 to 0.75 μ g/L with mean value of 0.44 μ g/L. No BCAWQG-FST guideline exceedances in total arsenic were measured in 2020 at LBL3C-0.02, although an exceedance was measured at three locations (LBL3C-1.65, LBL3C-1.43 and LBL4C-0.18) in April 2020. Increased variability in total arsenic occurred in 2019 than in 2020 in L3 Creek and L4 Creek.

Total cadmium concentrations during 2020 measured at LBL3C-0.02 ranged from 0.281 to 0.832 μ g/L with mean value of 0.476 μ g/L, and dissolved cadmium ranged from 0.076 to 0.473 μ g/L with mean value of 0.333 μ g/L. No BCAWQG-FST guideline exceedances in dissolved cadmium occurred at LBL3C-0.02 during 2020 (or previous

years of 2017 to 2020), and measure within range of dissolved cadmium measured since 2017. In 2020, dissolved cadmium was measured in exceedance to the BCAWQG-FST at one location in L4 Creek, LBL4C-0.18, from July through November 2020, and whereas exceedances were measured in the L3 Creek sample locations.

Total cobalt concentrations during 2020 measured at LBL3C-0.02 ranged from 3.85 to 12.8 μ g/L with mean value of 6.46 μ g/L, and dissolved cobalt ranged from 0.76 to 11.40 μ g/L with mean value of 4.93 μ g/L. No BCAWQG-FST guideline exceedances in total cobalt occurred at LBL3C-0.02 during 2020 (or previous years of 2017 to 2020), and measure within range of total cobalt concentration values since 2017. In 2020, total cobalt was measured in exceedance to the BCAWQG-FST at one location in L4 Creek, LBL4C-0.18, from July through November 2020, and whereas exceedances were measured in the L3 Creek sample locations.

Total copper concentrations during 2020 measured at LBL3C-0.02 ranged from 2.23 to 16.4 μ g/L with mean value of 4.35 μ g/L, and dissolved copper ranged from 0.76 to 11.4 μ g/L with mean value of 4.93 μ g/L. No BCAWQG-FST guideline exceedances in dissolved copper occurred at LBL3C-0.02 during 2020 and measures within range of dissolved copper concentration values since 2017. In 2020, dissolved copper was measured in exceedance to the BCAWQG-FST at one location in L4 Creek, LBL4C-0.18, from July through November 2020, whereas no exceedances were measured in the L3 Creek sample locations.

Total zinc concentrations during 2020 measured at LBL3C-0.02 ranged from 34.1 to 75.0 μ g/L with mean value of 44.0 μ g/L, and dissolved zinc ranged from 1.5 to 2.61 μ g/L with mean value of 1.89 μ g/L. Within L3 Creek, the discharge LBL3C-0.02 location remains relatively consistent in total zinc whereas the mid and upstream locations are more variable in total zinc values. No BCAWQG-FST guideline exceedances in total occurred at LBL3C-0.02 during 2020 and measures within range of total zinc concentration values since 2017. In 2020, total zinc was measured in exceedance to the BCAWQG-FST at one location in L4 Creek, LBL4C-0.18, from July through November 2020, whereas no exceedances were measured in the L3 Creek sample locations.

The continuation of monthly sampling in the L3 catchment occurred during the 2020 monitoring period, providing a useful reference for observing clearer seasonal trends over four years from 2017 to 2020.

5.5.4 Freshwater Long-term Average Exceedances

At the discharge location, LBL3C-0.02, minimal occurrences of measured concentrations during 2019 exceed the BCAWQG-FLT guidelines and long-term trends do not generally show an increasing trend in metals to be occurring at L3 Creek. During the 2021 monitoring period, long-term trends will be investigated with further data collection.

5.6 Left Bank Debris Boom

Two new sample locations, LBP Pond and LB Side Channel E, were established and first sampled on October 8, 2020 to characterize water quality along the Left Bank Debris Boom (LBDB) area for ARD-ML monitoring. Please see attached map showing the LBP Pond and LB Channel sample locations in Figure 3.

The LBP Pond was sampled on November 20, 2020. The LB side channel W and E were not accessible due to layers of thick ice covering the channel from fluctuating headpond levels, making it unsafe to work and difficult to remove ice to access water, thus no sample was collected on November 20, 2020.

On December 14, 2020, the LBP Pond and LB Side Channel E were visited with no samples collected or in situ measurements taken. The LBP Pond location was not sampled due to frozen conditions and steep slopes preventing access to edge. The LB Side Channel E and W locations could not be sampled due to frozen conditions.

A summary of water quality exceedances at SBIAR relative to BCAWQG-FST listed by monitoring location and month are listed in Table 14, and the screening results based on the laboratory data are tabulated in Appendix B4.

5.6.1 Field Observations and In Situ Measurements

In situ measurements were not collected during the October 8, 2020 or December 14, 2020 sampling.

On November 20, 2020, the LBP Pond sample reported in situ measurements of pH 6.57, electrical conductivity of 4,114 us/cm, hardness of 450 ppm, alkalinity of 240ppm and water temperature of 0.2°C.

During the November 20, 2020 event water levels were noted to be ~ 1.0 m above the present water level during sampling due to accumulations of ice on banks and surrounding vegetation. The LB Side Channel was noted to have probable connectivity to the main channel of the Peace River.

The LB Side Channel is now inaccessible due to the progression of construction and creation of the headpond following full river diversion that occurred on October 3, 2020.

5.6.2 Freshwater Short-term Maximum Exceedances

On October 8, 2020, BCAWQG-FST exceedances were measured, including three exceedances at the LBP Pond (total and dissolved iron, and total manganese) and eleven exceedances at the LB Side Channel E location (total arsenic, boron, cobalt, iron, manganese, zinc and dissolved aluminum, cadmium, copper and iron), and a low acidic pH of 3.01 below the accepted range (6.5-9.0) of the BCAWQG-FST guidelines.

On November 20, 2020, an LBP Pond sample measured five BCAWQG-FST exceedances for total and dissolved iron, total manganese, total zinc, and dissolved aluminum. The LB Side Channel E was not accessible due to layers of thick ice covering the channel from fluctuating headpond levels, making it unsafe to work and difficult to remove ice to access water, thus no sample was collected. Water levels were noted to be ~ 1.0 m above the Present Water Level (PWL) during sampling due to accumulations of ice on banks and surrounding vegetation. The LB side channel was noted to have probable connectivity to the main channel of the Peace River.

5.6.3 Trend Monitoring

Trend monitoring has not been initiated at this location due to limited sampling in 2020. Trend monitoring will be completed in 2021 with the availability of monthly sampling data.

5.7 L2 Powerhouse

The L2 Powerhouse sample locations were sampled on October 8, November 20, December 4, and 14, 2020. Please see attached map showing the L2 Powerhouse area sample locations in Figure 2.

A discrete L2 DS sample location (collected for lab analysis on October 8, November 20 and December 14, 2020) that is located adjacent to the L2 Powerhouse, specifically collected from the pump tubing on the west side of the culvert and approximately 1-2 m from the south rock ditch wall and 1-2 m from the culvert. The December 4, 2020 sample was a composite sample that included one sampling location on west side of culvert (#1), other sampling location on east side of culvert (#2). Sampling location #1 is approx. 1-2 m from south rock ditch wall and 1-2 m from culvert. Sampling location #2 is approximately 5-8 m from east wall, 1-2 m from south rock ditch wall, and approximately 2-3 m from culvert. Sample was approximately ³/₄ sample location #1 and ¹/₄ sample location #2. Proportion was chosen based on flow to the area (with about ³/₄ of total flow coming from west side of culvert and

¹⁄₄ of total flow coming from east side of culvert. Recommendation to field samplers is to maintain a single discrete sample location moving forward.

On December 14, 2020, two sample bottles at the L2 DS location were collected, one for regular-sized 0.45 µm filtering (filtered in the field) and the other filtered with a smaller 0.10 µm filter size at ALS Labs (not filtered in the field). The difference in filter size was to test whether elevated dissolved aluminum measured in the previous November 20 and December 4 sampling events were due to nano or microcrystalline phases of dissolved aluminum.

A summary of water quality exceedances at SBIAR relative to BCAWQG-FST listed by monitoring location and month are listed in Table 16, and the screening results based on the laboratory data are tabulated in Appendix B5.

5.7.1 Field Observations and In Situ Measurements

Field observations on October 8, 2020, indicated that the pump at L2 DS was running at the time of sampling. The liner was observed to be in good condition along the lower slope with water running down the uncovered portion near the pipes at the east end of the rock trap, and it was noted that another small portion of the slope near the outlet pipes where water had access to. On November 20, December 4 and 14, 2020, no further field observation was noted at L2 DS and frozen conditions prevailed at L2 US.

In situ measurements collected on October 8, November 20, December 4 and December 14, 2020 at L2 DS recorded a range of pH (7.11 to 8.20), electrical conductivity (313 to 1,707 us/cm), hardness (100 to 800+ ppm), alkalinity (80 to 240 ppm), water temperature (0.56 to 11.54 °C) and flow (0.05 to 0.50 L/s), with turbidity ranging between clear (November 20) to slightly turbid (October 8 and December 14).

In situ measurements collected on October 8 and December 4, 2020 at L2 US recorded a range of pH (7.68 and 7.60), electrical conductivity (465 and 859 us/cm), hardness (250 ppm), alkalinity (120 to 180 ppm), water temperature (5.5 and 9.7 °C) and flow of 0.10 L/s, with stagnant and cloudy condition on October 8, 2020.

On November 20, 2020, the LBP Pond sample reported in situ measurements of pH 6.57, electrical conductivity of 4,114 us/cm, hardness of 450 ppm, alkalinity of 240ppm and water temperature of 0.2°C.

5.7.2 Freshwater Short-term Maximum Exceedance

Dissolved aluminum was noted to exceed the BCAWQG-FST guideline ($100 \mu g/L$) value in multiple sample events. The concentrations measured an initial increasing trend from October 8 ($48.3\mu g/L$) to November 20 ($258 \mu g/L$) and December 4 ($552 \mu g/L$). The December 14 sample event included two filter sizes and reported concentrations of regular 0.45 µm filter ($340 \mu g/L$) and 0.10 µm filter ($235 \mu g/L$).

The highest concentration of dissolved aluminum at L2 DS was measured from the composite sample on December 4, 2020 and may not be representative of the consistent discrete sample locations with lower dissolved aluminum measured on October 8, November 20, and December 14, 2020. However, dissolved aluminum progressively increased between October 8 to December 14. Aluminum is primarily in the solid phase than in the dissolved phase at both L2 DS and L2 US. The source of the elevated dissolved aluminum at L2 DS sample location is not thought to be related to ARD-ML processes.

5.7.3 Trend Monitoring

Trend monitoring has not been initiated at this location due to limited sampling in 2020. Trend monitoring will be completed in 2021 with the availability of monthly sampling data.

6.0 CONCLUSIONS AND RECOMMENDATIONS

A water quality monitoring program was implemented on behalf of BC Hydro to monitor the water quality at discharge locations from River Road at Blind Corner, SBIAR, L3 Creek, LBDB, and L2 Powerhouse. Upstream and midstream monitoring locations were established to characterize water quality at the discharge location and to maintain a continuous monitoring record commensurate with previous sampling completed in 2016 by Lorax on behalf of PRHP.

The program has incorporated monthly in situ water quality measurements and observations with laboratory analysis throughout 2017, 2018, 2019 and 2020. Field observations were recorded monthly regardless of weather conditions or ability to collect measurements.

Water chemistry is monitored to identify influence of ARD-ML processes on water quality at River Road from construction related exposed shale at Blind Corner, and from the construction related shale exposed in the east and west ditches within SBIAR. The L3 Creek catchment is monitored for potential influences from non-Site C impacted water originating in the Howe Pit area and naturally impacted inflow from L4 Creek. Influence from construction PAG exposures are being monitored in the LBDB and L2 Powerhouse areas.

Across all sampling events at River Road, SBIAR, and L3 Creek during 2020, moderate to high hardness values were measured at River Road (124 to 1,290 mg/L CaCO₃), SBIAR (16.9 to 563 mg/L CaCO₃) and L3 Creek (14.1 to 2,050 mg/L CaCO₃), were observed in the waters sampled, although more consistently high in the L3 catchment and moderate in the River Road and SBIAR catchments. The River Road ditch and SBIAR catchments are generally ephemeral. Monthly water quality monitoring measures instantaneous water quality and may not be reflective of longer term baseline conditions. Flow volumes are highly susceptible to precipitation, and water quality is influenced by whether flow is derived from precipitation, run-off, shallow groundwater, or regional groundwater flow.

6.1 River Road Water Quality Monitoring

Water quality laboratory data was collected from six locations (LBRR-DD, LBR-EDP, LBRR-LC, LBRR-UC, LBRR-12+500 and RR9) and in situ measurements were collected at twelve locations of a total of twelve water sample locations along the River Road catchment from January to December 2020, in continuation of the 2017, 2018 and 2019 monitoring periods.

Water quality monitoring continues to show that active ARD-ML processes are progressing on shale slopes shown in observed trends, such as elevated concentrations above the BCAWQG-FST for total iron (seven occurrences), dissolved aluminum (two occurrences) and total arsenic (three occurrences), summarized in Table 7. No BCAWQG-FST exceedances were measured at RR9 or LBRR-LC. Samples were not collected consistently due to dry or frozen conditions.

Between February to November 2020, a total of forty-nine (49) in situ field measurements of pH within the River Road ditch indicated a neutral to alkaline pH of between 7.30 and 8.87. Previously during 2018 and 2019, acidic waters were collected in the upper portions of the ditch underlying the exposed shale cut-bank. The pH values progressively returned to circumneutral levels at the discharge location in part due to contact with limestone riprap in the ditch, and potential alkalinity input from groundwater or outflow from the upper cut-off ditch. Orange coating, or mineral precipitate, continued to be observed in the visible limestone. Chemical efficiency of the limestone to buffer acidic water is decreased when coated in precipitate. The formation of mineral scale can concentrate metals from solution as a result of the aqueous acid-base reactions. The mineral scale and sludge are susceptible to scouring and being washed during heavier rain events which has potential to reduce overall water quality conveyed down-gradient.

The diversion pipe has successfully reduced the amount of direct high TSS discharge into the Peace River by allowing the water to be collected and slowly infiltrate into the River Road ditch. It is anticipated that sediment in the ditch may now also be accumulating a small amount of secondary mineral formed by up-gradient ARD-ML processes. These minerals commonly contain an elevated concentration of metals related to ML and mineral precipitation from acid neutralizing reactions.

Recommendations for River Road

The sediment source for elevated TSS is mainly attributed to scouring of accumulated sediment within the ditch from road grading and run-off from previous events, which includes washing, or flushing, of the exposed shale, colluvium, and overburden cut-banks. Continued management of the drainage system is required to reduce the amount of sediment infilling to the ditch from road grading operations as this sediment encases the limestone which reduces chemical efficiency for ARD mitigation and prematurely fills the cistern, which limits its performance to supress TSS.

The limestone contained in the ditch must continue to be regularly maintained through cleaning and descaling. This procedure should include cleaning the limestone riprap material within the River Road ditch in a controlled facility where the sludge can be recovered and relocated to an approved RSEM area, and re-placement of the refreshed limestone into the ditch. Sludge should also be removed from the cistern and transported to an approved RSEM area. Control of sediment erosion was responded to by BC Hydro during 2018; no new maintenance activities occurred during 2020 although further maintenance efforts are planned to occur in 2021.. Continued management of the limestone riprap and mitigation of the active ARD-ML processes from the shale exposure at Blind Corner along River Road are recommended, such as implementing hydroseeding on the shale slope for erosion control, in addition to monitoring the effectiveness of controlling sedimentation into the River Road drainage system by the end-of-diversion pipe (LBRR-EDP). The sediment within the ditch, particularly at the outlet of the diversion pipe should be monitored for accumulation.

The monitoring program includes collection of discharge from the RR8 and RR9 culverts (LBRR-RR8 and LBRR-RR9, respectively), however, since during 2020 discharge was only observed once on February 27, 2020 at RR9, and no discharge at RR8 to be coincident with the scheduled sampling events, it is recommended that in situ water quality measurements are collected from any discharge observed from culvert RR8 and/or RR9 during high flow events.

In 2020, water quality samples collected from LBRR-DD (2), LBRR-12+500 (6), LBRR-EDP (5), LBRR-US (2) and RR9 (1), in addition to previous years of 2019 (minimal water quality samples), 2018 and 2017, indicate that run-off water quality is influenced by active ARD-ML processes within the ditch catchment. Although flows are generally low to no flow and/or ephemeral, there is some potential for run-off to impact downstream water quality. As per CEMP App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020), it is recommended that water quality monitoring is continued on a monthly basis at the established locations within the River Road catchment. Continuous monthly monitoring will evaluate the effectiveness of mitigation strategies that are implemented on the shale at Blind Corner.

6.2 SBIAR Water Quality Monitoring

Water quality data was collected from five established sampling locations, four of which measure water directly from within the SBIAR monitoring locations and one which measures water outside of the SBIAR facility at the closest water receptor as a verification check for potential influence from, or direct connectivity with, the PAG contact water that is collected and conveyed from the SBIAR facility. Water flowing through the SBIAR ditch has no direct downstream receptor, and all water in the east and west ditches is conveyed directly to the RSEM R6 pond which

is an approved PAG contact water management facility. Downstream water quality is monitored by PRHP within the RSEM R6 pond for management prior to discharge into the Peace River.

Based on water quality monitoring results collected within SBIAR and the downstream side channel, there was not an apparent correlation in water quality trends between SBIAR and the side channel during 2017 and 2018, however, during 2019 and 2020 there are some indications from water quality data that there could be some influence on the side channel from the ditches, but this is unconfirmed. Further data and observations collected in 2021 will help to verify a correlation, should one exist.

The increase in sulphate concentrations during 2020 at RBSBIAR-US relative to sulphate values measured during 2017 to 2019, was observed to occur from July to December 2020 which is unusual compared to previous trends. The RBSBIAR-EUS location also spiked in July 2020 followed by a decrease in August 2020 to values within previous range, although the RBSBIAR-US location remained elevated in sulphate values for the remainder of 2020. The reason is not known although could potentially be related to new inputs at RBSBIAR-US and/or increased ARD-ML processes at this upstream location in the west ditch that commenced in July 2020. This location will continue to be monitored during the 2021 monitoring period.

Alkalinity and pH indicate that the waters in RBSBIAR have consistently remained alkaline during the 2017, 2018, 2019 and 2020 monitoring periods. Screening of analytical data during 2020 for the downstream ditch locations resulted in occurrences of BCAWQG-FST guideline exceedances at RBSBIAR-DS (total iron (1) and dissolved aluminum (2)) and RBSBIAR-EDS (total iron (2), dissolved aluminum (2), total arsenic (1) and total zinc (2)).

Evidence of active ARD-ML process are observed on the shale slopes in SBIAR through rinse pH and observation of secondary iron hydroxide mineral formation. Water quality measurements with upward trends in various metal concentrations (i.e., iron, zinc, arsenic, copper and cadmium) and an apparent increase in downstream over upstream metal concentrations noted during 2019 was not observed to continue in 2020, and especially less so following April 2020.

Recommendations for SBIAR Water Quality Monitoring

Recommendations for future sampling include collection of water samples from the pooled water in Area 21. The collection of one up-gradient and one down-gradient water sample from both the western and eastern SBIAR ditch is suggested to continue through 2021 for comparative purposes.

Evidence of active ARD-ML processes were observed in the shale exposed in the east and west ditch within SBIAR. In 2017 and 2018, water quality measured at SBIAR sampling locations did not indicate significant impacts due to these ARD-ML processes, followed by 2019 trends with indications of ARD-ML processes resulting in increased metals that progressively increased especially in the downstream east and west ditches. In 2020, however, elevated metals and increasing trends were reduced or not measured. Downstream water is collected within the RSEM R6 pond for management prior to discharge into the Peace River. As per CEMP App E, Section 5.2.1.7 (Rev 7, Sep 4, 2020). since there is low to moderate risk of negative downstream effects on water quality, monitoring of water quality within SBIAR is recommended to be continued on a monthly basis in 2021. It is recommended that BC Hydro implement a long-term solution for the Site C operations phase for the exposed shale slope due to ARD/ML processes.

6.3 L3 Creek Water Quality Monitoring

Water quality data was collected from five established sampling locations during 2020 in continuation to 2017, 2018 and 2019 monitoring periods within the L3 Creek catchment to maintain a continuous record of water quality within the catchment and to monitor potential changes to water chemistry related to construction related activities within

the catchment. PAG indicator elements have been observed in elevated concentration on occasion from water quality monitoring from 2017 through 2020.

Screening of analytical data for the LBL3C-0.02 location resulted in occurrences of three parameters (total iron (2), dissolved aluminum (7), and total zinc (1)) that exceeded BCAWQG-FST guidelines during 2020.

L3 Creek is not identified as, nor is it being managed as a PAG contact water facility , however, the occurrence of a naturally occurring shale (PAG) outcrop identified in L4 Creek is monitored by sampling at the LBL4C-0.18 location where signatures of ARD-ML processes are prevalent. Elevated metal concentrations (total iron, cobalt, zinc, copper, arsenic, manganese, and dissolved iron, aluminum, and cadmium) and low pH have been measured in routine WQ sampling at LBL4C-0.18 during 2018, 2019 and 2020. Water mixing from L4 Creek with L3 Creek is generally diluted towards the lower midstream LBL3C-1.43 and discharge LBL3C-0.02 locations. Influence from ARD-ML processes at Howe Pit are observed in the lower portions of L3 Creek between locations LBL3C-1.43 and LBL3C-0.02.

Alkalinity and pH values measured in L3 Creek indicate that the waters have remained alkaline, with exception to the highly variable pH at the L4 Creek LBL4C-0.18 location from July to November 2020 measured below the acceptable BCAWQG-FST guideline range (pH 6.5-9.0). Further observation indicates that decreases in pH align with decreased alkalinity and increased acidity levels at LBL4C-0.18. Trends in pH and alkalinity in 2020 are within normal range of measured pH and alkalinity trends from 2017 through 2019. Overall, there is more variability in alkalinity and acidity than pH within the L3 Creek.

Water quality in L3 Creek between LBL3C-1.43 and the discharge LBL3C-0.02 is influenced by influent waters originating in the Howe Pit areas. The LBL3C-0.02 location commonly measures higher concentrations at the discharge than midstream at LBL3C-1.43 for aluminum and cadmium, whereas similar concentrations are measured for copper and arsenic. The LBL3C-1.43 location measures higher than LBL3C-0.02 for cobalt and acidity. Zinc measures relatively consistent concentrations at LBL3C-0.02 but is variable at LBL3C-1.43. Monthly assessment for these metals was conducted as part of the regular monitoring program in 2017 to 2020. This monitoring program is not for compliance purposes and is for tracking potential influences over time. The sampling frequency for this component of the program could be reduced to a quarterly basis in 2021.

Sulphate and TDS concentrations both increase significantly during freshet in May 2020, followed by a consistent to slight increase for the remainder of the year.

Trend observations from sulphate, TDS, and dissolved iron and aluminum data indicate additional water input to L3 Creek between the up-gradient LBL3C-1.43 and LBL3C-0.02 discharge location. These inputs may be related to non-Site C related Howe Pit surface run-off or from locally impacted shallow groundwater seepage in the area.

Recommendations for L3 Creek Water Quality Monitoring

Based on the results from the 2017 through 2020 water quality monitoring programs there is low risk of negative downstream effects on water quality due to ARD-ML processes within the L3 Creek catchment. BC Hydro may choose to continue monitoring water quality on a monthly frequency in order to monitor changing conditions within the L3 Creek due to pre-existing facilities and future construction related activities in and around the catchment area, or move to a quarterly sampling program. The location of the monitoring location LBL3C-1.65 may need to be adjusted in 2021 to accommodate construction activities in the area which has resulted in filling of the L3 Creek Channel with riprap and generally obscures the natural flow of water thus preventing samples from being collected. Continued monitoring of the L3 Creek locations will occur in 2021.

6.4 Left Bank Debris Boom Monitoring

On October 8, 2020, BCAWQG-FST exceedances were measured, including three exceedances at the LBP Pond (total and dissolved iron, and total manganese) and eleven exceedances at the LB Side Channel E location (total arsenic, boron, cobalt, iron, manganese, zinc and dissolved aluminum, cadmium, copper and iron), and a low acidic pH of 3.01 below the accepted range (6.5-9.0) of the BCAWQG-FST guidelines. The numerous exceedances at this location were due to it being stagnant PAG contact water from the exposed shale slope. Mitigation and management controls have been implemented in the LBDB area as discussed in Section 3.4.1.

On November 20, 2020, an LBP Pond sample measured five BCAWQG-FST exceedances for total and dissolved iron, total manganese, total zinc, and dissolved aluminum. The LB Side Channel E was not accessible due to layers of thick ice covering the channel from fluctuating headpond levels, making it unsafe to work and difficult to remove ice to access water, thus no sample was collected. Water levels were noted to be ~ 1.0 m above the Present Water Level (PWL) during sampling due to accumulations of ice on banks and surrounding vegetation. The LB side channel was noted to have probable connectivity to the main channel of the Peace River.

Mitigation measures were implemented at LBDB during 2020, including erosion control and PAG neutralization by the area contractor, AFED, with emplacement of 5a size limestone riprap and check dams in ditches along the western border of the LBDB area and at the toe of the PAG shale slope. These ditches have flow coming from potential PAG slopes. The area below 420 m elevation was flooded by the head pond after construction in early Fall 2020, and therefore that area did not require riprap. The ditch downslope of LBP Pond is not lined with limestone. Slopes have been recontoured readied to accept seed. Limited seeding with ESC mix has occurred only on the disturbed slope bordered by the boom-structure, 420 m highwater mark and ditch below LBP Pond. In early 2021, seeding is planned for completion on all exposed soil areas on the slope. The area above 420 m elevation will be exposed for 3-4 years, prior to flooding to the final river/reservoir elevation of around 460 m elevation.

Recommendations for LBDB Water Quality Monitoring

BC Hydro should continue to monitor water quality on a monthly frequency in order to monitor changing conditions within the LBDB area due to pre-existing facilities and future construction related activities in and around the catchment area.

The LB Side Channel is now inaccessible due to the progression of construction and creation of the headpond following full river diversion since October 3, 2020. It is recommended that this area be reviewed and evaluate if a modification to the sampling locations is necessary in 2021, in addition to monitoring mitigation measures such as the maintenance of limestone-lined ditches and seeding planned on the slope.

6.5 L2 Powerhouse Water Quality Monitoring

The L2-US station was sampled one time on October 8, 2020. This sample reported a total iron concentration that exceeded BCAWQG-FST guidelines. The L2-DS station was sampled four times, between October and December. The November sample and two December samples all reported dissolved aluminum concentrations above the BCAWQG-FST value.

For the December 14, 2020 sampling event a sample was collected at the L2-DS station for testing two filter sizes to investigate the presence of aluminum Aluminum-dissolved was measured to exceed the BCAWQG-FST in both the 0.10 um and 0.45 um filter sizes. Lower value in the 0.10 um filter size may indicate that there is some microcrystalline aluminum contributing to the dissolved numbers. The dissolved aluminum values are similar to those observed at L2-DS in the Nov 20 (258 ug/L) and Dec 4 (552 ug/L) sampling events. Also similar to those events is the alkaline pH and below guideline values of other metals associated with a PAG signature. Therefore,

Tetra Tech infers that the elevated dissolved aluminum values are not representative of a PAG leachate issue and are possibly related to the construction activities/concrete in the Powerhouse area.

It is noted that water quality in the L2 area as well as the adjacent area for the AFDE foundation enhancement trial drilling program, both contained an excess of dissolved aluminum. This was investigated and determined that the most likely source of the dissolved aluminum to be originating from the RCC concrete which contains fly-ash (21.2% aluminum oxide) and GU cement (5% aluminum oxide).

The presence of elevated dissolved aluminum was considered in the context of drilling muds. However, BC Hydro staff confirmed that the drilling being done in the L2 Powerhouse area is not using drill muds.

Recommendations for L2 Powerhouse Water Quality Monitoring

Due to the evolving nature of this area and significant construction activity, it is important to evaluate the potential for changing flow patterns and confirm that the established sampling locations are appropriate for the purpose and collecting the intended waters. Focus on aluminum monitoring and tracking construction activities that may be contributing aluminum. Observe if the aluminum is associated with other metals or pH which may be related to ARD-ML processes.

A composite sample was collected from the LS-DS station during one of the four sampling events in 2020. The recommendation to field staff at the time was to maintain a consistent single sample location rather than collecting a composite. The recommendation applies more generally to the complete water quality monitoring program to allow for consistent interpretation of changes at a monitoring location.

7.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Erica Massey, M.Sc., G.I.T. Geoscientist Mining Practice Direct Line: 778.940.1225 erica.massey@tetratech.com

Prepared by: Sarah Furney, B.Sc. G.I.T Junior Geoscientist Mining Practice Direct Line: 778.686.1789 sarah.furney@tetratech.com

Reviewed by: Scott Kingston, P.Geo. Senior Geoscientist Mining Practice Direct Line: 604.608.8631 scott.kingston@tetratech.com

/bi

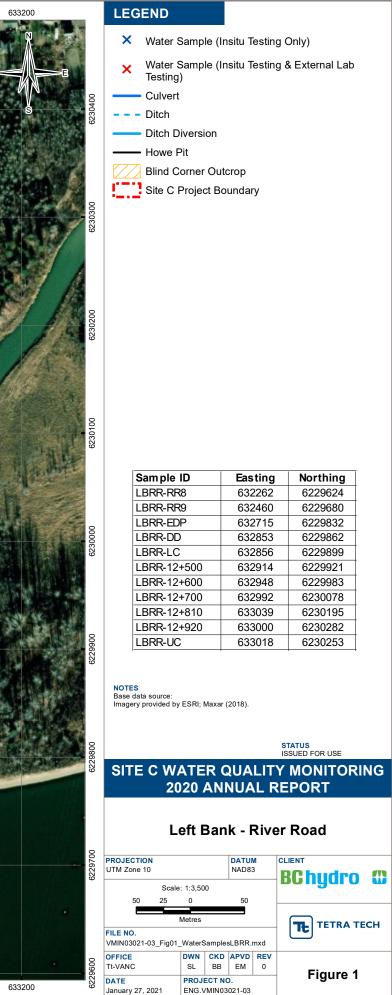
REFERENCES

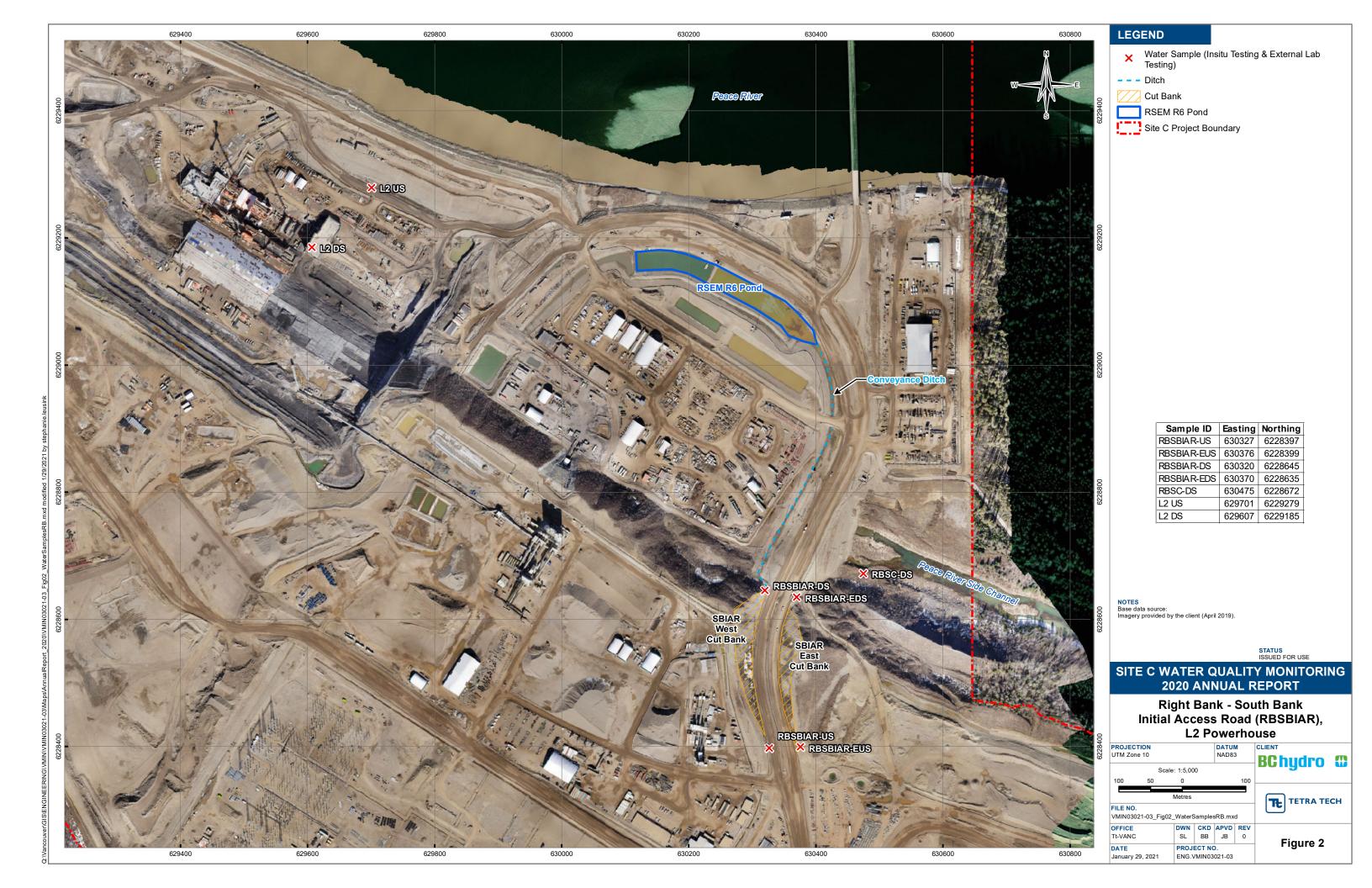
BC Hydro (2017) Site C Meteorological and Air Quality Stations. Retrieved: https://envistaweb.env.gov.bc.ca

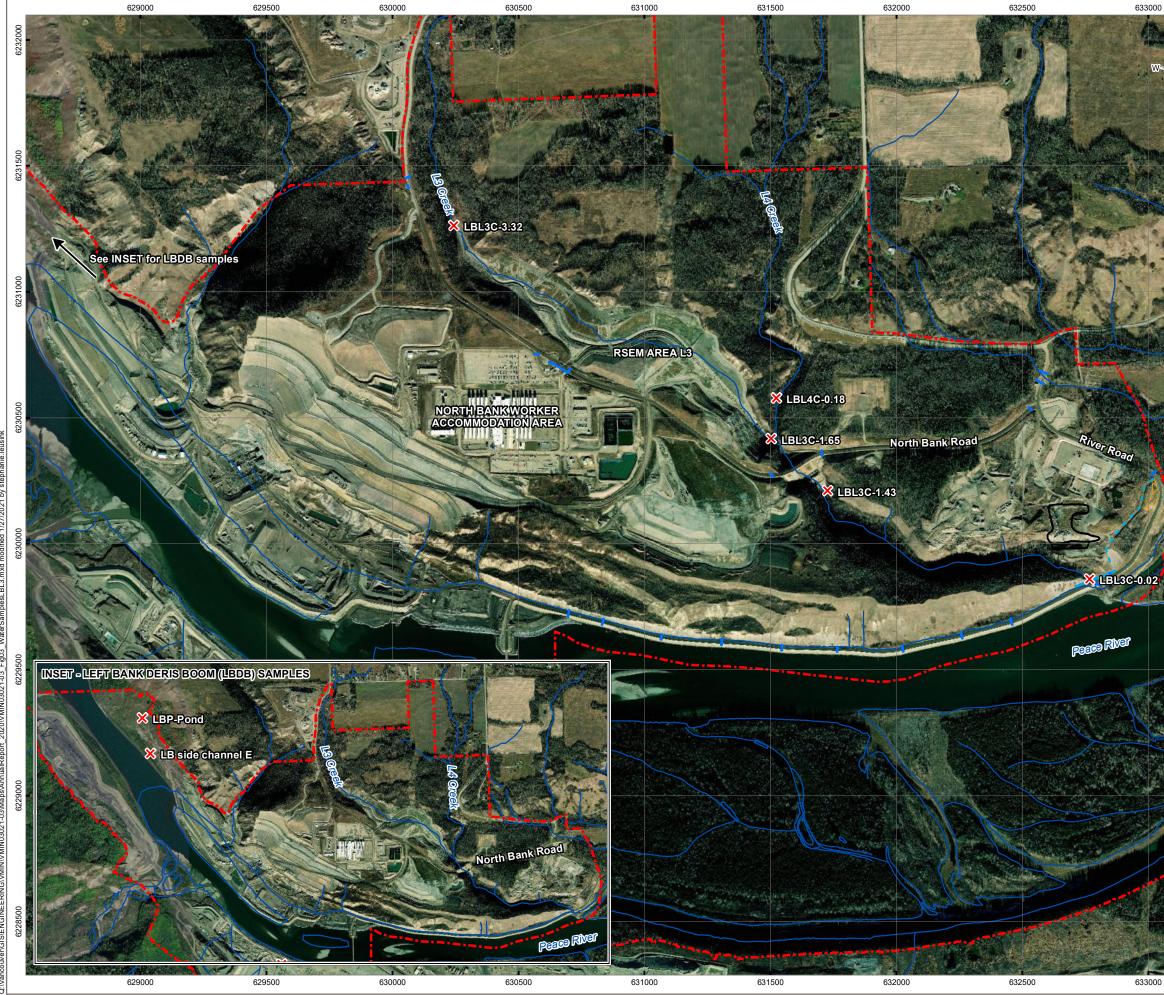
- BC Hydro (2020). Construction Environmental Management Plan, Site C Clean Energy Project, Revision 5.0 (February 19, 2019), Revision 5.1 (April 19, 2019), Revision 6.0 (July 15, 2019), and Revision 6.1 (December 12, 2019), Revision 7 (September 4, 2020).
- BC Ministry of Environment, BC MoE (August 2019) BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Water Protection & Sustainability Branch.Clark, M.J.R., editor (2003) British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312pp.
- BC Biotic Ligand Model software provided by the BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch (BCMoE).
- Ecofish Research Ltd. And Aski Reclamation LP (2020a). Site C Clean Energy Project, PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2020 Annual Report. Dated February 17, 2021.
- EcoFish Research Ltd. (2020b) PAM-LB and PAM-RB turbidity and TSS data for BC Hydro 2020 water quality sampling events. Received by Tetra Tech on January 22, 2021.
- España, Javier Sánchez (2007). The behaviour of iron and aluminum in Acid Mine Drainage: speciation, mineralogy, and environmental significance. *Instituto Geológico y Minero de España*. In book: Thermodynamics, Solubility and Environmental Issues, Ch 7, pp. 137-150.
- Hemmera Envirochem Inc. and BGC Engineering Inc. (2012) Environmental Impact Statement, Site C Clean Energy Project, Volume 2, Appendix F, Groundwater Regime Technical Data Report, document number 06-105, December 2012.
- Klohn Crippen Berger Ltd. and SNC-Lavalin Inc. (2015) Site C Clean Energy Project: Implementation design geochemical characterization status at the end of 2014.
- Lorax Environmental Services (2020) Site C Clean Energy Project Acid Rock Drainage and Metal Leachate Management 2020 Annual Report. Dated February 24, 2021.
- Tetra Tech (2018) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road and L3 Creek 2017 Annual Report. IFU March 15, 2018.
- Tetra Tech (2019) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2018 Annual Report. IFU March 15, 2019.
- Tetra Tech (2020) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2019 Annual Report. IFU March 31, 2020.

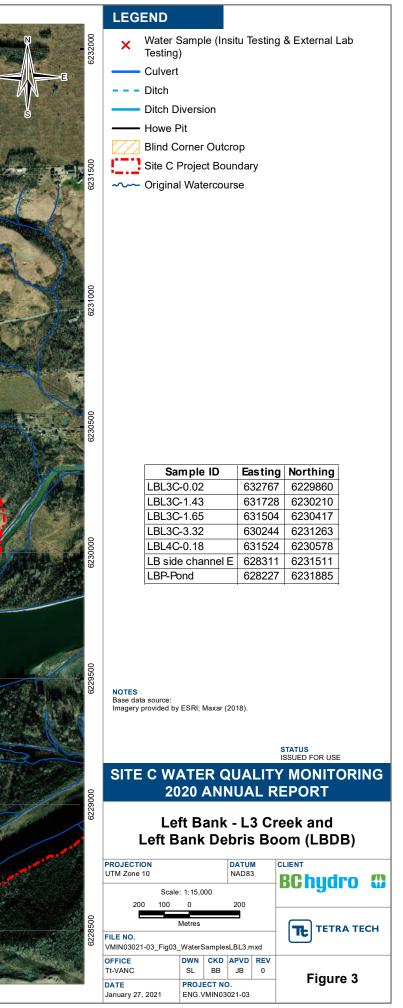
FIGURES

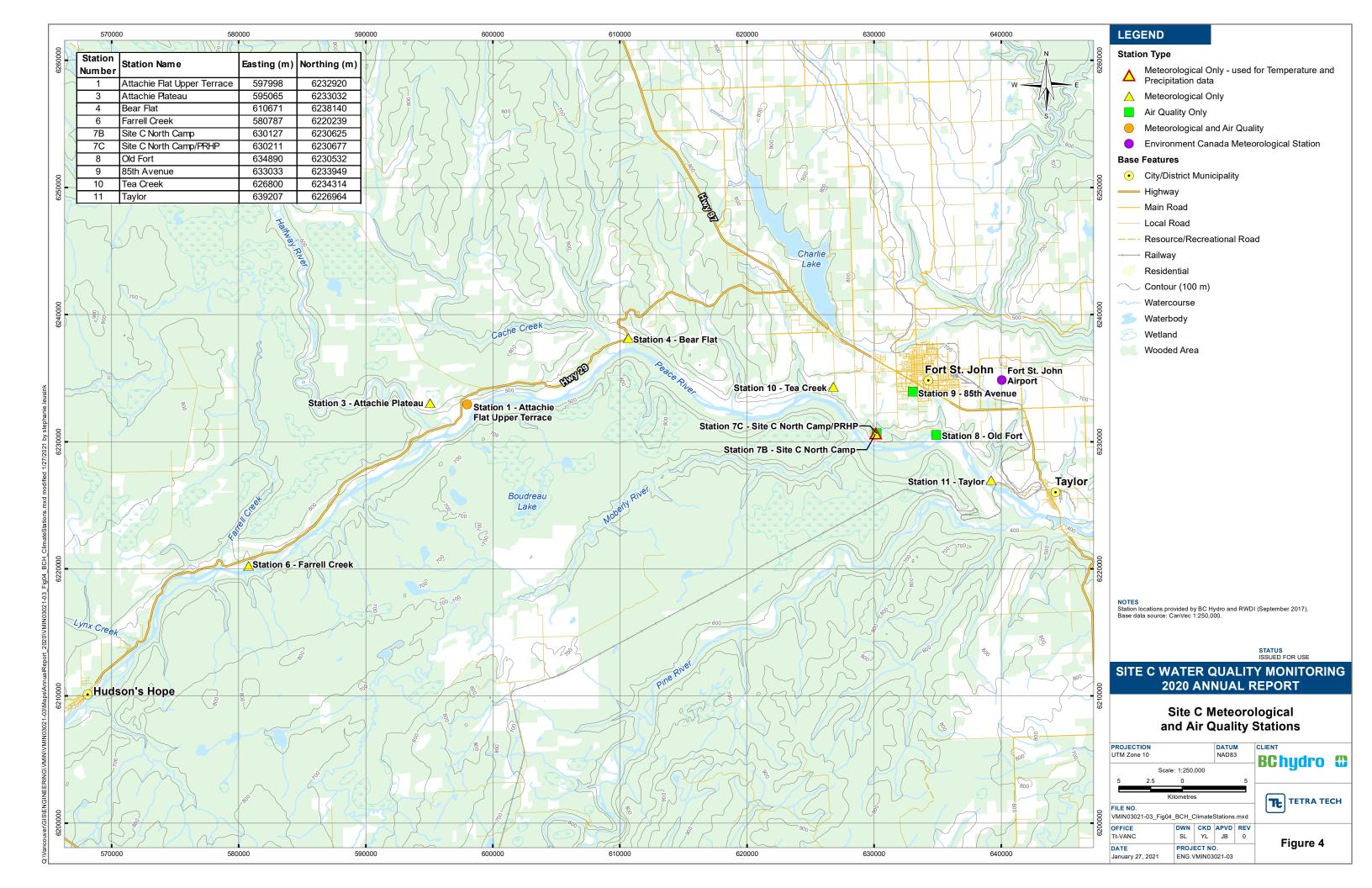

Figure 1	River Road Monitoring Locations
Figure 2	SBIAR Monitoring Locations
Figure 3	L3 Creek Monitoring Locations
Figure 4	BC Hydro – Site C Meteorological and Air Quality Stations
Figure 5	Turbidity and TSS Measured in the Peace River
RIVER ROAD	
Figure 6	pH at RR Locations
Figure 7	Total Alkalinity at RR Locations
Figure 8	Acidity at RR Locations
Figure 9	Sulphate at RR Locations
Figure 10	a) TSS and b) TDS at RR Locations
Figure 11	a) Total and b) Dissolved Aluminum at RR Locations
Figure 12	a) Total and b) Dissolved Iron at RR Locations
Figure 13	a) Total and b) Dissolved Arsenic at RR Locations
Figure 14	a) Total and b) Dissolved Cadmium at RR Locations
Figure 15	a) Total and b) Dissolved Cobalt at RR Locations
Figure 16	a) Total and b) Dissolved Copper at RR Locations
Figure 17	a) Total and b) Dissolved Zinc at RR Locations
RBSBIAR	
Figure 18	pH at RBSBIAR Locations
Figure 19	Total Alkalinity at RBSBIAR Locations
Figure 20	Acidity at RBSBIAR Locations
Figure 21	Sulphate at RBSBIAR Locations
Figure 22	a) TDS and b) TSS at RBSBIAR Locations
Figure 23	a) Total and b) Dissolved Aluminum at RBSBIAR Locations
Figure 24	a) Total and b) Dissolved Iron at RBSBIAR Locations
Figure 25	a) Total and b) Dissolved Arsenic at RBSBIAR Locations
Figure 26	a) Total and b) Dissolved Cadmium at RBSBIAR Locations
Figure 27	a) Total and b) Dissolved Cobalt at RBSBIAR Locations
Figure 28	a) Total and b) Dissolved Copper at RBSBIAR Locations
Figure 29	a) Total and b) Dissolved Zinc at RBSBIAR Locations
Figure 30	a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc
L3 CREEK	
Figure 31	pH at L3 Creek Locations

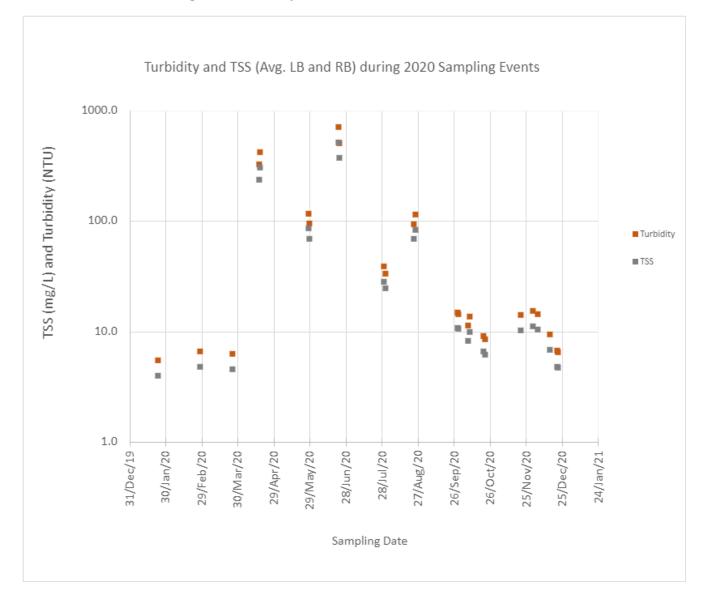





Figure 32 Total Alkalinity at L3 Creek Locations Figure 33 Acidity at L3 Creek Locations Figure 34 Sulphate at L3 Creek Locations Figure 35 a) TSS and b) TDS at L3 Creek Locations Figure 36 a) Total and b) Dissolved Aluminum at L3 Creek Locations Figure 37 a) Total and b) Dissolved Iron at L3 Creek Locations Figure 38 a) Total and b) Dissolved Arsenic at L3 Creek Locations Figure 39 a) Total and b) Dissolved Cadmium at L3 Creek Locations Figure 40 a) Total and b) Dissolved Cobalt at L3 Creek Locations Figure 41 a) Total and b) Dissolved Copper at L3 Creek Locations Figure 42 a) Total and b) Dissolved Zinc at L3 Creek Locations







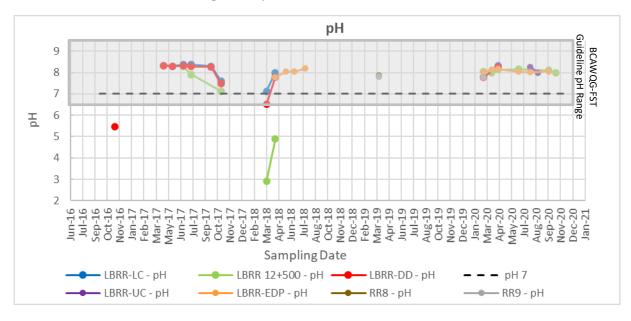


Figure 5: Turbidity and TSS Measured in the Peace River


EcoFish Disclaimer: TSS:turbidity relationship used was the same all year. Note, these relationships are specific to a particular make/model of sensor. Please exercise caution if relationship applied to any data collected.

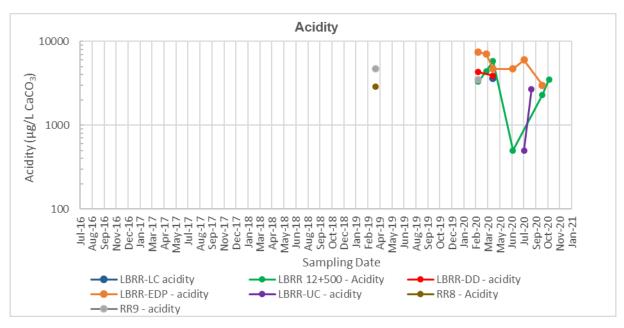

Figure 6: pH at River Road Locations

Figure 7: Total Alkalinity at River Road Locations

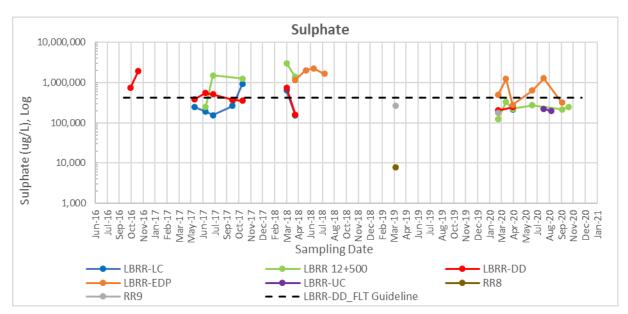
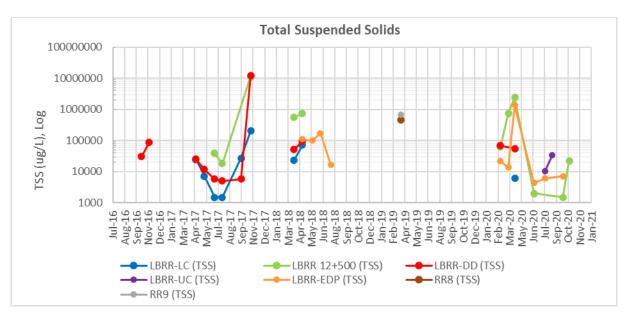



Figure 8: Acidity at River Road Locations

Figure 9: Sulphate at River Road Locations



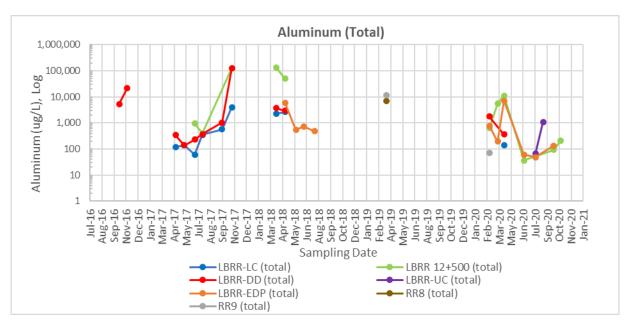
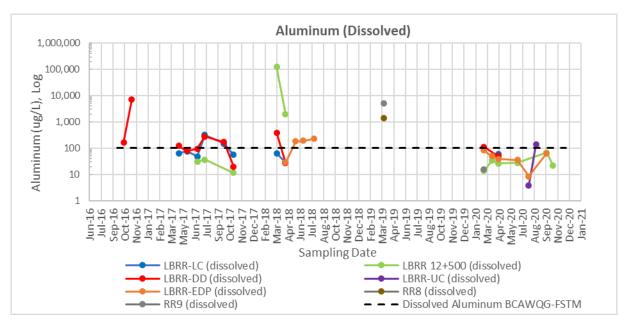
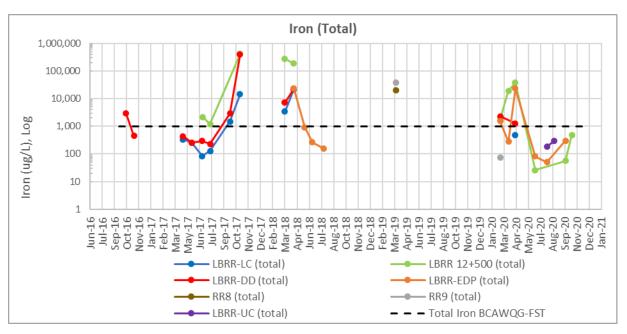
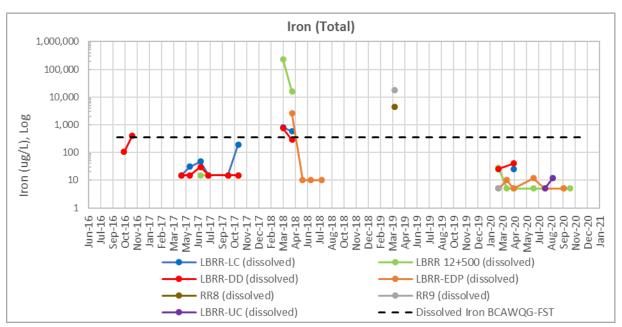


Figure 10a: Total Dissolved Solids at River Road Locations

Figure 10b: Total Suspended Solids (TSS) at River Road Locations







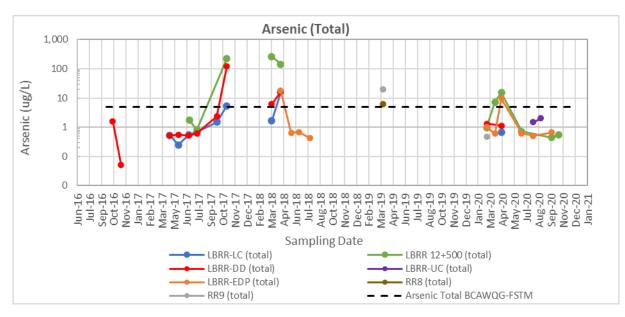
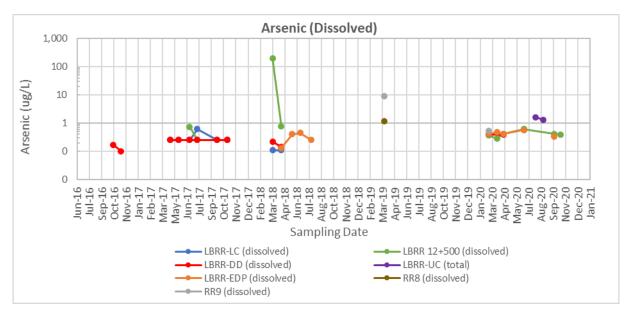
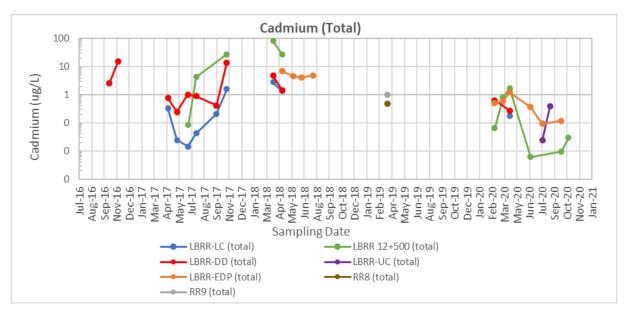
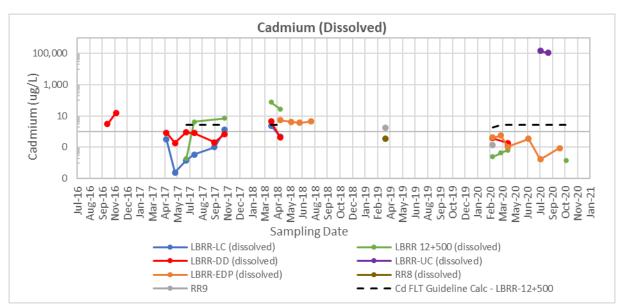
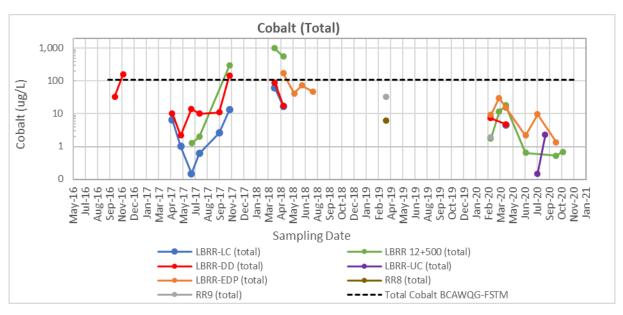


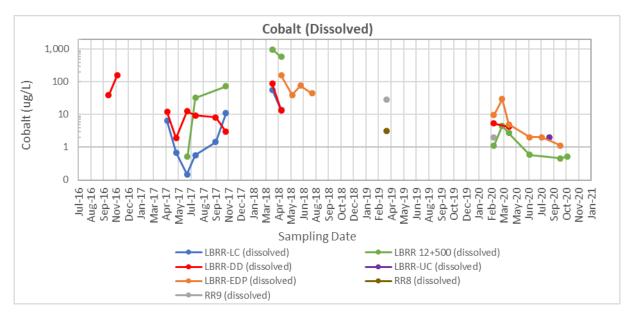
Figure 12a: Total Iron at River Road Locations




Figure 13a: Total Arsenic at River Road Locations




Figure 14a: Total Cadmium at River Road Locations



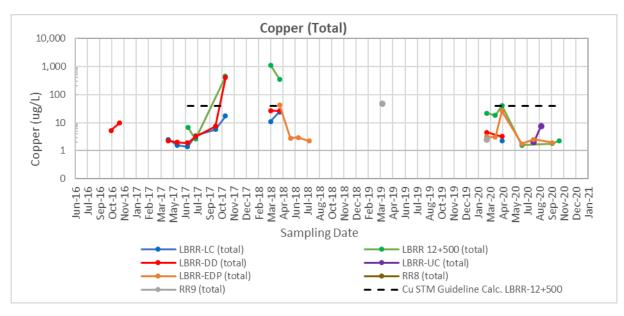
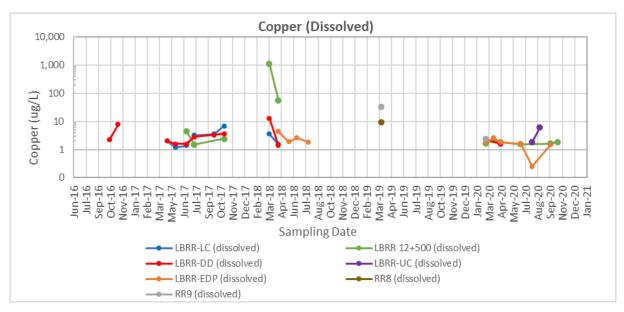

Figure 15a: Total Cobalt at River Road Locations

Figure 15b: Dissolved Cobalt at River Road Locations



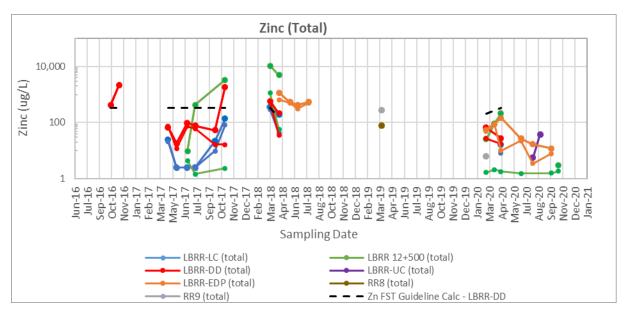
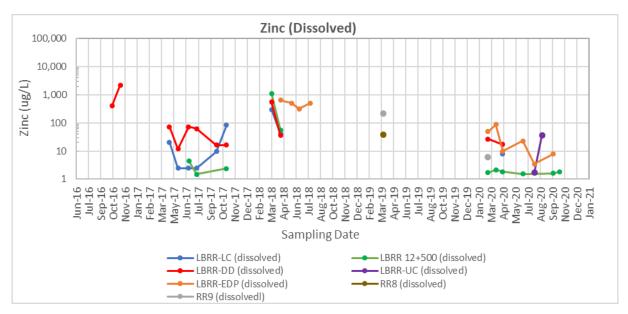
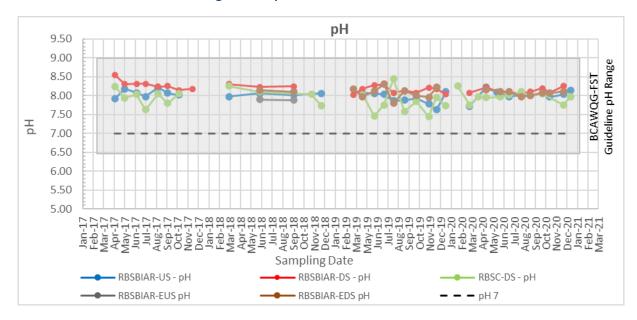
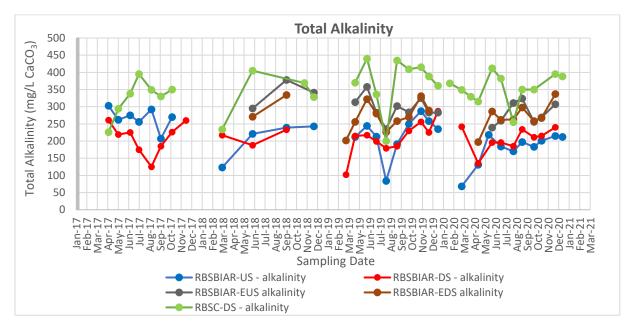
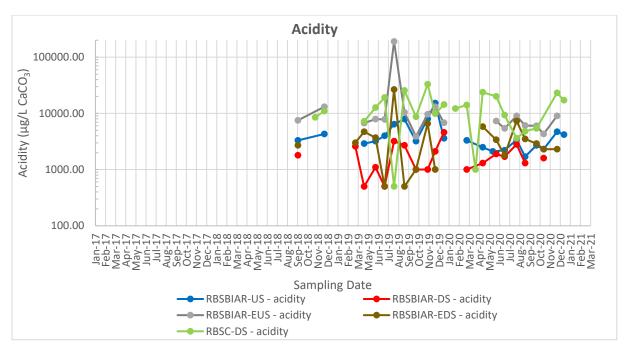
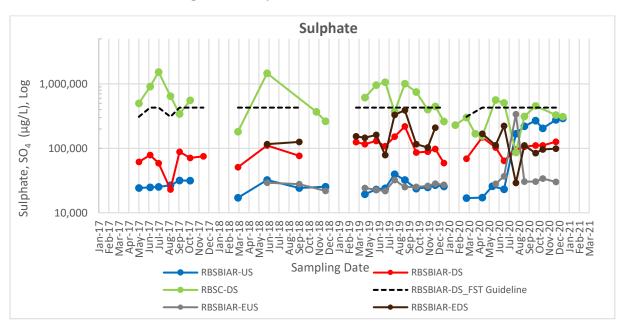


Figure 16a: Dissolved Copper at River Road Locations




Figure 18: pH at RBSBIAR Locations



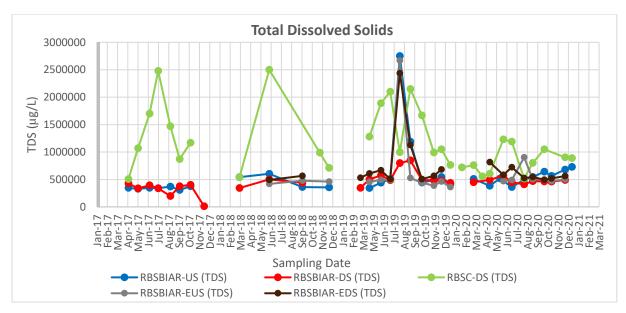
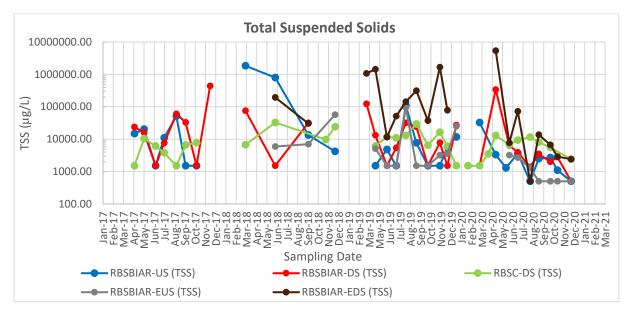


Figure 20: Acidity at RBSBIAR Locations

Figure 21: Sulphate at RBSBIAR Locations



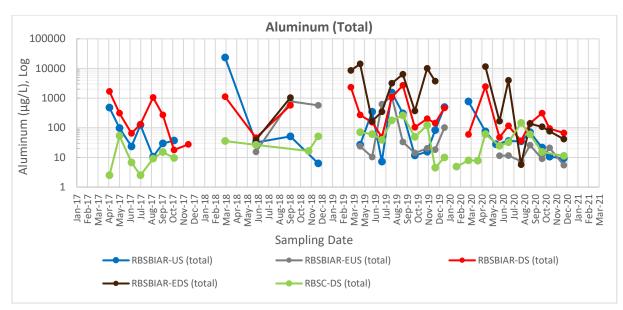
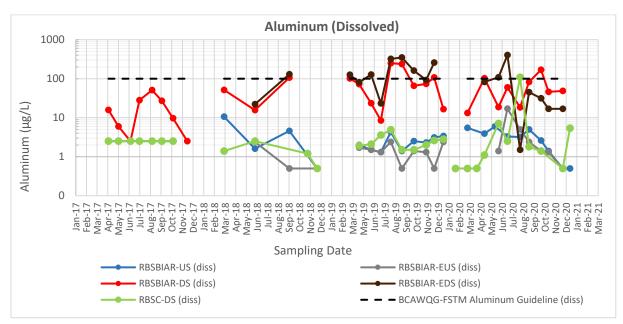


Figure 22a: Total Dissolved Solids at RBSBIAR Locations



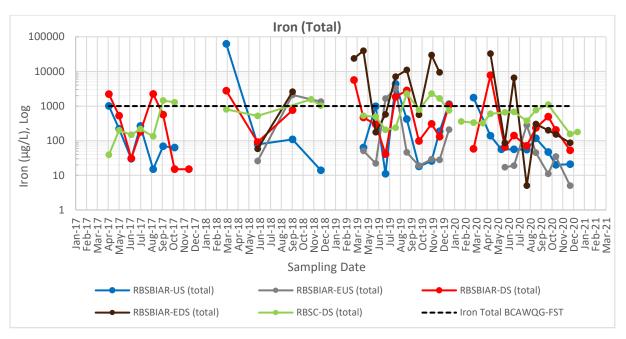
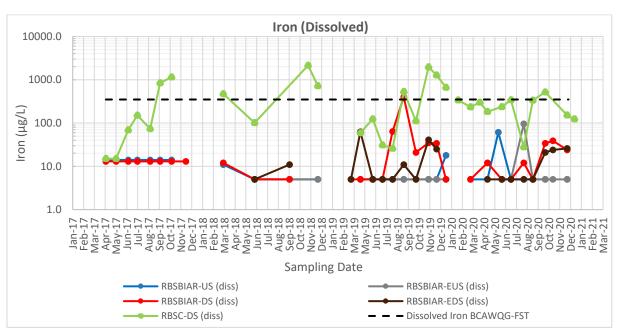

Figure 23a: Total Aluminum at RBSBIAR Locations

Figure 23b: Dissolved Aluminum at RBSBIAR Locations



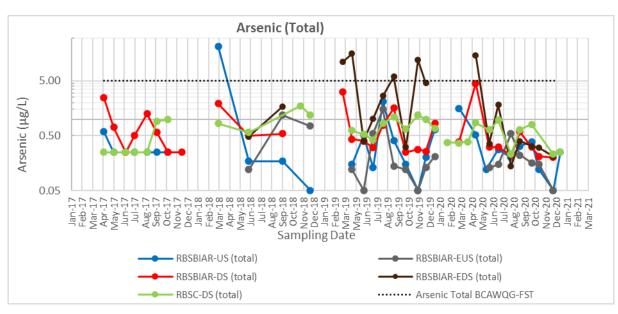
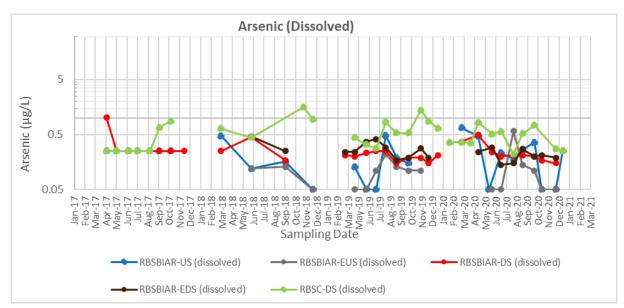

Figure 24a: Total Iron at RBSBIAR Locations

Figure 24b: Dissolved Iron at RBSBIAR Locations



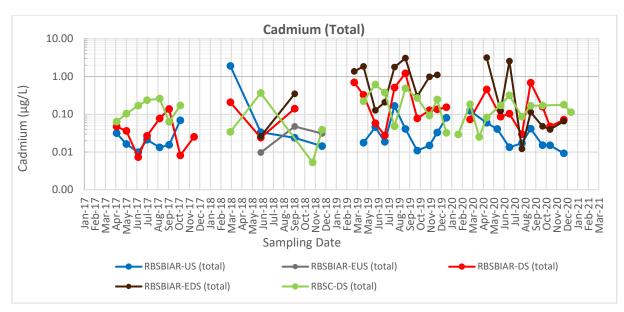
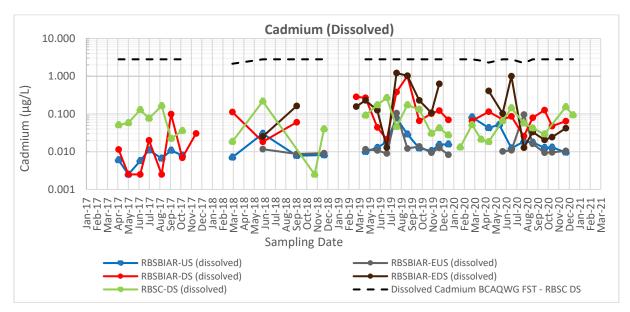


Figure 25a: Total Arsenic at RBSBIAR Locations



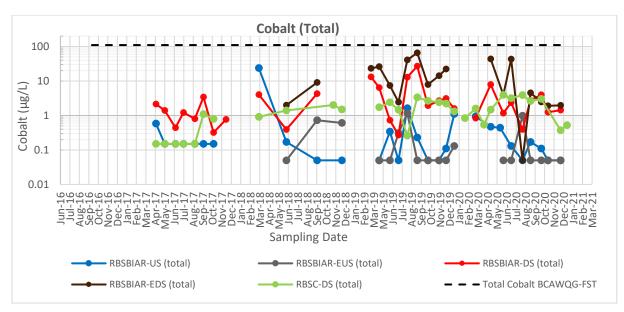
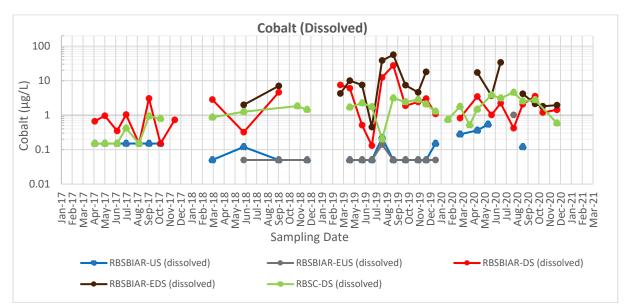


Figure 26a: Total Cadmium at RBSBIAR Locations

Figure 26b: Dissolved Cadmium at RBSBIAR Locations



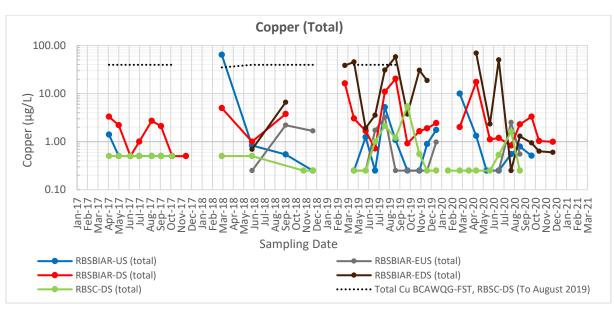

Figure 27a: Total Cobalt at RBSBIAR Locations

Figure 27b: Dissolved Cobalt at RBSBIAR Locations

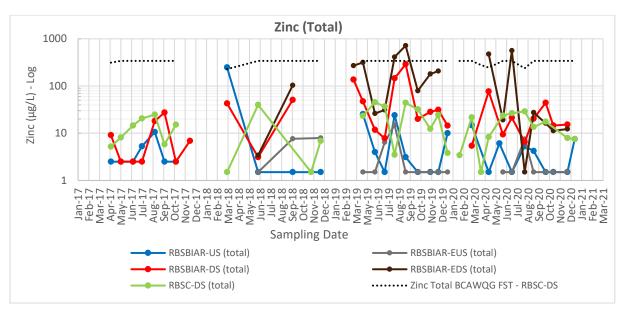
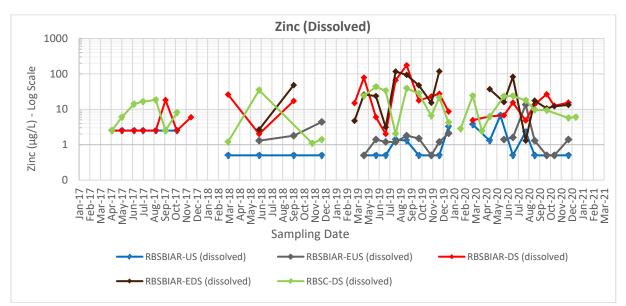
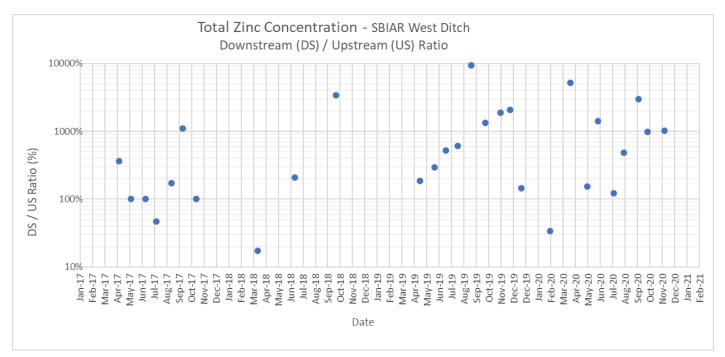
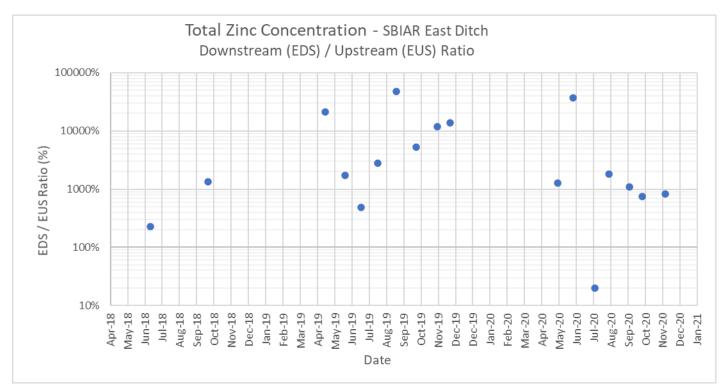

Figure 28a: Total Copper at RBSBIAR Locations

Figure 28b: Dissolved Copper at RBSBIAR Locations




Figure 29a: Total Zinc at RBSBIAR Locations



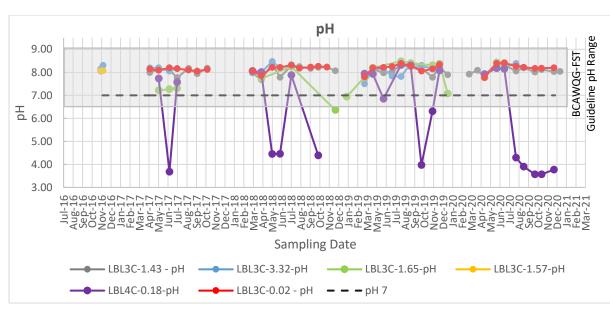
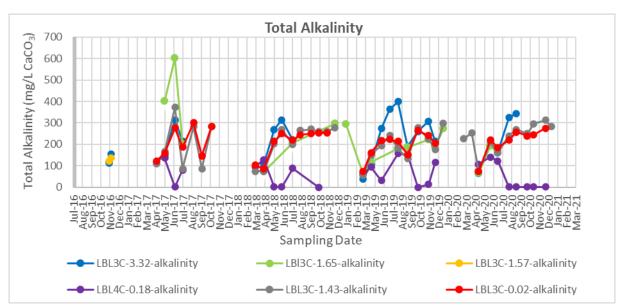
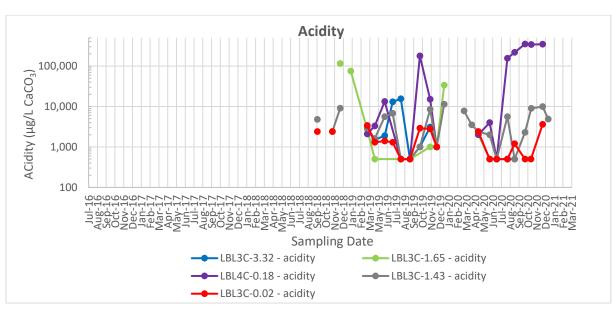
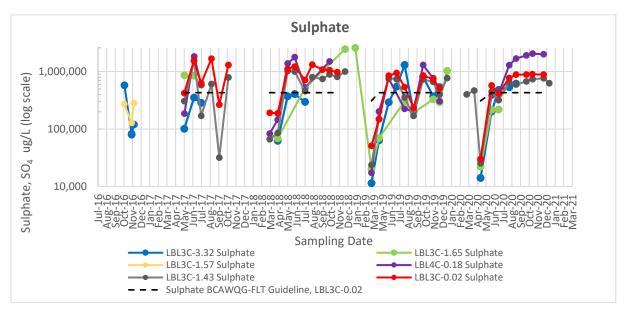

Figure 30a: RBSBIAR West Ditch Downstream (DS), Upstream (US) Ratio - Total Zinc

Figure 30b: RBSBIAR East Ditch Downstream (DS), Upstream (US) Ratio - Total Zinc




Figure 31: pH at L3 Creek Locations



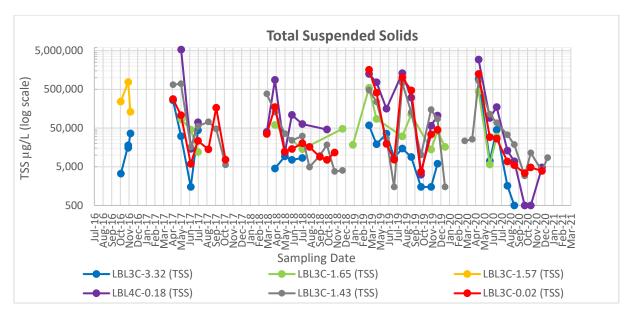
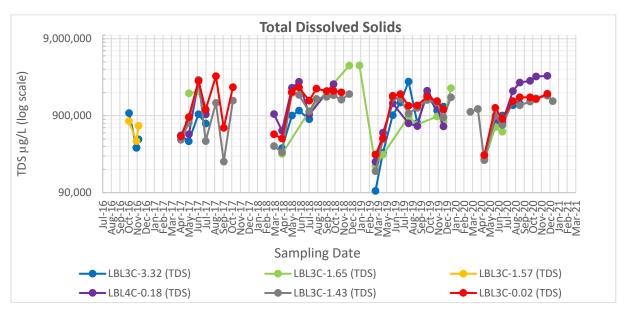


Figure 33: Acidity at L3 Creek Locations

Figure 34: Sulphate at L3 Creek Locations



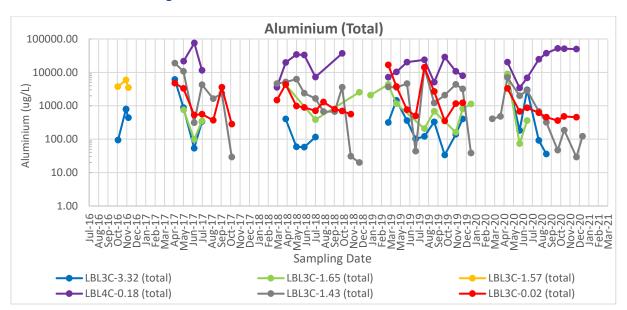


Figure 35a: Total Suspended Solids at L3 Creek Locations

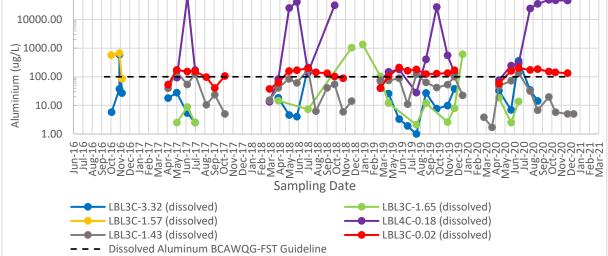


Figure 36a: Total Aluminum at L3 Creek Locations

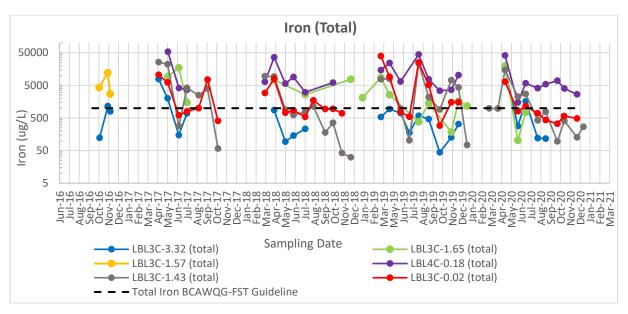
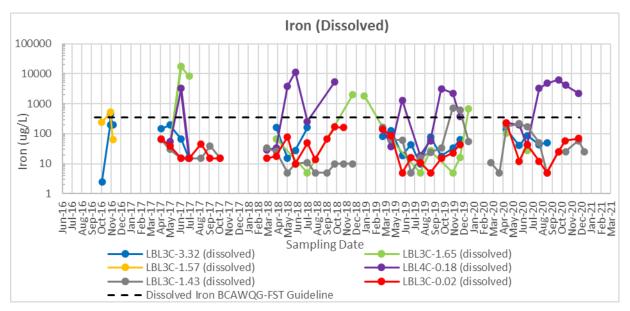
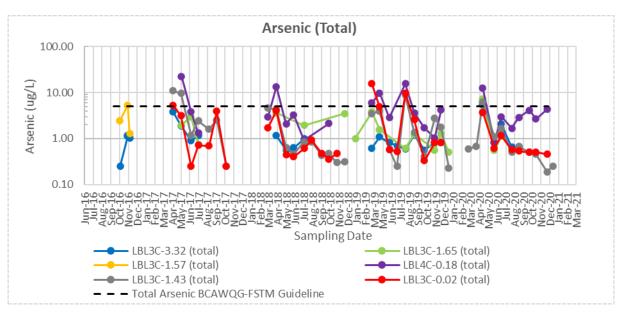
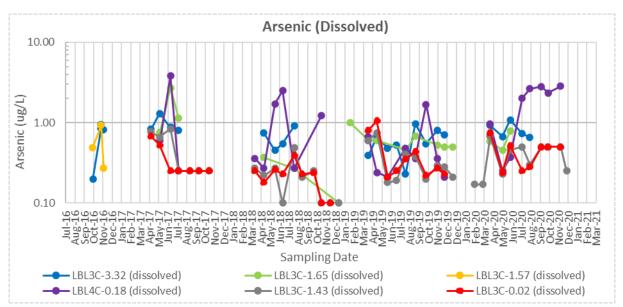
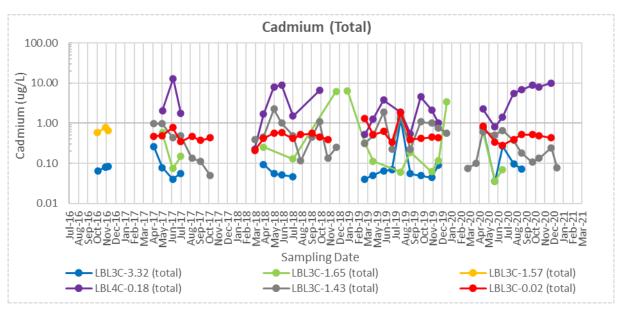


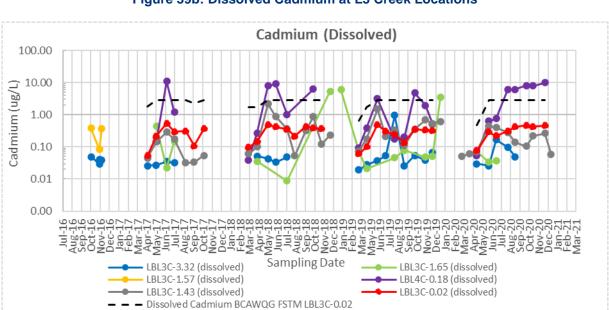
Figure 36b: Dissolved Aluminum at L3 Creek Locations











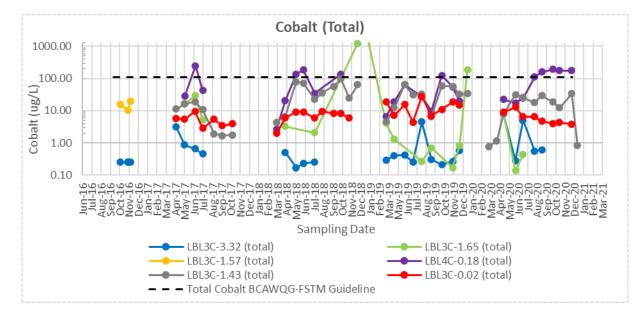
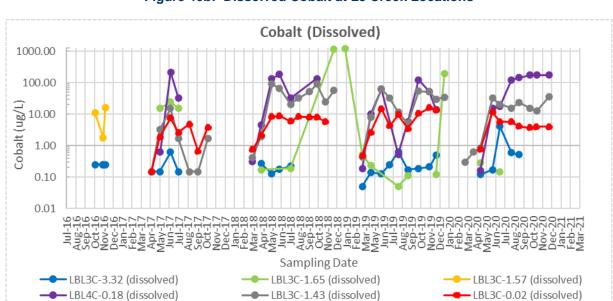
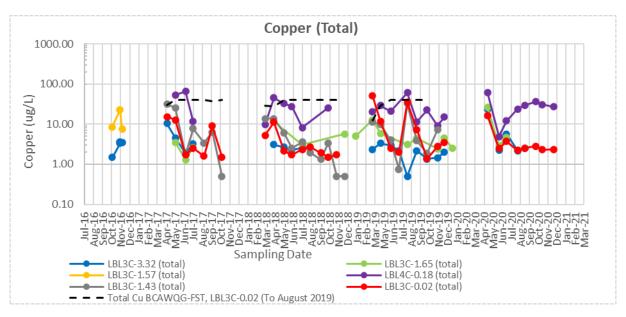
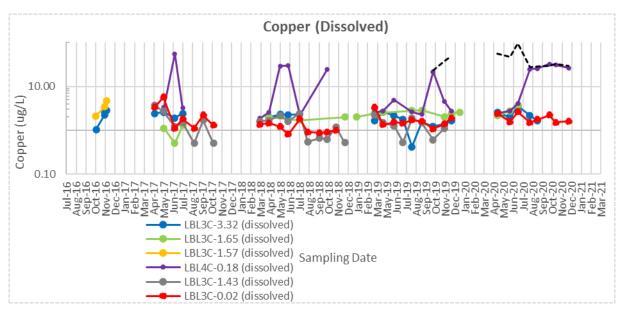


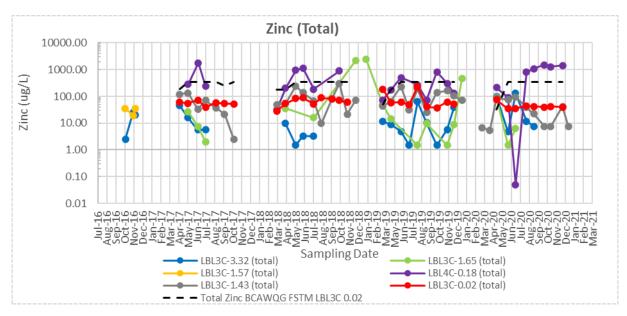
Figure 39a: Total Cadmium at L3 Creek Locations

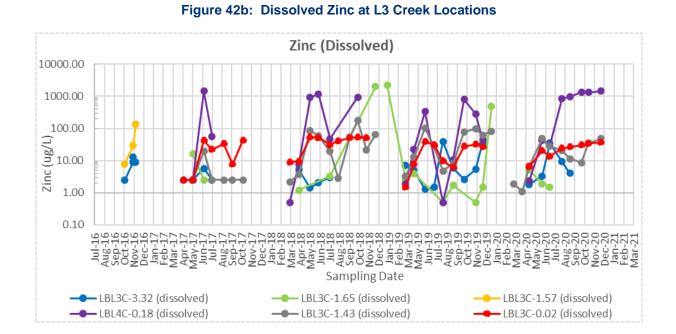
Figure 39b: Dissolved Cadmium at L3 Creek Locations

Figure 40a: Total Cobalt at L3 Creek Locations


Figure 40b: Dissolved Cobalt at L3 Creek Locations


Figure 41a: Total Copper at L3 Creek Locations



TABLES

Table 1	Water Sampling Locations and In Situ and Lab Events
Table 2	Daily and 7-Day Mean Temperature and Precipitation
Table 3	Classification of Flows in Ditch
Table 4	Daily Mean Turbidity and TSS Measurements within the Peace River 2020
Table 5	2020 Quality Assurance/Quality Control for Water Quality Sample Results
Table 6	In Situ Water Quality Sampling along the River Road Ditch
Table 7	Summary of Water Quality Exceedances (BCAWQG-FST) along River Road from Water Sampling Events in 2020
Table 8	In Situ Water Quality Measurements Along the South Bank Initial Access Road
Table 9	Summary of Water Quality Exceedances (BCAWQG-FST) RBSBIAR from Water Sampling Events in 2020
Table 10	Minimum, Maximum and Mean Values for Measurements at Discharge and Downstream Locations in 2020
Table 11	In Situ Water Quality Measurements Along L3 Creek
Table 12	Summary of Water Quality Exceedances (BCAWQG-FST) Along L3 Creek from Water Sampling Events in 2020
Table 13	In Situ Water Quality Sampling at the Left Bank Debris Boom
Table 14	Summary of Water Quality Exceedances (BCAWQG-FST) at the Left Bank Debris Boom from Water Sampling Events in 2020
Table 15	In Situ Water Quality Sampling at the L2 Powerhouse Area
Table 16	Summary of Water Quality Exceedances (BCAWQG-FST) at the L2 Powerhouse Area from Water Sampling Events in 2020

Table I. Wale	er Sampling Loc		ine Memo Nu		ents		-		1	2			1	-	1	-	1	~	1	-						0			1	1(
			ling Event N			1	1	2		3		3		4 5		5		7		8		<u>،</u>	5	0	1	9 1	1	2	1	3	, 14	L	15	11	16	
Catchment	Sample Site	UTM Co	ordinates 0 (NAD83)	Elevation	2020-	•	-	Feb-27		Mar-25		•	2020-M	•	2020-Ji	un-21/22			2020-A	ug-23/24		•			2020-0		20-N		30-N		4-Dec		14-Dec-	20 2	2020-Dec-2	20-21
		Easting	Northing		In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	_ab Ir	n-Situ I	Lab
	RBSBIAR-US	630327	6228397	468.0			~	~			~	~	~	~	✓	~	~	~	~	~	~	~			✓	✓			~	~					✓	✓
Right Bank -	RBSBIAR-DS	630320	6228645	445.2			✓	~			~	~	~	~	✓	~	~	~	~	~	~	~			~	~			~	~						
South Bank Initial	RBSBIAR-EUS	630376	6228399	464.6	~		~				~		~	~	✓	~	~	~	~	~	~	~			✓	✓			~	~					✓	
Access Road ¹	RBSBIAR-EDS	630370	6228635	437.4							~	~	~	~	~	~	~	~	~	~	~	~			~	~			✓	~						
	RBSC-DS	630475	6228672	418.6	~	✓	~	✓	~	✓	✓	~	~	~	✓	~	✓	~	✓	~	~	~							√	✓					✓	~
	LBRR-DD	632853	6229862	422.0			~	~			~	~									✓	~														
	LBRR-EDP	632715	6229832	416.4			✓	✓	✓	~	✓	~			✓	~	✓	~			✓	~														
	LBRR-LC	632856	6229899	427.2			~				~	~																								
	LBRR-UC	633018	6230253	463.2							~		✓		✓		✓	~	✓	~	~				✓											
	LBRR-12+430	632857	6229885	426.0																																
Left Bank	LBRR-12+500	632914	6229921	432.0			~	✓	~	~	~	~			✓	~					~	~			✓	✓										
River Road ¹	LBRR-12+600	632948	6229983	436.0			✓		~						✓						✓															
	LBRR-12+700	632992	6230078	442.8			~		~						✓						~															
	LBRR-12+810	633039	6230195	454.0			✓		~				~		~		~		~		✓				~											
	LBRR-12+920	633000	6230282	463.0			✓						~		~		~		~		~				~				~							
	RR8	632262	6229624	412.0																																
	RR9	632460	6229680	412.5			✓	✓																												
	LBL3C-0.02	632767	6229860	418.0							~	~	~	~	~	~	~	~	~	~	✓	~			~	✓			~	~						
L3 Creek 1	LBL3C-1.43	631728	6230210	486.6			~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~			✓	✓			✓	~					✓	~
L3 Cleek	LBL3C-1.65	631504	6230417	493.0							~	~	✓	~	~	~																				
	LBL3C-3.32	630248	6231262	579.0							~	~	~	~	~	~	~	~	~	~	~	~			✓	✓										
L4 Creek 1	LBL4C-0.18	631524	6230578	507.0							✓	~	✓	~	~	~	~	~	✓	~	✓	~			✓	✓			✓	✓						
	LBP Pond	628227	6231885	-																			~	~			~	✓								
Left Bank Debris Boom ^{1, 2}	Channel E	628311	6231511	-																			~	~												
DOOM	Channel W	-	-	-			1				1			1			1																			
L2 Powerhouse ^{1,}	L2 DS	629607	6229185	-																			✓	✓			✓	✓			~	✓	~	✓		
2	L2 US	629701	6229279	-			1	1	1	1			1	1									✓	~												

Table 1: Water Sampling Locations and In Situ and Lab Events

¹ Monthly Sampling.

² New Sample Location, 2020

Note: In any months of the calendar year not listed (e.g. January, February, and December), frozen/dry conditions persisted at all sampling locations (verified by field staff).

* Routine Memos can include 1-2 sampling events; shading pattern of columns represents each of the 11 routine memos prepared in 2020

* cells blank with " - " indicates no data received to date.

Table 2: Daily and 7-Day Mean Temperature and Precipitation

Date	Time	Precipitation ¹			Temperatur	e ¹	Summary
Sample Event Date Bolded	Time Period	Precipitation Event	Total (mm)	Mean (°C)	Minimum (°C)	Maximum (°C)	24 Hr and 7 Day Precipitation
January 16-22, 2020	7 days	January 16, 17, 19, 21	3.62	-19.3	-32.2	-0.9	Minimal precipitation (1.32 mm) in preceding 7 days
January 22, 2020	24 hrs.	none	0.00	-9.3	-11.4	-7.5	No precipitation
January 23, 2020	24 hrs.	none	0.00	-7.7	-11.4	-4.9	No precipitation
February 20-26, 2020	7 days	February 25	0.62	-0.6	-12	6.6	Minimal precipitation (0.62 mm) in preceding 7 days
February 26, 2020	24 hrs.	none	0.00	3.3	0.2	6.6	No precipitation
February 27, 2020	24 hrs.	none	0.00	5.3	3.4	7.6	No precipitation
March 18-24, 2020	7 days	March 22, 23	2.42	-4.2	-13.2	5.3	Minimal precipitation (2.42 mm) in preceding 7 days
March 24, 2020	24 hrs.	none	0.00	-8.2	-13.2	-3.2	No precipitation
March 25, 2020	24 hrs.	none	0.00	-1.9	-12.2	5.6	No precipitation
April 9-15, 2020	7 days	April 14	0.52	3.0	-6.8	11.2	Minimal precipitation (0.52 mm) in preceding 7 days
April 15, 2020	24 hrs.	none	0.00	6.0	2.8	10.4	No precipitation
April 16, 2020	24 hrs.	none	0.00	9.6	-2.0	18.4	No precipitation
April 17, 2020	24 hrs.	none	0.00	7.0	0.6	11.4	No precipitation
May 20-26, 2020	7 days	May 20, 21, 22, 23	23.39	11.5	4.9	20.5	Moderate Precipitation (23.39 mm) in preceding 7 days
May 26, 2020	24 hrs.	May 26	0.70	9.9	6.8	13.9	Minimal precipitation (0.70 mm) in previous 24 hrs
May 27, 2020	24 hrs.	May 27	0.00	13.7	7.3	19.5	No precipitation
May 28, 2020	24 hrs.	May 28	0.00	14.4	6.7	20.1	No precipitation
June 14-20, 2020	7 days	June 14, 15	61.11	15.8	8.7	26.8	Significant Precipitation (61.11 mm) in preceeding 7 days
June 20, 2020	24 hrs.	none	0.00	19.0	15.5	22.1	No Precipitation
June 21, 2020	24 hrs.	none	0.00	18.3	14.7	21.9	No Precipitation
June 22, 2020	24 hrs.	none	0.00	16.0	12.5	18.8	No Precipitation
July 22-28, 2020	7 days	none	0.00	18.2	10.4	29.7	No precipitation in preceding 7 days
July 28, 2020	24 hrs.	none	0.00	18.8	14.3	22.9	No Precipitation
July 29, 2020	24 hrs.	none	0.00	18.7	12.3	24.3	No Precipitation
July 30, 2020	24 hrs.	none	0.00	19.8	13.4	25.1	No Precipitation
August 16-22, 2020	7 days	August 20, 21	20.54	17.1	10.8	30.7	Moderate Precipitation (20.54 mm) in preceeding 7 days
August 22, 2020	24 hrs.	none	0.00	13.8	10.1	18.3	No Precipitation
August 23, 2020	24 hrs.	none	0.00	14.5	10.1	19.6	No Precipitation
August 24. 2020	24 hrs.	24-Aug	2.94	12.6	9.7	17.6	Minimal precipitation (2.94 mm)
September 21-27, 2020	7 days	September 23, 24, 25, 26, 27	6.41	9.8	1.7	17.1	Minimal precipitation (6.41 mm) in preceding 7 days
September 27, 2020		September 27	1.80	7.8	2.8	12.7	Minimal precipitation (1.80 mm)
September 28, 2020	24 hrs.	none	0.00	13.2	9.6	15.1	No Precipitation
September 29, 2020	24 hrs.	none	0.00	10.3	3.6	16.5	No Precipitation
October 1-7, 2020	7 days	October 2, 5, 7	3.04	12.3	0.0	0.91	Minimal Precipitation (3.04 mm) in proceeding 7 days
October 7, 2020	24 hrs.	October 7	2.88	5.1	-1.1	9.9	Minimal precipitation (2.88 mm)
October 8, 2020	24 hrs.	October 8	3.54	5.6	2.1	10.7	Minimal precipitation (3.54 mm)
October 13-19, 2020	7 days	October 13, 19	5.14	-2.5	-11.7	7.5	Minimal precipitation (5.14 mm) in preceding 7 days
October 19, 2020	24 hrs.	19-Oct	1.22	-5.9	-8.4	-1.4	Minimal precipitation (1.22 mm)
October 20, 2020	24 hrs.	none	0.05	-4.9	-8.9	-0.8	Minimal (0.05 mm) Precipitation, evening of event
October 21, 2020	24 hrs.	none	0.00	-7.2	-8.5	-5.5	No Precipitation
November 13-19, 2020	7 days	November 14, 15, 17, 18	13.11	-9.8	-19.1	-0.1	Moderate Precipitation (13.11 mm) in preceeding 7 days
November 19, 2020	24 hrs.	none	0.00	-17.2	-18.6	-15.5	No Precipitation
November 20, 2020	24 hrs.	none	0.00	-16.2	-19.0	-13.2	No Precipitation
November 23-29, 2020	7 days	November 27	0.25	-2.8	-11.9	5.4	Minimal precipitation (0.25 mm)
November 29, 2020	24 hrs.	none	0.00	2.2	-2.2	5.1	No Precipitation
November 30, 2020	24 hrs.	none	0.00	0.7	-4.2	5.8	No Precipitation
Nov 27 - Dec 3, 2020	7 days	November 27	0.25	1.4	-6.5	7.6	Minimal precipitation (0.25 mm)
December 3, 2020	24 hrs.	none	0.00	2.0	-3.9	7.2	No Precipitation
December 4, 2020	24 hrs.	none	0.00	7.1	4.6	8.8	No Precipitation
December 7-13, 2020	7 days	December 12	0.34	-5.0	-19.3	9.6	Minimal precipitation (0.34 mm)
December 13, 2020	24 hrs.	none	0.00	-18.1	-19.3	-16.9	No Precipitation
December 13, 2020	24 ms.	none	0.00	-16.1	-19.3 -17.2	-15.7	No Precipitation
December 13-19, 2020	7 days	December 12, 15, 16, 17, 18, 19	6.17	-16.0	-17.2	0.6	Minimal precipitation (6.17 mm)
December 19, 2020	24 hrs.	19-Dec	1.32	-7.6	-22.3	0.6	Minimal precipitation (6.17 mm)
December 20, 2020	24 ms.	December 20	0.44	-7.0 -0.3	-15.3	2.3	Minimal precipitation (0.44 mm)
5000mber 20, 2020	24 113.	December 20	0.44	-0.5	-0.0	2.5	

¹ BC Ministry of Environment, BC Air quality data: Fort St John North Camp C_Met_60 weather station. https://envistaweb.env.gov.bc.ca/.

Table 3: Classification of Flows in Ditch

Table 3: Classification of F Sample Event Date Bolded	Time Period	Precipitation Event	Total (mm)	Mean (°C)	24 Hr and 7 Day Precipitation	Classification
January 16-22, 2020	7 days	January 16, 17, 19, 21	3.62	-19.3	Minimal precipitation (3.62 mm) in preceding 7 days	Classification
January 22, 2020	24 hrs.	none	0.00	-9.3	No precipitation	Regional groundwater flow; precipitation as snowfall; frozen to near frozen conditions.
January 23, 2020	24 hrs.	none	0.00	-7.7	No precipitation	showian, nozen to near nozen conditions.
February 20-26, 2020	7 days	February 25	0.62	-0.6	Minimal precipitation (0.62 mm)	
				3.3	in preceding 7 days No precipitation	Regional groundwater flow; precipitation as
February 26, 2020	24 hrs.	none	0.00	5.3	No precipitation	snowfall; frozen to near frozen conditions.
February 27, 2020	24 hrs.	none			Minimal precipitation (2.42 mm)	
March 18-24, 2020	7 days	March 22, 23	2.42	-4.2	in preceding 7 days	Regional groundwater flow; near frozen
March 24, 2021	24 hrs.	none	0.00	-8.2	No precipitation	conditions.
March 25, 2020	24 hrs.	none	0.00	-1.9	No precipitation	
April 9-15, 2020	7 days	April 14	0.52	3.0	Minimal precipitation (0.52 mm) in preceding 7 days	
April 15, 2020	24 hrs.	none	0.00	6.0	No precipitation	Regional groundwater flow and early spring
April 16, 2020	24 hrs.	none	0.00	9.6	No precipitation	freshet.
April 17, 2020	24 hrs.	none	0.00	7.0	No precipitation	
May 20-26, 2020	7 days	May 20, 21, 22, 23	23.39	11.5	Moderate Precipitation (23.39 mm) in preceeding 7 days	
May 26, 2020	24 hrs.	May 26	0.70	9.9	Minimal precipitation (0.70 mm) in previous 24 hrs	Surface runoff and enring freehot
May 27, 2020	24 hrs.	May 27	0.00	13.7	No precipitation	Surface runoff and spring freshet.
May 28, 2020	24 hrs.	May 28	0.00	14.4	No precipitation	
June 14-20, 2020	7 days	June 14, 15	61.11	15.8	Significant Precipitation (61.11 mm)	
June 20, 2020	24 hrs.	none	0.00	19	in preceeding 7 days No Precipitation	
June 21, 2020	24 hrs.	none	0.00	18.3	No Precipitation	Surface runoff and shallow groundwater flow
June 22, 2020	24 hrs.	none	0.00	16.0	No Precipitation	
					No precipitation	
July 22-28, 2020	7 days	none	0.00	18.2	in preceding 7 days	
July 28, 2020	24 hrs.	none	0.00	19.1	No Precipitation	Shallow or regional groundwater flow.
July 29, 2020	24 hrs.	none	0.00	18.7	No Precipitation	
July 30, 2020	24 hrs.	none	0.00	19.8	No Precipitation Moderate Precipitation (20.54 mm)	
August 16-22, 2020	7 days	August 20, 21	20.54	17.1	in preceeding 7 days	
August 22, 2020	24 hrs.	none	0.00	13.8	No Precipitation	Shallow or regional groundwater flow and surface runoff.
August 23, 2020	24 hrs.	none	0.00	14.5	No Precipitation	
August 24, 2020	24 hrs.	24-Aug	2.94	12.6	Minimal precipitation (2.94 mm)	
September 21-27, 2020	7 days	September 23, 24, 25, 26, 27	6.41	9.8	Minimal precipitation (6.41 mm) in preceding 7 days	
September 27, 2020	24 hrs.	September 27	1.80	7.8	Minimal precipitation (1.80 mm)	Regional groundwater flow; relatively dry
September 28, 2020	24 hrs.	none	0.00	13.2	No Precipitation	conditions.
September 29, 2020	24 hrs.	none	0.00	10.3	No Precipitation	
October 1-7, 2020	7 days	October 2, 5, 7	3.04	12.3	Minimal precipitation (3.04 mm) in preceding 7 days	
October 7, 2020	24 hrs.	October 7	2.88	5.1	Minimal precipitation (2.88 mm)	Regional groundwater flow; just above frozer conditions.
October 8, 2020	24 hrs.	October 8	3.54	5.6	Minimal precipitation (3.54 mm)	
October 13-19, 2020	7 days	October 13, 19	5.14	-2.5	Minimal precipitation (5.14 mm)	
October 19, 2020	24 hrs.	19-Oct	1.22	-5.9	Minimal precipitation (1.22 mm)	Regional groundwater flow; near to and
October 20, 2020	24 hrs.	none	0.05	-4.9	Minimal precipitation (0.05 mm)	frozen conditions.
October 21, 2020	24 hrs.	none	0.00	-7.2	No Precipitation	
November 13-19, 2020	7 days	November 14, 15, 17, 18	13.11	-9.8	Moderate Precipitation (13.11 mm) in preceeding 7 days	
November 19, 2020	24 hrs.	none	0.00	-17.2	No Precipitation	Regional groundwater flow; precipitation as snowfall: frozen conditions.
November 20, 2020	24 hrs.	none	0.00	-16.2	No Precipitation	
November 23-29, 2020	7 days	November 27	0.25	-2.8	Minimal precipitation (0.25 mm)	
November 29, 2020	24 hrs.	none	0.00	2.2	No Precipitation	Regional groundwater flow; precipitation as snowfall; frozen to near frozen conditions.
November 30, 2020	24 hrs.	none	0.00	0.7	No Precipitation	showian, nozen to near nozen conditions.
Nov 27 - Dec 3, 2020	7 days	November 27	0.25	1.4	Minimal precipitation (0.25 mm)	
December 3, 2020	24 hrs.	none	0.00	2.0	No Precipitation	Regional groundwater flow; precipitation as
December 4, 2020	24 hrs.	none	0.00	7.1	No Precipitation	snowfall; frozen to near frozen conditions.
December 7-13, 2020	7 days	December 12	0.34	-5.0	Minimal precipitation (0.34 mm)	
December 13, 2020	24 hrs.	none	0.00	-18.1	No Precipitation	Regional groundwater flow; precipitation as
December 14, 2022	24 hrs.	none	0.00	-16.5	No Precipitation	snowfall; frozen to near frozen conditions.
December 13-19, 2020	7 days	December 12, 15, 16,	6.17	-16.0	Minimal precipitation (6.17 mm)	
December 19, 2020	24 hrs.	17, 18, 19 19-Dec	1.32	-16.0	Minimal precipitation (0.17 mm)	
December 20, 2020	24 hrs.	December 20	0.44	-7.0 -0.3	Minimal precipitation (1.52 mm)	Regional groundwater flow; precipitation as snowfall; frozen to near frozen conditions.
		December 20 December 21			Minimal precipitation (0.44 mm)	
December 21, 2021	24 hrs.	December 21	0.06	-3.1	winninal precipitation (0.06 mm)	

Turbidity (Daily Mean) and TSS Measurements and Calculations Peace River above Moberly River Date Sampling Event Date Bolded Left Bank **Right Bank** NTU¹ TSS¹ (mg/L) NTU¹ TSS¹ (mg/L) January 16-22, 2020 4.7 5.2 3.8 3.4 January 22, 2020 5.9 4.3 5.3 3.9 5.5 4.0 5.5 4.0 January 23, 2020 January 24, 2020 5.2 3.8 6.4 4.6 February 20-26, 2020 6.7 4.9 8.0 5.8 February 26, 2020 6.4 4.6 7.7 5.6 February 27, 2020 6.4 4.7 6.7 4.9 February 28, 2020 6.6 4.8 7.1 5.1 March 18-24, 2020 6.8 5.0 6.6 4.8 March 24, 2020 4.1 7.3 5.4 5.7 March 25, 2020 7.6 5.5 4.9 3.6 6.4 March 26, 2020 8.7 6.4 4.7 April 9-15, 2020 25.0 18.3 7.7 5.6 April 15, 2020 79.5 58.1 12.3 9.0 454.4 April 16, 2020 17.6 622.4 24.1 April 17, 2020 780.8 570.0 54.0 39.4 April 18, 2020 541.6 395.4 54.8 40.0 May 20-26, 2020 295.1 215.4 23.5 17.1 May 26, 2020 186.9 136.5 124.8 91.1 May 27, 2020 142.5 104.0 90.8 66.3 May 28, 2020 112.3 82.0 76.3 55.7 97.3 May 29, 2020 71.0 60.1 43.9 June 14-20, 2020 2671.9 1950.5 2522.8 1841.6 June 20, 2020 1042.5 761.0 853.4 623.0 June 21, 2020 774.0 565.0 637.2 465.2 June 22, 2020 560.3 409.0 456.4 333.2 394.6 288.1 309.4 225.8 June 23, 2020 July 22-28, 2020 69.7 50.8 45.0 32.8 51.0 July 28, 2020 37.3 36.9 26.9 July 29, 2020 43.1 31.5 33.9 24.8 July 30, 2020 37.2 27.1 30.0 21.9 July 31, 2020 35.3 25.5 29.1 21.2 August 16-22, 2020 28.6 20.9 22.6 16.5 49.0 35.4 25.8 August 22, 2020 67.2 August 23, 2020 155.9 113.8 31.9 23.3 August 24. 2020 196.0 143.1 32.7 23.9 August 25, 2020 73.3 53.5 21.8 15.9 September 21-27, 2020 13.8 10.1 14.1 10.3 September 27, 2020 13.1 9.5 14.2 10.4 16.3 September 28, 2020 11.9 13.3 9.7 September 29, 2020 15.2 11.1 13.7 10.0 September 30, 2020 20.4 14.9 13.9 10.1 Sep 30 - Oct 6, 2020 20.2 14.8 12.1 8.8 October 7, 2020 19.3 14.1 11.3 8.3 October 8, 2020 15.0 10.9 12.2 8.9 October 9, 2020 15.7 11.5 12.5 9.1 October 13-19 2020 13.3 9.7 8.4 11.5 October 19, 2020 7.8 5.7 8.7 6.4 October 20, 2020 8.6 6.3 9.4 6.9 October 21, 2020 8.0 5.8 8.9 6.5 October 22, 2020 9.1 6.6 9.4 6.9 November 13-19, 2020 15.5 11.2 15.8 11.4 14.3 November 19, 2020 19.9 18.9 13.6 November 20, 2020 13.2 9.5 15.0 10.8 November 21, 2020 8.5 9.8 11.8 13.6 November 23-29, 2020 14.0 10.1 12.7 9.2 17.9 12.9 14.1 10.1 November 29, 2020 November 30, 2020 17.3 12.5 13.5 9.7 December 1, 2020 16.1 14.7 10.6 11.6

Table 4: Daily Mean Turbidity and TSS Measurements with the Peace River 2020

Nov 26 - Dec 3, 2020	14.4	10.4	13.0	9.3
December 3, 2020	11.8	8.5	11.9	8.6
December 4, 2020	15.1	10.9	13.6	9.8
December 5, 2020	10.1	7.2	11.0	7.9
December 7-13, 2020	11.9	8.5	12.0	8.7
December 13, 2020	8.8	6.3	9.8	7.1
December 14, 2020	8.0	5.7	10.9	7.9
December 15, 2020	7.0	5.1	12.9	9.3
December 13-19, 2020	7.3	5.2	10.2	7.3
December 19, 2020	6.1	4.4	8.2	5.9
December 20, 2020	6.0	4.3	7.3	5.3
December 21, 2020	6.0	4.3	7.1	5.1
December 22, 2020	5.3	3.8	7.8	5.6

¹ NTU (Nephelometric Turbidity Unit) and TSS (total suspended sediment) data provided by Ecofish Ltd., January 21, 2021.

NTU: to some extent, measures (scattered light at 90 degrees from the incident light beam) how much light reflects for a given amount of particulates dependent upon properties of the particles, e.g. their shape, color, and reflectivity.

Note: 7-day average turbidity values are calculated as the average turbidity measured during the prior seven days to the sampling event.

Table 5: 2020 Quality Assurance/Quality Control for Water Quality Sample Results

Table 5: 2020 Quality Assurance/C			Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Travel Blank	Field Blank	Travel Blank	Field Blank
Parameter	Unit	RDL	23-Jan-20	23-Jan-20	27-Feb-20	27-Feb-20						
Dhusiaal Dammatan			23-Jan-20	23-Jan-20	27-Feb-20	27-Feb-20	25-Mar-20	25-Mar-20	16-Apr-20	17-Apr-20	28-May-20	28-May-20
Physical Parameters Acidity (as CaCO ₃)	µg/L	1000	2100	2100	2500	2500	<2000	<2000	1300	1300	1100	1200
Alkalinity (Total as CaCO ₃)	μg/∟ mg/L	1.0	<1000	<1000	<1000	<1000	<1000	<1000	69	70	<1	<1
Electrical Conductivity (EC)	µS/cm	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	169	170	<2	<2
Hardness as CaCO ₃ , dissolved	μg/L	500	<600		<600		<600		82600	80900	<500	<500
Hardness as CaCO ₃ , from total Ca/Mg	µg/L		<600		<600		<600	<600				
рН	pH Units	0.1	5.61	5.48	5.24	5.24	5.32	5.29	8.08	8.08	5.46	5.42
Total Dissolved Solids (TDS)	µg/L	10000	<10000	<10000	<10000	<10000	<10000	<10000	121000	90000	<10000	<10000
Total Suspended Solids (TSS)	µg/L	3000	<3000	<3000	<3000	<3000	<3000	<3000	<1000	<1000	<1000	<1000
Alkalinity (Hydroxide as CaCO ₃) Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Carbonate as $CaCO_3$) Alkalinity (Bicarbonate as $CaCO_3$)	μg/L μg/L	1000 1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 69000	<1000 70000	<1000 <1000	<1000 <1000
Anions and Nutrients	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	09000	70000	<1000	<1000
Ammonia (NH₄ as N)	µg/L	5.0	11.9	<5	6.3	<5	<5	<5	<50	<50	<5	57.3
Chloride (Cl [°])	µg/L	500	<500	<500	<500	<500	<500	<500	4560	4600	<500	<500
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0	<5	<5	<5	<5	<5	<5	30.6	35.7	<5	<5
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO ₄)	µg/L	300	<300	<300	<300	<300	<300	<300	13400	13400	<300	<300
Dissolved Organic Carbon (DOC)	µg/L		<500		<500		<500					
Metals, Total Aluminum		3.0	-2		-2		<3	<3	10.1	11 7	-2	-0
Antimony	μg/L μg/L	0.10	<3 <0.1		<3 <0.1		<0.1	<0.1	13.1 <0.1	11.7 <0.1	<3 <0.1	<3 <0.1
Arsenic	μg/L μg/L	0.10	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	μg/L	0.10	<0.1		<0.1		<0.1	<0.1	38.6	37.9	<0.1	<0.1
Beryllium	µg/L	0.10	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	µg/L	0.05	<0.05		<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Boron	µg/L	10	<10		<10		<10	<10	<10	<10	<10	<10
Cadmium	µg/L	0.005	<0.005		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium	µg/L	50	<50		<50		<50	<50	23700	22600	<50	<50
Cesium	µg/L	0.01	< 0.01		< 0.01		<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium Cobalt	μg/L μg/L	0.10	<0.1 <0.1		<0.1 <0.1		<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Copper	μg/L μg/L	0.10	<0.1		<0.1		<0.1	<0.1	<0.1 2.18	2.18	<0.1	<0.1 <0.5
Iron	μg/L μg/L	10	<0.5		<0.5		<10	<10	<10	<10	<10	<0.5
Lead	µg/L	0.05	< 0.05		< 0.05		<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Lithium	µg/L	1.0	<1		<1		<1	<1	2.1	2.1	<1	<1
Magnesium	µg/L	5.0	<5		<5		<5	<5	5680	5590	<5	<5
Manganese	µg/L	0.10	<0.1		<0.1		<0.1	<0.1	0.12	0.11	<0.1	<0.1
Mercury	µg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0105	-	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	0.165		<0.05		<0.05	<0.05	0.291	0.264	<0.05	<0.05
Nickel	µg/L	0.5	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Phosphorus Potassium	μg/L μg/L	50.0 50.0	<50 <50		<50 <50		<50 <50	<50 <50	<50 364	<50 346	<50 <50	<50 <50
Rubidium	μg/L μg/L	0.2	<0.2		<0.2		<0.2	<0.2	0.21	<0.2	<0.2	<0.2
Selenium	μg/L μg/L	0.2	<0.2		<0.2		<0.2	<0.2	0.166	0.179	<0.2	<0.2
Silicon	μg/L	100	<100		<100		<100	<100	829	817	<100	<100
Silver	µg/L	0.01	<0.01		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	<50		<50		<50	<50	4110	4210	<50	<50
Strontium	µg/L	0.2	<0.2		<0.2		<0.2	<0.2	103	100	<0.2	<0.2
Sulfur	µg/L	500	<500		<500		<500	<500	3960	3950	<500	<500
Tellurium	µg/L	0.2	<0.2		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	< 0.01		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium Tin	μg/L μg/L	0.10	<0.1 <0.1		<0.1 <0.1		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Titanium	μg/L	0.30	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tungsten	μg/L	0.10	<0.1		<0.1		<0.0	<0.0	<0.0	<0.0	<0.1	<0.1
Uranium	μg/L	0.01	<0.01		<0.01		<0.01	<0.01	0.122	0.116	<0.01	<0.01
Vanadium	μg/L	0.50	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	3.0	<3		<3		<3	<3	7.6	5	<3	<3
Zirconium	µg/L	0.06	<0.2		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Metals, Dissolved		4.0								<u> </u>		
Aluminum Antimony	µg/L	1.0 0.10	<1 <0.1		<1 <0.1		<1 <0.1			9.1 <0.1		<1 <0.1
Antimony Arsenic	μg/L μg/L	0.10	<0.1		<0.1		<0.1 <0.1			<0.1		<0.1 <0.1
Barium	μg/L μg/L	0.10	<0.1		<0.1		0.29		<u> </u>	<0.1 39.8		<0.1
Beryllium	μg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1
Bismuth	μg/L	0.05	<0.05		<0.05		<0.05			<0.05		<0.05
Boron	µg/L	10.0	<10		<10		<10			<10		<10
Cadmium	µg/L	0.005	<0.005		<0.005		<0.005			<0.005		<0.005
Calcium	µg/L	50.0	<50		<50		<50			23300		<50
Cesium	µg/L	0.01	< 0.01		< 0.01		<0.01			< 0.01		< 0.01
Chromium Cobalt	μg/L μg/L	0.10	<0.1 <0.1		<0.1 <0.1		<0.1			<0.1 <0.1		<0.1 <0.1
Copper	μg/L μg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1 <0.2
Iron	μg/L μg/L	10.0	<0.2		<0.2		<10		<u> </u>	<10		<0.2
Lead	μg/L	0.05	<0.05		<0.05		<0.05			<0.05	1	<0.05
Lithium	μg/L	1.0	<1		<1		<1			1.9		<1
Magnesium	µg/L	5.0	<5		<5		<5			5540		<5
Manganese	µg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1
Mercury	µg/L	0.005	<0.005		<0.005		0.0094			<0.005		<0.005
Molybdenum	µg/L	0.05	<0.05		<0.05		<0.05			0.277		<0.05
Nickel	µg/L	0.50	<0.5		<0.5		<0.5			<0.5		<0.5
Phosphorus Potassium	µg/L	50.0 50.0	<50		<50		<50		<u> </u>	<50		<50
Rubidium	μg/L μg/L	0.20	<50 <0.2		<50 <0.2		<50 <0.2			350 <0.2		<50 <0.2
Selenium	μg/L μg/L	0.20	<0.2		<0.2		<0.2			0.22		<0.2
Silicon	μg/L	50.0	<50		<50		<50			812		<50
Silver	μg/L	0.01	<0.01		<0.01		<0.01			<0.01		<0.01
Sodium	μg/L	50.0	<50		<50		<50			4120		<50
Strontium	µg/L	0.2	<0.2		<0.2		<0.2			109		<0.2

Strontium	µg/L	0.2	<0.2		<0.2		<0.2			109		<0.2
Sulfur	µg/L	500	<500		<500		<500			4530		<500
Tellurium	µg/L	0.20	<0.2		<0.2		<0.2			<0.2		<0.2
Thallium	µg/L	0.01	<0.01		<0.01		<0.01			<0.01		<0.01
Thorium	µg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1
Tin	µg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1
Titanium	µg/L	0.30	<0.3		<0.3		<0.3			<0.3		<0.3
Tungsten	µg/L	0.10	<0.1		<0.1		<0.1			<0.1		<0.1
Uranium	µg/L	0.01	<0.01		<0.01		<0.01			0.119		<0.01
Vanadium	µg/L	0.50	<0.5		<0.5		<0.5			<0.5		<0.5
Zinc	µg/L	1.0	<1		<1		<1			5.1		<1
Zirconium	µg/L	0.06	<0.2		<0.2		<0.2			<0.2		<0.2
Laboratory Work Order Number			VA20A0816	VA20A0816	VA20A2572	VA20A2572	VA20A4062	VA20A4062	L2438183	L2438183	L2454036	L2454036
Laboratory Identification Number			VA20A0816-002	/A20A0816-00	VA20A2572-01	/A20A2572-01	VA20A4062-007	VA20A4062-006	L2438183-14	L2438183-15	L2454036-4	L2454036-3

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

BOLD - RPD greater than 30% Blank - not analyzed.

Table 5: 2020 Quality Assurance/Quality Control for Wate

Parameter	Unit	RDL	Travel Blank	Field Blank	Travel Blank	Field Blank						
Parameter	Unit	RDL	21-Jun-20	22-Jun-20	30-Jul-20	30-Jul-20	24-Aug-20	24-Aug-20	29-Sep-20	29-Sep-20	8-Oct-20	8-Oct-20
Physical Parameters												
Acidity (as CaCO ₃) Alkalinity (Total as CaCO ₃)	µg/L	1000	<1000	1100	1600	1400	1400	1300	1800	1900	1600	No Field Blank
Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	<1 <2	<1 <2	<1 <2	<1 <2	1.9 <2	<1 <2	<1 <2	<1 <2	<1 <2	Utilized
Hardness as $CaCO_3$, dissolved	μg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	
Hardness as CaCO ₃ , from total Ca/Mg	µg/L											
pH	pH Units	0.1	5.60	5.52	5.56	5.30	6.52	5.53	5.65	5.75	5.64	
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	<10000 <1000									
Alkalinity (Hydroxide as CaCO ₃)	μg/L μg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	1900	<1000	<1000	<1000	<1000	
Anions and Nutrients		5.0										
Ammonia (NH ₄ as N) Chloride (Cl [°])	μg/L μg/L	5.0 500	<50 <500									
Nitrate (NO_3^- as N)	μg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Sulphate (SO ₄)	µg/L	300	<300	<300	<300	<300	<300	<300	<300	<300	<300	
Dissolved Organic Carbon (DOC)	µg/L			-		<1.0	<1.0	<1.0				
Metals, Total Aluminum	μg/L	3.0	<3	<3	<3	<3	<3	<3	<3	<3	<3	
Antimony	μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Arsenic	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Barium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Beryllium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Bismuth Boron	μg/L μg/L	0.05	<0.05 <10									
Cadmium	μg/L μg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Calcium	μg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<u> </u>
Cesium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chromium	μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Cobalt Copper	μg/L μg/L	0.10	<0.1 <0.5	┨─────┨								
Iron	μg/L	10	<10	<10	<0.5	<10	<10	<10	<10	<10	<10	
Lead	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Lithium	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Magnesium	µg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	
Manganese Mercury	μg/L μg/L	0.10 0.005	<0.1 <0.005	<0.1	<0.1	<0.1	<0.1	<0.1 <0.005	<0.1	<0.1	<0.1 <0.005	
Molybdenum	μg/L	0.005	<0.005	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005	<0.005 <0.05	<0.005 <0.05	<0.005	
Nickel	μg/L	0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	
Phosphorus	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Potassium	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Rubidium Selenium	μg/L μg/L	0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	
Silicon	μg/L μg/L	100	<0.05 <100	<0.05 <100	<0.05 <50							
Silver	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Sodium	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	
Strontium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Sulfur	µg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	
Tellurium Thallium	μg/L μg/L	0.2	<0.2 <0.01									
Thorium	μg/L	0.01	<0.1	<0.1	<0.01	<0.1	<0.1	<0.01	<0.1	<0.1	<0.01	
Tin	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Titanium	µg/L	0.30	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Tungsten	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Uranium Vanadium	μg/L μg/L	0.01	<0.01 <0.5									
Zinc	μg/L	3.0	<3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<3	<0.5	
Zirconium	µg/L	0.06	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Metals, Dissolved												
Aluminum	µg/L	1.0		<1		<1	<1	2.2	<1	<1		├
Antimony Arsenic	μg/L μg/L	0.10		<0.1 <0.1		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		
Barium	μg/L μg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Beryllium	μg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Bismuth	μg/L	0.05		<0.05		<0.05	<0.05	<0.05	<0.05	<0.05		
Boron	μg/L	10.0		<10		<10	<10	<10	<10	<10		
Cadmium Calcium	μg/L μg/L	0.005		<0.005 <50		<0.005 <53	<0.005 <50	<0.005 <50	<0.005 <50	<0.005 <50		┨─────┨
Cesium	μg/L μg/L	0.01		<50		<53	<50	<50	<50	<50		
Chromium	μg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Cobalt	µg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Copper	µg/L	0.20		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2		
Iron Lead	μg/L μg/L	10.0 0.05	<u> </u>	<10 <0.05		<10 <0.05	<10 <0.05	<10 <0.05	<10 <0.05	<10 <0.05	<u> </u>	┼────┤
Lithium	μg/L μg/L	1.0		<0.05		<0.05	<0.05	<0.05	<0.05	<0.05		
Magnesium	μg/L	5.0		<5	<u> </u>	<5	<5	<5	<5	<5		
Manganese	µg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Mercury	μg/L	0.005		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005		ļ]
Molybdenum Nickol	µg/L	0.05		<0.05		<0.05	< 0.05	<0.05	< 0.05	<0.05		
Nickel Phosphorus	μg/L μg/L	0.50 50.0		<0.5 <50		<0.5 <50	<0.5 <50	<0.5 <50	<0.5 <50	<0.5 <50		
Potassium	μg/L μg/L	50.0		<50		<50	<50	<50	<50	<50		
Rubidium	μg/L	0.20		<0.2	<u> </u>	<0.2	<0.2	<0.2	<0.2	<0.2		<u> </u>
Selenium	µg/L	0.05		<0.05		<0.05	<0.05	<0.05	<0.05	<0.05		
Silicon	µg/L	50.0		<50		<50	<50	<50	<50	<50		
Silver Sodium	μg/L μg/L	0.01 50.0	<u> </u>	<0.01 <50		<0.01 <50	<0.01 <50	<0.01 <50	<0.01 <50	<0.01 <50		┨─────┨
Strontium	μg/L μg/L	0.2		<50		<0.2	<50	<50	<50	<0.2		
												•

Sodium	µg/L	50.0		<50		<50	<50	<50	<50	<50		
Strontium	μg/L	0.2		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2		
Sulfur	µg/L	500		<500		<500	<500	<500	<500	<500		
Tellurium	µg/L	0.20		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2		
Thallium	μg/L	0.01		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01		
Thorium	μg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Tin	µg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Titanium	μg/L	0.30		<0.3		<0.3	<0.3	<0.3	<0.3	<0.3		
Tungsten	µg/L	0.10		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1		
Uranium	µg/L	0.01		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01		
Vanadium	μg/L	0.50		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5		
Zinc	μg/L	1.0		<1		2.5	<1	<1	<1	<1		
Zirconium	μg/L	0.06		<0.2		<0.2	<0.2	<0.2	<0.2	<0.2		
Laboratory Work Order Number			L2464256	L2464256	L2482349	L2482349	L2493339	L2493339	L2510600	L2510600	L2515191	
Laboratory Identification Number			L2464256-13	L2464256-14	L2482349-8	L2482349-9	L2493339-12	L2493339-13	L2510600-5	L2510600-4	L2515191-6	

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Table 5: 2020 Quality Assurance/Quality Control for Wate

Boyamatar	Unit	RDL	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank
Parameter	Unit	RDL	21-Oct-20	20-Oct-20	20-Nov-20	20-Nov-20	30-Nov-20	30-Nov-20	4-Dec-20	4-Dec-20	14-Dec-20	14-Dec-20
Physical Parameters												
Acidity (as CaCO ₃)	µg/L	1000	1500	<1000	1600	1500	1300	2200	1300	1300	1500	1400
Alkalinity (Total as CaCO ₃)	mg/L	1.0	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1
Electrical Conductivity (EC)	μS/cm	2.0	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Hardness as CaCO ₃ , dissolved	µg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Hardness as CaCO ₃ , from total Ca/Mg	µg/L											
pH	pH Units	0.1	5.65	6.08	5.41	5.38	5.42	5.58	5.35	5.56	5.51	5.51
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	µg/L	10000 3000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000
Alkalinity (Hydroxide as CaCO ₃)	μg/L μg/L	1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<3000 <1000	<3000 <1000
Alkalinity (Carbonate as CaCO ₃)	μg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	1200	<1000	<1000
Anions and Nutrients	10											
Ammonia (NH ₄ as N)	µg/L	5.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Chloride (Cl ⁻)	µg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO ₄)	µg/L	300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300
Dissolved Organic Carbon (DOC)	µg/L											
Metals, Total Aluminum	µg/L	3.0	<3	-2	-2	<3	-2	-2	<3	-2	-2	<3
Antimony	μg/L μg/L	0.10	<0.1	<3 <0.1	<3 <0.1	<0.1	<3 <0.1	<3 <0.1	<0.1	<3 <0.1	<3 <0.1	<0.1
Arsenic	μg/L μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	μg/L	0.10	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.02
Bismuth	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Boron	µg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	µg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium	µg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cesium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper Iron	μg/L μg/L	0.50	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10	<0.5 <10
Lead	μg/L μg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	μg/L	1.0	<0.05	<1	<0.03	<0.03	<0.05	<0.05	<0.03	<0.05	<0.05	<0.05
Magnesium	μg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Manganese	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	µg/L	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phosphorus	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<100	<100
Rubidium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Silicon	µg/L	100	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Silver Sodium	µg/L	0.01 50.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Strontium	μg/L μg/L	0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2	<50 <0.2
Sulfur	μg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Tellurium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/L	0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Vanadium Zinc	µg/L	0.50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Zinc Zirconium	μg/L μg/L	0.06	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.2	<3 <0.3	<3 <0.3
Metals, Dissolved	µy/∟	0.00	<u>∼∪.∠</u>	NU.2	NU.2	NU.2	NU.2	NU.2	<u> ~0.2</u>	NU.2	<u>~0.0</u>	~ 0.3
Aluminum	µg/L	1.0	<1	<1	1	1				1		
Antimony	μg/L	0.10	<0.1	<0.1	<u> </u>					1		
Arsenic	µg/L	0.10	<0.1	<0.1								
Barium	µg/L	0.10	<0.1	<0.1								
Beryllium	µg/L	0.10	<0.1	<0.1	ļ	ļ				ļ		
Bismuth	µg/L	0.05	<0.05	<0.05	ļ	ļ				ļ		
Boron	µg/L	10.0	<10	<10								
Cadmium Calcium	µg/L	0.005	< 0.005	< 0.005								
Calcium Cesium	μg/L μg/L	0.01	<50 <0.01	<50 <0.01								
Chromium	μg/L μg/L	0.01	<0.01	<0.01								
Cobalt	μg/L	0.10	<0.1	<0.1	1	1				1		
Copper	μg/L	0.20	<0.2	<0.2								
Iron	μg/L	10.0	<10	<10								
Lead	µg/L	0.05	<0.05	<0.05								
Lithium	µg/L	1.0	<1	<1								
Magnesium	µg/L	5.0	<5	<5		<u></u>						
Manganese	µg/L	0.10	<0.1	<0.1								
Mercury	µg/L	0.005	<0.005	<0.005								
Molybdenum	µg/L	0.05	<0.05	<0.05	l	l				l		
Nickel	µg/L	0.50	<0.5	<0.5								
Phosphorus Potessium	µg/L	50.0	<50	<50								
Potassium Rubidium	μg/L μg/L	50.0 0.20	<50 <0.2	<50 <0.2								
Selenium	μg/L μg/L	0.20	<0.2	<0.2				L				
Silicon	μg/L μg/L	50.0	<0.05	<0.05								
Silver	μg/L	0.01	<0.01	<0.01	1	1				1		
Sodium	μg/L	50.0	<50	<50								
Strontium	μg/L	0.2	<0.2	<0.2								
							1		1			

Strontium	µg/L	0.2	<0.2	<0.2								
Sulfur	µg/L	500	<500	<500								
Tellurium	µg/L	0.20	<0.2	<0.2								
Thallium	µg/L	0.01	<0.01	<0.01								
Thorium	µg/L	0.10	<0.1	<0.1								
Tin	µg/L	0.10	<0.1	<0.1								
Titanium	µg/L	0.30	<0.3	<0.3								
Tungsten	µg/L	0.10	<0.1	<0.1								
Uranium	µg/L	0.01	<0.01	<0.01								
Vanadium	µg/L	0.50	<0.5	<0.5								
Zinc	µg/L	1.0	<1	<1								
Zirconium	µg/L	0.06	<0.2	<0.2								
Laboratory Work Order Number			L2520235	L2520229	L2532220	L2532220	L2535101	L2535101	L2537214	L2537214	L2540107	L2540107-3
Laboratory Identification Number			L2520235-3	L2520229-8	L2532220-4	L2532220-5	L2535101-11	L2535101-10	L2537214-5	L2537214-4	L2540107-4	L2540107-3

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Table 5: 2020 Quality Assurance/Quality Control for Wate

Parameter	Unit	RDL	Travel Blank	Field Blank	RBSC	RBSC-R	RPD	RBSBIAR-DS	RBSBIAR-DS-R	RPD	RBSC-DS	RBSC-DS-R
Parameter	Unit	RDL	21-Dec-20	21-Dec-20	23-	Jan-20	RPD	27-F	eb-20	RPD	25-	Mar-20
Physical Parameters												
Acidity (as CaCO ₃)	µg/L	1000	1200	1300	12200	15400	23.2	<2000	<2000	-	<2000	<2000
Alkalinity (Total as CaCO ₃)	mg/L	1.0 2.0	<1	<1 <2	368 12200	362 15400	1.6	242000	275000	12.77	329000	321000
Electrical Conductivity (EC) Hardness as CaCO ₃ , dissolved	μS/cm μg/L	2.0 500	<2 <500	<2	502000	489000	23.2 2.62	742 234000	739 232000	0.41 0.86	871 418000	877 419000
Hardness as CaCO ₃ , from total Ca/Mg	μg/L	500	<000	<000	580000	558000	3.87	233000	250000	7.04	460000	465000
bH	pH Units	0.1	5.40	5.44	8.26	8.22	0.49	8.08	8.14	0.74	7.97	8.02
Total Dissolved Solids (TDS)	µg/L	10000	<10000	<10000	721000	744000	3.14	449000	427000	5.02	558000	606000
Total Suspended Solids (TSS)	µg/L	3000	<1000	<1000	<3000	4500	40.0	<3000	<3000	-	3500	<3000
Alkalinity (Hydroxide as CaCO ₃) Alkalinity (Carbonate as CaCO ₃)	μg/L	1000 1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	0.0	<1000 <1000	<1000 <1000	-	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as $CaCO_3$)	μg/L μg/L	1000	<1000	<1000	368000	362000	0.0	242000	275000	- 12.77	329000	321000
Anions and Nutrients	1-3/-					002000		212000	210000	.2	020000	021000
Ammonia (NH₄ as N)	µg/L	5.0	<50	<50	29.5	37.1	22.82	548	546	0.37	25.2	24.1
Chloride (Cl ⁻)	µg/L	500	<500	<500	18600	18400	1.08	57100	56500	1.06	10500	10400
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0 1.0	<5	<5	<25	<25	0.0	843	855	1.41	<25	<25
Nitrite (NO ₂ ⁻ as N) Sulphate (SO ₄)	μg/L μg/L	300	<1 <300	<1 <300	<5 230000	<5 230000	0.0	46.5 69100	46.2 68100	0.65 1.46	<5 169000	<5 167000
Dissolved Organic Carbon (DOC)	μg/L				2340	2540	8.20	7720	7960	3.06	2190	2300
Metals, Total	10											
Aluminum	µg/L	3.0	<3	<4	4.9	23.7	131.47	59.4	56	5.89	7.8	10.3
Antimony	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	-	0.42	0.42	0.00	<0.1	<0.1
Arsenic Barium	µg/L	0.10	<0.1 <0.1	<0.1 <0.1	0.38	0.93 30.5	83.97 4.36	0.39 73.2	0.38 74.3	2.60	0.39 33.5	0.38 33.5
Sarium Seryllium	μg/L μg/L	0.10	<0.1	<0.1	29.2 <0.1	30.5 <0.1	4.30	<0.1	<0.1	1.49 -	33.5 <0.1	33.5 <0.1
Bismuth	μg/L	0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05
Boron	µg/L	10	<10	<11	66	69	4.44	95	88	7.65	54	54
Cadmium	µg/L	0.005	<0.005	<0.006	0.0292	0.02	37.40	0.0729	0.0694	4.92	0.0249	0.0301
	µg/L	50	<50	<51	168000	160000	4.88	67800	74400	9.28	130000	132000
Cesium Chromium	μg/L μg/L	0.01 0.10	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	-	0.11 6.7	0.112 6.46	1.80 3.65	<0.01 0.16	<0.01 <0.1
Cobalt	μg/L μg/L	0.10	<0.1	<0.1	0.84	1.11	27.69	0.84	0.88	4.65	0.16	0.54
Copper	μg/L	0.50	<0.5	<0.5	<0.5	<0.5	-	2	2.1	4.88	<0.5	<0.5
Iron	µg/L	10	<10	<11	359	1320	114.47	58	48	18.87	319	313
Lead	µg/L	0.05	<0.05	<0.06	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05
Lithium	µg/L	1.0 5.0	<1	<1	33.1	35.4	6.72	21.8	20.6	5.66	22.8	22.5
Magnesium Manganese	μg/L μg/L	0.10	<5 <0.1	<5 <0.1	39100 1860	38100 1630	2.59 13.18	15500 16.8	15700 16.7	1.28 0.60	32900 1460	32900 1390
Mercury	μg/L	0.005	<0.005	<0.005	<0.005	<0.005	-	<0.005	< 0.005	-	0.0192	<0.005
Molybdenum	µg/L	0.05	< 0.05	< 0.05	1.46	0.912	46.21	19.7	19.4	1.53	3.05	1.63
Nickel	µg/L	0.5	<0.5	<0.5	21.2	15	34.25	7.59	7.63	0.53	11.6	11.3
Phosphorus	µg/L	50.0	<50	<50	<50	<50	-	<50	<50	-	<50	<50
Potassium Rubidium	μg/L μg/L	50.0 0.2	<50 <0.2	<50 <0.2	1700 1.22	1690 1.08	0.59	7090 14.1	7310 13.8	3.06 2.15	1460 0.98	1450 0.94
Selenium	μg/L μg/L	0.2	<0.2	<0.2	<0.05	0.06	12.17	14.1	0.913	2.15	<0.05	<0.05
Silicon	µg/L	100	<50	<51	4670	4750	1.70	4270	4110	3.82	3860	3830
Silver	µg/L	0.01	<0.01	<0.02	<0.01	<0.01		<0.01	<0.01	-	<0.01	<0.01
Sodium	µg/L	50.0	<50	<51	40800	41900	2.66	55600	55900	0.54	32100	31600
Strontium	µg/L	0.2	<0.2	<0.3	413	416	0.72	505	490	3.02	348	350
Sulfur Tellurium	μg/L μg/L	500 0.2	<500 <0.2	<501 <0.2	87700 <0.2	87200 <0.2	0.57	25500 <0.2	23800 <0.2	6.90	58900 <0.2	58400 <0.2
Thallium	µg/L	0.2	<0.2	<0.01	<0.2	<0.2	-	0.025	0.022	- 12.77	<0.2	<0.01
Thorium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Tin	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Titanium	µg/L	0.30	<0.3	<0.3	<0.3	0.5	-	1.33	1.3	2.28	<0.3	<0.3
Tungsten	µg/L	0.10	<0.1	<0.1 <0.01	<0.1	<0.1	- 10.60	<0.1	<0.1	-	<0.1	<0.1
Uranium Vanadium	μg/L μg/L	0.01	<0.01 <0.5	<0.01 <0.5	1.59 <0.5	1.43 <0.5	10.60	0.892 <0.5	0.888 <0.5	0.45	1.1 <0.5	1.09 <0.5
Zinc	μg/L	3.0	<3	<0.5	3.4	<0.5	-	5.4	6.2	- 13.79	<0.5	<0.5
Zirconium	μg/L	0.06	<0.2	<0.3	<0.2	<0.2	-	<0.2	<0.2	-	0.23	<0.2
Metals, Dissolved												
Aluminum	µg/L	1.0			<1	1.1	-	13.2	13.3	0.75	<1	<1
Antimony Arsenic	µg/L	0.10			<0.1 0.36	<0.1 0.42	- 15.38	0.41	0.42	2.41	<0.1	<0.1 0.42
Arsenic Barium	μg/L μg/L	0.10			0.36 28.9	0.42	3.16	0.37	0.35 70.3	5.56 0.99	0.35 31.9	0.42
Beryllium	μg/L	0.10	1		<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Bismuth	μg/L	0.05			<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05
Boron	µg/L	10.0			58	58	0.00	97	88	9.73	51	53
Cadmium	µg/L	0.005			0.0131	0.0145	10.14	0.0658	0.0651	1.07	0.0211	0.0198
Calcium Cesium	μg/L μg/L	50.0 0.01			144000 <0.01	139000 <0.01	3.53	68300 0.106	67500 0.106	1.18 0.00	117000 <0.01	120000 <0.01
Chromium	μg/L μg/L	0.01			<0.01	<0.01	-	6.72	6.22	7.73	<0.01	<0.01
Cobalt	μg/L μg/L	0.10	1		0.74	0.99	28.90	0.82	0.81	1.23	0.52	0.57
Copper	µg/L	0.20			<0.2	<0.2	-	1.85	1.88	1.61	<0.2	<0.2
ron	μg/L	10.0			338	450	28.43	<10	<10	-	300	355
Lead	μg/L	0.05			< 0.05	< 0.05	-	0.057	< 0.05	-	< 0.05	< 0.05
_ithium Magnesium	μg/L μg/L	1.0 5.0			29.8 35000	30.1 34500	1.00 1.44	22.8 15500	21.8 15300	4.48 1.30	24.8 30400	24.8 28900
Magnesium	μg/L μg/L	0.10			2030	2000	1.44	15500	15300	0.62	1340	1310
Mercury	μg/L	0.005			<0.005	<0.005	-	<0.005	<0.005	-	0.021	<0.005
Molybdenum	µg/L	0.05			0.846	0.958	12.42	19.8	19.2	3.08	0.914	0.86
Nickel	µg/L	0.50			22.4	20.8	7.41	7.51	7.55	0.53	10.9	10.1
Phosphorus	µg/L	50.0			<50	<50	-	<50	<50	-	<50	<50
Potassium Rubidium	µg/L	50.0 0.20			1790	1750	2.26 4.65	7150	7020	1.83	1490	1470
Rubidium Selenium	μg/L μg/L	0.20			1.26 0.07	1.32 0.06	4.65	14.6 1.01	14 1.16	4.20 13.82	1 0.092	0.98
Silicon	μg/L	50.0	1		4030	3940	2.26	4170	4080	2.18	3800	3820
Silver	μg/L	0.01			<0.01	<0.01	-	<0.01	<0.01		<0.01	<0.01
Sodium	ug/l	50.0			42200	41500	1 67	54300	53400	1.67	29700	29800

Strontium	µg/L	0.2			403	397	1.50	504	493	2.21	337	340
Sulfur	µg/L	500			79100	78200	1.14	23700	23900	0.84	55200	59800
Tellurium	µg/L	0.20			<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2
Thallium	µg/L	0.01			<0.01	<0.01	-	0.03	0.024	22.22	<0.01	<0.01
Thorium	µg/L	0.10			<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Tin	µg/L	0.10			<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Titanium	µg/L	0.30			<0.3	<0.3	-	<0.3	<0.3	-	<0.3	<0.3
Tungsten	µg/L	0.10			<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1
Uranium	µg/L	0.01			1.56	1.48	5.26	0.873	0.901	3.16	1.12	1.11
Vanadium	µg/L	0.50			<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5
Zinc	µg/L	1.0			2.8	3.4	19.35	4.9	5.1	4.00	2.4	1.7
Zirconium	µg/L	0.06			<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2
Laboratory Work Order Number			L2542477	L2542477	VA20A0816	VA20A0816		VA20A2572	VA20A2572		VA20A4062	VA20A4062
Laboratory Identification Number			L2542477-5	L2542477-6	VA20A0816-001	VA20A0816-004		VA20A2572-001	VA20A2572-009		VA20A4062-001	VA20A4062-005

42200

41500

1.67

54300

53400

1.67

29700

29800

Notes:

Sodium

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

50.0

µg/L

Table 5: 2020 Quality Assurance/Quality Control for Wate

Parameter	Unit	RDL	RPD	LBL3C-1.65	LBL3C-1.65-R	RPD	RBSBIAR-DS	RBSBIAR-DS-R	RPD	LBRR-EDP	LBRR-EDP-R	RPD
	onit	NDL		17-	Apr-20	iu b	27-1	/lay-20	14 5	21-J	un-20	14 5
hysical Parameters												
cidity (as CaCO ₃)	µg/L	1000	-	2100	2100	0.00	1900	1100	53.33	4700	3000	44.16
Ikalinity (Total as CaCO ₃)	mg/L	1.0	2.46	64.9	65.6	1.07	196	193	1.54	194	189	2.61
lectrical Conductivity (EC)	μS/cm	2.0	0.69	192	197	2.57	903	906	0.33	1630	1660	1.82
ardness as CaCO ₃ , dissolved	µg/L	500	0.24	72200	72500	0.41	331000	340000	2.68	942000	904000	4.12
ardness as CaCO ₃ , from total Ca/Mg	µg/L		1.08									
1	pH Units	0.1	0.63	7.78	7.82	0.51	8.1	8.06	0.50	8.04	8.05	0.12
otal Dissolved Solids (TDS)	µg/L	10000	8.25	252000	286000	12.64	572000	584000	2.08	1300000	1340000	3.03
otal Suspended Solids (TSS)	µg/L	3000	-	440000	559000	23.82	6300	5500	13.56	4300	3200	29.33
Ikalinity (Hydroxide as CaCO ₃)	µg/L	1000	-	<1000	<1000	-	<1000	<1000	-			
Ikalinity (Carbonate as CaCO ₃)	µg/L	1000	-	<1000	<1000	-	<1000	<1000	-			
Ikalinity (Bicarbonate as CaCO ₃)	µg/L	1000	2.46	64900	65600	1.07	196000	193000	1.54	194000	189000	2.61
nions and Nutrients												
mmonia (NH ₄ as N)	µg/L	5.0	4.46	157	159	1.27	299	290	3.06	<50	<50	-
hloride (Cl ⁻)	µg/L	500	0.96	5730	5620	1.94	111000	111000	0.00	115000	111000	3.54
itrate (NO ₃ ⁻ as N)	µg/L	5.0	-	495	483	2.45	4750	4740	0.21	380	110	110.20
litrite (NO ₂ ⁻ as N)	µg/L	1.0	-	13.4	13.2	1.50	45.4	45.8	0.88	<5	<5	-
ulphate (SO ₄)	µg/L	300	1.19	22200	23900	7.38	103000	107000	3.81	641000	672000	4.72
issolved Organic Carbon (DOC)	µg/L	-	4.90									
letals, Total												
luminum	µg/L	3.0	27.62	9050	31.5	198.61	46.7	49.3	5.42	60.8	63.7	4.66
ntimony	µg/L	0.10	-	0.4	0.1	120.00	0.33	0.32	3.08	0.27	0.24	11.76
rsenic	µg/L	0.10	2.60	7.23	0.69	165.15	0.31	0.3	3.28	0.61	0.65	6.35
arium	µg/L	0.10	0.00	398	31.1	171.01	139	135	2.92	58.8	55.4	5.95
eryllium	µg/L	0.10	-	0.57	0.1	140.30	<0.1	<0.1	-	<0.1	<0.1	-
ismuth	µg/L	0.05	-	0.171	0.05	109.50	<0.05	<0.05	-	<0.05	<0.05	-
oron	µg/L	10	0.00	32	24	28.57	161	160	0.62	109	105	3.74
admium	µg/L	0.005	18.91	0.639	0.0712	159.90	0.0866	0.0829	4.37	0.361	0.379	4.86
Calcium	µg/L	50	1.53	34100	18100	61.30	97600	95400	2.28	262000	261000	0.38
esium	µg/L	0.01	-	1.65	0.01	197.59	0.047	0.045	4.35	0.014	0.013	7.41
hromium	µg/L	0.10	-	17.3	0.23	194.75	0.27	0.27	0.00	0.18	0.16	11.76
obalt	µg/L	0.10	0.00	8.36	0.32	185.25	1.16	1.13	2.62	2.16	2.17	0.46
Copper	µg/L	0.50	-	26.2	2.33	167.33	1.11	1.15	3.54	1.74	1.83	5.04
on	µg/L	10	1.90	19600	177	196.42	65	66	1.53	81	84	3.64
ead	µg/L	0.05	-	11	0.149	194.65	< 0.05	<0.05	-	<0.05	<0.05	-
ithium	μg/L	1.0	1.32	16	1.5	165.71	36.5	34.3	6.21	48.1	48.1	0.00
lagnesium	μg/L	5.0	0.00	11000	6150	56.56	25500	25900	1.56	72800	74700	2.58
anganese	μg/L	0.10	4.91	332	26.1	170.85	25.7	24.9	3.16	109	113	3.60
lercury	μg/L	0.005	-	0.0404	0.0373	7.98	<0.005	<0.005	-	<0.005	<0.005	-
lolybdenum	μg/L	0.05	60.68	3.36	1.23	92.81	7.43	7.28	2.04	3.42	3.08	- 10.46
lickel	μg/L	0.5	2.62	33	1.94	177.79	9.96	9.83	1.31	37.3	39.5	5.73
hosphorus	μg/L	50.0	- 2.02	965	278	110.54	<50	<50	-	<50	<50	5.75
lotassium	μg/L	50.0	0.69	13100	11100	16.53	4220	4140	1.91	7260	6950	4.36
		0.2										
Rubidium	µg/L	0.2	4.17	15.1	1.61	161.46	2.46	2.46	0.00	1.84	1.99	7.83
Selenium	µg/L		-	0.722	0.273	90.25	0.873	0.912	4.37	2.87	2.86	0.35
Silicon	µg/L	100	0.78	15800	2020	154.66	3790	3750	1.06	5440	5450	0.18
Silver	µg/L	0.01	-	0.223	0.01	182.83	< 0.01	<0.01	-	<0.01	<0.01	
Sodium	µg/L	50.0	1.57	3180	2810	12.35	79700	78400	1.64	52100	52300	0.38
trontium	µg/L	0.2	0.57	125	69	57.73	619	608	1.79	802	788	1.76
ulfur	µg/L	500	0.85	7500	6750	10.53	40600	40200	0.99	229000	232000	1.30
ellurium	µg/L	0.2	-	<0.2	<0.2	0.00	<0.2	<0.2	-	0.24	<0.2	-
hallium	µg/L	0.01	-	0.201	0.01	181.04	0.018	0.018	0.00	0.023	0.02	13.95
horium	µg/L	0.10	-	1.53	0.1	175.46	<0.1	<0.1	-	<0.1	<0.1	-
in	µg/L	0.10	-	0.29	0.1	97.44	<0.1	<0.1	-	<0.1	<0.1	-
ïtanium	µg/L	0.30	-	60.7	3.68	177.14	0.72	0.56	25.00	0.9	1.2	28.57
ungsten	µg/L	0.10	-	<0.1	<0.1	0.00	<0.1	<0.1	-	<0.1	<0.1	-
ranium	µg/L	0.01	0.91	1.09	0.288	116.40	1.21	1.16	4.22	5.57	5.49	1.45
anadium	µg/L	0.50	-	28.5	0.73	190.01	<0.5	<0.5	-	<0.5	0.54	-
inc	µg/L	3.0	-	95.2	5.4	178.53	9.4	11.6	20.95	27	32.3	17.88
írconium	µg/L	0.06	-	0.73	0.25	97.96	<0.2	<0.2	-	<0.2	<0.2	-
letals, Dissolved												
luminum	µg/L	1.0	-	18.4	40.8	75.68	18.7	20.1	7.22	36	38.5	6.71
ntimony	µg/L	0.10	-	<0.1	<0.1	0.00	0.32	0.32	0.00	0.24	0.24	0.00
rsenic	µg/L	0.10	18.18	0.59	0.64	8.13	0.24	0.26	8.00	0.57	0.46	21.36
arium	µg/L	0.10	1.90	31.2	33.4	6.81	131	133	1.52	57.5	56.2	2.29
eryllium	µg/L	0.10	-	<0.1	<0.1	0.00	<0.1	<0.1	-	<0.1	<0.1	-
ismuth	µg/L	0.05	-	<0.05	<0.05	0.00	<0.05	<0.05	-	<0.05	<0.05	-
oron	µg/L	10.0	3.85	22	23	4.44	150	159	5.83	110	108	1.83
admium	μg/L	0.005	6.36	0.0718	0.0698	2.82	0.0719	0.0759	5.41	0.342	0.363	5.96
alcium	μg/L	50.0	2.53	18400	18900	2.68	92600	96100	3.71	258000	241000	6.81
esium	µg/L	0.01	-	<0.01	<0.01	0.00	0.038	0.042	10.00	0.013	0.012	8.00
hromium	μg/L	0.10		0.15	0.23	42.11	0.038	0.19	11.11	<0.1	<0.1	- 0.00
obalt	μg/L	0.10	9.17	0.13	0.32	9.84	1.02	1	1.98	2.03	2.02	0.49
opper	μg/L	0.10	9.17	2.14	2.23	9.04 4.12	0.84	0.89	5.78	1.62	1.6	1.24
on	μg/L μg/L	10.0	- 16.79	105	174	4.12	<10	<10		1.62	1.6	22.22
ead		0.05		0.101		49.46 35.77	<10	<10	-			
	µg/L	1.0	-		0.145				-	<0.05	< 0.05	-
thium	µg/L		0.00	1.8	1.8	0.00	30	31.1	3.60	45	45.7	1.54
agnesium	µg/L	5.0	5.06	6400	6160	3.82	24200	24300	0.41	72600	73600	1.37
anganese	µg/L	0.10	2.26	25.8	27.1	4.91	22.4	22.3	0.45	102	107	4.78
ercury	µg/L	0.005	-	<0.005	<0.005	0.00	<0.005	<0.005	-	<0.005	<0.005	-
olybdenum	µg/L	0.05	6.09	1.73	0.802	73.30	7.36	7.55	2.55	3.08	3.19	3.51
ickel	µg/L	0.50	7.62	1.49	1.97	27.75	9.32	9.28	0.43	35.7	35.8	0.28
nosphorus	µg/L	50.0	-	280	342	19.94	<50	<50	-	<50	<50	-
otassium	µg/L	50.0	1.35	11500	10700	7.21	4290	4340	1.16	6540	6790	3.75
ubidium	µg/L	0.20	2.02	1.68	1.71	1.77	2.19	2.35	7.05	1.82	1.92	5.35
elenium	μg/L	0.05	19.05	0.3	0.341	12.79	0.922	0.981	6.20	3.54	2.76	24.76
ilicon	μg/L	50.0	0.52	2040	2030	0.49	3400	3540	4.03	5540	5170	6.91
ilver	µg/L	0.01	-	<0.01	<0.01	0.00	< 0.01	<0.01	-	<0.01	<0.01	-
Sodium	μg/L	50.0	0.34	2950	2930	0.68	72500	74000	2.05	50200	46900	6.80
Strontium	μg/L	0.2	0.89	73.4	74.2	1.08	561	578	2.99	848	740	13.60
	r 3' -		0.00					0.0		310		10.00

Strontium	µg/L	0.2	0.89	73.4	74.2	1.08	561	578	2.99	848	740	13.60
Sulfur	µg/L	500	8.00	7240	7830	7.83	38900	39700	2.04	242000	220000	9.52
Tellurium	µg/L	0.20	-	<0.2	<0.2	0.00	<0.2	<0.2	-	<0.2	<0.2	-
Thallium	µg/L	0.01	-	<0.01	<0.01	0.00	0.018	0.019	5.41	0.018	0.022	20.00
Thorium	µg/L	0.10	-	0.1	0.11	9.52	<0.1	<0.1	-	<0.1	<0.1	-
Tin	µg/L	0.10	-	<0.1	<0.1	0.00	<0.1	<0.1	-	<0.1	<0.1	-
Titanium	µg/L	0.30	-	0.94	1.16	20.95	<0.3	<0.3	-	<0.3	<0.3	-
Tungsten	µg/L	0.10	-	<0.1	<0.1	0.00	<0.1	<0.1	-	<0.1	<0.1	-
Uranium	μg/L	0.01	0.90	0.243	0.307	23.27	1.2	1.19	0.84	5.08	4.76	6.50
Vanadium	µg/L	0.50	-	0.5	0.64	24.56	<0.5	<0.5	-	<0.5	<0.5	-
Zinc	µg/L	1.0	34.15	5.1	5.7	11.11	6.7	6.8	1.48	22.9	23.8	3.85
Zirconium	µg/L	0.06	-	0.22	0.47	72.46	<0.2	<0.2	-	<0.2	<0.2	-
Laboratory Work Order Number				L2438183	L2438183		L2454036	L2454036		L2464256	L2464256	
Laboratory Identification Number				L2438183-3	L2438183-16		L2454036-7	L2454036-2		L2464256-1	L2464256-15	

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Table 5: 2020 Quality Assurance/Quality Control for Wate

Parameter	Unit	RDL	LBP Pond	LBP Pond-R	RPD	RBSBIAR-DS	RBSBIAR-DS-R	RPD	L2-DS	L2-DS-R	RPD
			8-C	oct-20		20-0	Oct-20		20-N	lov-30	
Physical Parameters											
Acidity (as CaCO ₃)	µg/L	1000	6100	1800	108.86	1600	1200	28.57	<1000	<1000	-
Alkalinity (Total as CaCO ₃)	mg/L	1.0	295	289	2.05	215	198	8.23	262	256	2.32
lectrical Conductivity (EC)	μS/cm	2.0	3530	3550	0.56	682	630	7.93	1050	1060	0.95
lardness as CaCO ₃ , dissolved	µg/L	500	1970000	1980000	0.51	303000	309000	1.96	210000	217000	3.28
lardness as CaCO ₃ , from total Ca/Mg	µg/L										
Н	pH Units	0.1	8.23	8.26	0.36	8.08	8.08	0.00	8.31	8.31	0.00
otal Dissolved Solids (TDS)	µg/L	10000	3380000	3390000	0.30	462000	453000	1.97	672000	661000	1.65
otal Suspended Solids (TSS)	µg/L	3000	13900	15200	8.93	2800	2200	24.00	7900	26200	107.3
Alkalinity (Hydroxide as CaCO ₃)	µg/L	1000	<1000	<1000	-	<1000	<1000	-	<1000	<1000	-
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	-	<1000	<1000	-	5000	4000	22.22
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	295000	289000	2.05	215000	198000	8.23	257000	252000	1.96
Anions and Nutrients											
Ammonia (NH ₄ as N)	µg/L	5.0	118	100	16.51	100	98	2.02	218	214	1.85
Chloride (Cl ⁻)	µg/L	500	6400	6400	0.00	51100	50900	0.39	65600	68100	3.74
litrate (NO ₃ ⁻ as N)	µg/L	5.0	<25	<25	-	1170	1170	0.00	237	244	2.91
litrite (NO ₂ ⁻ as N)	µg/L	1.0	<5	<5	-	<8.1	<8.6	-	19.3	21.8	12.17
Sulphate (SO ₄)	µg/L	300	2130000	2110000	0.94	111000	112000	0.90	204000	208000	1.94
Dissolved Organic Carbon (DOC)	µg/L										
letals, Total											
luminum	µg/L	3.0	169	173	2.34	93.8	102	8.38	367	388	5.56
Intimony	µg/L	0.10	0.5	0.5	0.00	0.17	0.18	5.71	1.23	1.25	1.61
rsenic	µg/L	0.10	0.75	0.76	1.32	0.21	0.24	13.33	1.79	1.83	2.21
Barium	µg/L	0.10	81.7	83.6	2.30	146	151	3.37	56.7	58.1	2.44
Beryllium	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	<0.1	<0.1	-
Bismuth	µg/L	0.05	0.25	0.25	0.00	<0.05	<0.05	-	<0.05	<0.05	-
Boron	µg/L	10	208	198	4.93	69	70	1.44	177	185	4.42
Cadmium	µg/L	0.005	0.037	0.038	2.67	0.0477	0.0514	7.47	0.0238	0.0265	10.74
Calcium	µg/L	50	419000	395000	5.90	95400	95900	0.52	61800	62300	0.81
Cesium	µg/L	0.01	0.05	0.05	0.00	0.023	0.027	16.00	0.037	0.042	12.66
Chromium	µg/L	0.10	0.5	0.5	0.00	0.25	0.28	11.32	1.14	1.11	2.67
Cobalt	µg/L	0.10	13.5	13.2	2.25	1.24	1.31	5.49	0.22	0.22	0.00
Copper	µg/L	0.50	2.5	2.5	0.00	1.03	1.07	3.81	2.19	2.1	4.20
ron	µg/L	10	1260	1320	4.65	203	214	5.28	222	223	0.45
ead	µg/L	0.05	0.25	0.25	0.00	<0.05	<0.05	-	0.29	0.267	8.26
ithium	µg/L	1.0	81.8	77.6	5.27	20.3	19	6.62	33.5	34.4	2.65
lagnesium	µg/L	5.0	220000	214000	2.76	23100	22600	2.19	18100	18200	0.55
langanese	µg/L	0.10	6550	6350	3.10	17.8	18.4	3.31	6.99	7.34	4.88
/lercury	µg/L	0.005	<0.005	<0.005	-	<0.005	<0.005	-	< 0.005	< 0.005	-
Nolybdenum	µg/L	0.05	1.84	13	150.40	3.99	4	0.25	16.5	17.8	7.58
Nickel	µg/L	0.5	38	36.3	4.58	7.39	7.65	3.46	1.5	1.47	2.02
Phosphorus	µg/L	50.0	<250	<250	-	<50	<50	-	<50	<50	-
Potassium	µg/L	50.0	15300	14800	3.32	3480	3470	0.29	5390	5690	5.42
Rubidium	µg/L	0.2	3.4	3.5	2.90	1.33	1.34	0.75	6.09	6.64	8.64
Selenium	µg/L	0.05	0.43	0.39	9.76	0.841	0.88	4.53	1.8	1.76	2.25
Silicon	µg/L	100	970	1010	4.04	4000	4020	0.50	4480	4550	1.55
Silver	µg/L	0.01	0.05	0.05	0.00	<0.01	<0.01	-	<0.01	<0.01	-
Sodium	µg/L	50.0	250000	238000	4.92	32700	33500	2.42	158000	163000	3.12
Strontium	µg/L	0.2	1030	974	5.59	503	511	1.58	253	257	1.57
Sulfur	µg/L	500	749000	735000	1.89	35500	36200	1.95	67700	67500	0.30
Fellurium	µg/L	0.2	<1	<1	-	<0.2	<0.2	-	<0.2	<0.2	-
-hallium	µg/L	0.01	0.05	0.05	0.00	<0.01	<0.01	-	<0.01	<0.01	-
-horium	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	<0.1	<0.1	-
īn	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	0.4	0.43	7.23
Titanium	µg/L	0.30	1.5	1.6	6.45	0.68	0.89	26.75	4.21	4.51	6.88
ungsten	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	0.53	0.63	17.24
Jranium	µg/L	0.01	5.85	5.63	3.83	1.14	1.16	1.74	1.8	1.8	0.00
/anadium	µg/L	0.50	2.5	2.5	0.00	<0.5	<0.5	-	3.45	3.6	4.26
Zinc	µg/L	3.0	20	18	10.53	14.6	16.4	11.61	18.1	18	0.55
Zirconium	µg/L	0.06	<1	<1	-	<0.2	<0.2	-	0.27	0.27	0.00
letals, Dissolved											
Aluminum	µg/L	1.0	25.9	19.8	26.70	46.1	49	6.10	258	272	5.28
Intimony	µg/L	0.10	0.5	0.5	0.00	0.2	0.17	16.22	1.2	1.29	7.23
Arsenic	µg/L	0.10	0.6	0.63	4.88	0.17	0.17	0.00	1.75	1.91	8.74
Barium	µg/L	0.10	77.5	77.1	0.52	138	139	0.72	52.9	52.6	0.57
Beryllium	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	<0.1	<0.1	-
Bismuth	μg/L	0.05	0.25	0.25	0.00	<0.05	<0.05	-	<0.05	<0.05	-
Boron	µg/L	10.0	202	201	0.50	57	57	0.00	187	212	12.53
Cadmium	µg/L	0.005	0.025	0.03	18.18	0.0475	0.0505	6.12	0.0077	0.0082	6.29
Calcium	µg/L	50.0	419000	422000	0.71	83500	85500	2.37	56300	58400	3.66
Cesium	µg/L	0.01	0.05	0.05	0.00	0.016	0.016	0.00	0.026	0.03	14.29
Chromium	µg/L	0.10	0.5	0.5	0.00	0.11	<0.1	-	0.59	0.62	4.96
Cobalt	µg/L	0.10	13.1	13.1	0.00	1.19	1.24	4.12	0.11	<0.1	-
Copper	µg/L	0.20	<1	<1	-	0.65	0.65	0.00	0.84	0.84	0.00
on	µg/L	10.0	416	438	5.15	39	41	5.00	25	19	27.2
ead	µg/L	0.05	0.25	0.25	0.00	<0.05	<0.05	-	<0.05	<0.05	-
ithium	µg/L	1.0	85.9	86.8	1.04	20.1	19.8	1.50	34.7	38	9.08
lagnesium	µg/L	5.0	225000	224000	0.45	23000	23300	1.30	16900	17200	1.76
langanese	µg/L	0.10	6700	6740	0.60	16.4	16.9	3.00	3.49	2.73	24.4
lercury	µg/L	0.005	< 0.005	< 0.005	-	<0.005	<0.005	-	<0.005	< 0.005	-
lolybdenum	µg/L	0.05	1.94	5.79	99.61	4.04	4.06	0.49	16.8	18.3	8.55
lickel	μg/L	0.50	37.1	36.2	2.46	7.4	7.48	1.08	1.21	1.21	0.00
Phosphorus	µg/L	50.0	<250	<250	-	<50	<50	-	<50	<50	
Potassium	μg/L	50.0	13600	13500	0.74	3580	3610	0.83	5730	5970	4.10
Rubidium	μg/L	0.20	3.2	3.1	3.17	1.29	1.35	4.55	6.5	6.62	1.83
elenium	μg/L μg/L	0.20	0.34	0.3	12.50	1.03	0.957	7.35	1.79	1.95	8.56
illicon	μg/L μg/L	50.0	800	810	12.50	3980	4060	1.99	4360	4700	7.51
Silver	μg/L μg/L	0.01	0.05	0.05	0.00	<0.01	4060 <0.01	1.99	4360 <0.01	4700 <0.01	7.51
	۳9′Ľ	50.0	0.00	237000	0.00	32900	33900	2 99	-0.01	10.01	<u> </u>

Strontium	µg/L	0.2	1020	1000	1.98	500	514	2.76	234	243	3.77
Sulfur	µg/L	500	774000	752000	2.88	36500	37100	1.63	67300	73000	8.13
Tellurium	µg/L	0.20	<1	<1	-	<0.2	<0.2	-	<0.2	<0.2	-
Thallium	µg/L	0.01	0.05	0.05	0.00	0.012	<0.01	-	<0.01	<0.01	-
Thorium	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	<0.1	<0.1	-
Tin	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	0.33	0.36	8.70
Titanium	µg/L	0.30	1.5	1.5	0.00	<0.3	<0.3	-	0.85	0.67	23.68
Tungsten	µg/L	0.10	0.5	0.5	0.00	<0.1	<0.1	-	0.64	0.68	6.06
Uranium	μg/L	0.01	5.07	5.18	2.15	1.15	1.13	1.75	1.75	1.86	6.09
Vanadium	µg/L	0.50	2.5	2.5	0.00	<0.5	<0.5	-	2.91	3.1	6.32
Zinc	µg/L	1.0	16.3	14.9	8.97	12.6	12.7	0.79	4.9	7.1	36.67
Zirconium	µg/L	0.06	<1	<1	-	<0.2	<0.2	-	<0.2	<0.2	-
Laboratory Work Order Number			L2515191	L2515191		L2520229	L2520229		L2532220	L2532220	
Laboratory Identification Number			L2515191-4	L2515191-5		L2520229-1	L2520229-7		L2532220-2	L2532220-3	

0.42

237000

32900

33900

155000

2.99

163000

5.03

Notes:

Sodium

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

µg/L

50.0

238000

Table 5: 2020 Quality Assurance/Quality Control for Wate

Parameter	Unit	RDL	RBSBIAR-DS	RBSBIAR-DS-R Nov-20	RPD	L2-US 4-De	L2-US-R ec-20	RPD	L2-DS 14-D0	L2-DS-R ec-20	RPD		LBL3C-1.43-R ec-20	RPD
Physical Parameters														
Acidity (as CaCO ₃)	µg/L	1000	<1000	<1000	-	1400	1300	7.41	<1000	<1000	-	4900	3500	33.3
Alkalinity (Total as CaCO ₃)	mg/L	1.0	240	235	2.11	153	152	0.66	343	343	0.00	283	285	0.7
Electrical Conductivity (EC)	µS/cm	2.0	744	727	2.31	459	454	1.10	1550	1550	0.00	1650	1670	1.2
Hardness as CaCO ₃ , dissolved Hardness as CaCO ₃ , from total Ca/Mg	µg/L	500	267000	279000	4.40	153000	153000	0.00	291000	291000	0.00	934000	923000	1.2
pH	μg/L pH Units	0.1	0.00	0.01	0.04	8.22	0.00	0.40	0.00	0.04	0.04	0.04	0.45	
Total Dissolved Solids (TDS)	μg/L	10000	8.26 489000	8.21 489000	0.61	8.22 302000	8.23 248000	0.12 19.64	8.26 1000000	8.21 1000000	0.61	8.04 1390000	8.15 1430000	1.4 2.8
Total Suspended Solids (TDS)	μg/L μg/L	3000	489000 <1000	<1000	-	19900	248000 8700	78.32	144000	169000	15.97	8600	5400	45.7
Alkalinity (Hydroxide as CaCO ₃)	μg/L	1000	<1000	<1000	-	<1000	<1000	-	<1000	<1000	15.97	<1000	<1000	40.7
Alkalinity (Carbonate as CaCO ₃)	μg/L	1000	<1000	<1000	-	<1000	<1000	-	<1000	<1000	-	<1000	<1000	-
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	240000	235000	2.11	153000	152000	0.66	343000	343000	0.00	283000	285000	0.7
Anions and Nutrients	13													
Ammonia (NH₄ as N)	µg/L	5.0	62	62	0.00	<50	<50	-	334	363	8.32	<50	<50	-
Chloride (Cl ⁻)	µg/L	500	35400	35400	0.00	6570	6670	1.51	110000	106000	3.70	52500	47700	9.6
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0	922	924	0.22	316	316	0.00	316	324	2.50	22900	20000	13.5
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0	<5	6.8	-	<1	<1	-	41	46.7	13.00	<5	<5	-
Sulphate (SO ₄)	μg/L	300	127000	126000	0.79	86200	86900	0.81	348000	347000	0.29	627000	613000	2.3
Dissolved Organic Carbon (DOC)	μg/L					1.6	2.4	40.00	2.86	3.3	14.29	2.4	2.8	15.4
Metals, Total														
Aluminum	µg/L	3.0	66.1	71.2	7.43	399	383	4.09	497	479	3.69	122	25	132.0
Antimony	µg/L	0.10	0.3	0.21	35.29	0.45	0.43	4.55	1.89	1.83	3.23	<0.5	<0.5	-
Arsenic	µg/L	0.10	0.2	0.18	10.53	0.71	0.66	7.30	2.88	2.6	10.22	< 0.5	< 0.5	-
Barium	µg/L	0.10	88.8	91.7	3.21	78.7	74.8	5.08	56.4	55.5	1.61	42.4	32.7	25.8
Beryllium	µg/L	0.10	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.04	-	< 0.5	<0.5	-
Bismuth Boron	µg/L	0.05	<0.05 59	<0.05 66	-	<0.05	<0.05 88	- 9.52	<0.25 308	<0.1 310	- 0.65	<0.25 113	<0.25 118	- 4.3
Boron Cadmium	μg/L μg/L	0.005	59 0.0719	66 0.0747	11.20 3.82	80 0.052	88 0.0396	9.52 27.07	308 <0.025	310 <0.01	0.65	0.076	118 0.077	4.3
Calcium	μg/L μg/L	50	85800	93100	3.82 8.16	42400	44500	4.83	<0.025 97200	<0.01 94200	- 3.13	219000	231000	1.3 5.3
Cesium	μg/L μg/L	0.01	0.013	0.015	14.29	42400 0.062	0.056	4.83	0.058	94200 0.056	3.13	<0.05	<0.05	-
Chromium	μg/L μg/L	0.01	0.013	<0.1	-	1.09	1.06	2.79	1.59	1.68	5.50	<0.05	<0.05	
Cobalt	μg/L	0.10	1.43	1.54	- 7.41	0.38	0.34	11.11	< 0.5	0.31	-	0.83	0.51	47.8
Copper	μg/L	0.50	0.99	1.54	41.60	1.95	1.74	11.38	<2.5	1.8	-	<2.5	<2.5	
Iron	µg/L	10	53	62	15.65	963	868	10.38	290	276	4.95	269	<50	137.3
Lead	µg/L	0.05	<0.05	<0.05	-	0.493	0.418	16.47	0.27	0.25	7.69	<0.25	<0.25	-
Lithium	µg/L	1.0	18	19.9	10.03	18.4	18.7	1.62	57.3	57.5	0.35	52.4	47.1	10.7
Magnesium	µg/L	5.0	21300	22600	5.92	10600	10600	0.00	27300	27300	0.00	106000	102000	3.8
Manganese	µg/L	0.10	16.2	19.8	20.00	43.4	39.8	8.65	8.45	8.27	2.15	24.5	10.2	82.4
Mercury	µg/L	0.005	<0.005	< 0.005	-	< 0.005	<0.005	-	< 0.005	<0.005	-	<0.005	< 0.005	-
Molybdenum	µg/L	0.05	4.19	4.66	10.62	2.18	2.23	2.27	33.7	33.2	1.49	0.99	0.84	16.4
Nickel	µg/L	0.5	9.99	10.5	4.98	3.7	3.57	3.58	<2.5	2	-	17.9	15.2	16.3
Phosphorus	µg/L	50.0	<50	<50	-	53	55	3.70	250	<100	-	<250	<250	-
Potassium	μg/L	50.0	2860	2970	3.77	1490	1450	2.72	8250	8200	0.61	3920	4460	12.9
Rubidium	µg/L	0.2	1.02	1.14	11.11	1.18	1.25	5.76	8.90	8.85	0.56	<1	<1	-
Selenium	µg/L	0.05	0.989	1.01	2.10	2.32	2.44	5.04	3.43	3.27	4.78	5.4	5.48	1.5
Silicon	µg/L	100	3350	3690	9.66	3540	3740	5.49	5840	5770	1.21	5700	5470	4.1
Silver	µg/L	0.01 50.0	< 0.01	< 0.01	-	< 0.01	< 0.01	-	< 0.05	< 0.02	-	< 0.05	< 0.05	-
Sodium	µg/L	0.2	36900 452	38800	5.02	36400 289	37000	1.63	260000	262000	0.77	27600	32500 742	16.3
Strontium Sulfur	μg/L μg/L	500	432	494 47600	8.88 9.92	30700	286 31900	1.04 3.83	363 120000	350 120000	3.65 0.00	771 204000	210000	3.8 2.9
Tellurium	µg/L	0.2	<0.2	<0.2	-	<0.2	< 0.2	-	<01.0	<0.40	-	<1	<1	-
Thallium	µg/L	0.01	0.02	<0.01		0.014	0.014	0.00	<0.05	<0.02	-	<0.05	<0.05	-
Thorium	µg/L	0.10	<0.1	<0.1	-	0.11	<0.1	-	<0.50	<0.20	-	<0.5	<0.5	-
Tin	µg/L	0.10	<0.1	<0.1	-	0.24	0.22	8.70	0.56	0.57	1.77	<0.5	<0.5	-
Titanium	µg/L	0.30	<0.3	<0.3	-	11.5	11.2	2.64	4.7	4.31	8.66	2.9	<1.5	63.6
Tungsten	µg/L	0.10	<0.1	<0.1	-	<0.1	<0.1	-	1.03	0.98	-	<0.5	<0.5	-
Uranium	μg/L	0.01	1.18	1.27	7.35	1.23	1.29	4.76	2.98	2.91	2.38	7.57	6.93	8.8
Vanadium	µg/L	0.50	<0.5	<0.5	-	1.79	1.71	4.57	6.6	6.6	0.00	<2.5	<2.5	-
Zinc	µg/L	3.0	15.3	16	4.47	10.2	9.4	8.16	<15	7.5	-	<15	<15	-
Zirconium	µg/L	0.06	<0.2	<0.2	-	0.23	0.21	-	<1	<0.4	-	<1	<1	-
Metals, Dissolved														I
Aluminum	µg/L	1.0	48.7	53.1	8.64	9.8	10.2	4.00	340	337	0.89	5	<5	-
Antimony	µg/L	0.10	0.19	0.19	0.00	0.38	0.38	0.00	1.68	1.63	3.02	<0.5	<0.5	-
Arsenic	µg/L	0.10	0.15	0.18	18.18	0.37	0.33	11.43	2.69	2.56	4.95	< 0.5	<0.5	-
Barium Bendium	µg/L	0.10	91.8	103	11.50	63.5	58.8	7.69	43.8	43.6	0.46	30.7	30.6	0.3
Beryllium Bismuth	μg/L μg/L	0.10	<0.1 <0.05	<0.1 <0.05	-	<0.1 <0.05	<0.1 <0.05	-	<0.1 <0.25	<0.1 <0.25	-	<0.5 <0.25	<0.5 <0.25	-
Boron	μg/L μg/L	10.05	<0.05 57	<0.05	- 3.57	<0.05 91	<0.05 89	- 2.22	<0.25 280	<0.25	- 3.51	<0.25	<0.25	- 2.6
Cadmium	µg/L	0.005	0.0647	0.0768	17.10	0.016	0.0119	29.39	<0.025	0.035		0.059	0.067	12.7
Calcium	μg/L	50.0	73700	76400	3.60	44700	45100	0.89	73100	73700	0.82	221000	219000	0.9
Cesium	μg/L	0.01	0.012	0.011	8.70	<0.01	<0.01	-	< 0.050	< 0.050	-	<0.05	<0.05	-
Chromium	µg/L	0.10	<0.1	<0.1	-	0.35	0.35	0.00	1.28	1.23	3.98	<0.5	<0.5	-
Cobalt	µg/L	0.10	1.43	1.54	7.41	<0.1	<0.1	-	<0.5	<0.5	-	<0.5	<0.5	-
Copper	µg/L	0.20	0.86	0.92	6.74	0.67	0.61	9.38	<1	<1	-	<1	<1	-
Iron	µg/L	10.0	24	26	8.00	<10	<10	-	<50	<50	-	<50	<50	-
Lead	µg/L	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.25	<0.25	-	<0.25	<0.25	-
Lithium	µg/L	1.0	20.2	21.3	5.30	19.4	17.2	12.02	49.6	53.8	8.12	42.2	42.4	0.5
Magnesium	µg/L	5.0	20300	21300	4.81	10000	9710	2.94	26400	25900	1.91	93000	91500	1.6
Manganese	µg/L	0.10	15.1	16.4	8.25	19.4	19.5	0.51	2.55	2.39	6.48	7.28	7.07	2.9
Mercury	µg/L	0.005	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005		<0.005	<0.005	-
Molybdenum	µg/L	0.05	4.21	4.3	2.12	2.47	2.33	5.83	30.8	30.5	0.98	0.78	0.82	5.0
Nickel	µg/L	0.50	9.56	10.3	7.45	2.73	2.56	6.43	<2.5	<2.5	-	14.1	13.8	2.2
Phosphorus	µg/L	50.0	<50	<50	-	<50	<50	-	<250	<250	-	<250	<250	-
Potassium	µg/L	50.0	3120	3400	8.59	1320	1290	2.30	8300	8090	2.56	4160	4100	1.5
Rubidium	µg/L	0.20	1.17	1.19	1.69	0.57	0.55	3.57	8.5	8.3	2.38	<1	<1	-
Selenium	µg/L	0.05	1.12	1.07	4.57	2.69	2.25	17.81	3.36	3.52	4.65	5.44	5.41	0.6
Silicon	µg/L	50.0	3600	3500	2.82	2860	2740	4.29	5440	5280	2.99	5090	5090	0.0
Silver	µg/L	0.01	< 0.01	< 0.01	-	< 0.01	< 0.01	-	0.05	0.05	0.00	< 0.05	< 0.05	-
Sodium Strontium	µg/L	50.0	38700	40700	5.04	34700	33000	5.02	257000	253000	1.57	29400	29400	0.0
Strontium	µg/L	0.2	456	476	4.29	291	271	7.12	319	316	0.94	704	695	1.3

Strontium	µg/L	0.2	456	476	4.29	291	271	7.12	319	316	0.94	704	695	1.3
Sulfur	µg/L	500	40400	38900	3.78	29600	26700	10.30	113000	111000	1.79	196000	195000	0.5
Tellurium	µg/L	0.20	<0.2	<0.2	-	<0.2	<0.2	-	<1.0	<1.1	-	<1	<1	-
Thallium	µg/L	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.05	<0.05	-	<0.05	<0.05	-
Thorium	µg/L	0.10	<0.1	<0.1	-	<0.1	<0.1	-	<0.50	<0.50	-	<0.5	<0.5	-
Tin	µg/L	0.10	<0.1	<0.1	-	0.12	0.12	0.00	<0.5	0.55	-	<0.5	<0.5	-
Titanium	µg/L	0.30	<0.3	<0.3	-	<0.3	<0.3	-	<1.5	<1.5	-	<1.5	<1.5	-
Tungsten	µg/L	0.10	<0.1	<0.1	-	<0.1	<0.1	-	0.98	0.98	0.00	<0.5	<0.5	-
Uranium	µg/L	0.01	1.23	1.31	6.30	1.14	1.17	2.60	2.76	2.77	0.36	6.64	6.55	1.4
Vanadium	µg/L	0.50	<0.5	<0.5	-	<0.5	<0.5	-	5.9	5.5	7.02	<2.5	<2.5	-
Zinc	µg/L	1.0	15.4	16.7	8.10	2.8	2.3	19.61	<5	<5	-	<5	<5	-
Zirconium	µg/L	0.06	<0.2	<0.2	-	<0.2	<0.2	-	1	1	0.00	<1	<1	-
Laboratory Work Order Number			L2535101	L2535101		L2537214	L2537214		L2540107	L2540107		L2542477	L2542477	
Laboratory Identification Number			L2535101-1	L2535101-6		L2537214-1	L2537214-3		L2540107-1	L2540107-2		L2542477-1	L2542477-2	

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Table 6: In Situ Water Quality Sampling Along the River Road Ditch

						In-Situ Tests	s - 2020		
Sample Site	Date	Time	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity
	27/Feb/20	12:59	8.27	892	450	80	4.50	1.0	slightly turbio
LBRR-DD (Discharge)	16/Apr/20	15:45	8.31	1043	500	120	8.20	0.8	clear
	28/Sep/20	14:15	8.26	1309	800	240	10.80	0.1	clear
LBRR-LC (Mid-stream)	27/Feb/20	14:00	8.83	500	250	80	0.00	0.1	clear
LBRR-LC (Mid-Stream)	16/Apr/20	15:25	8.32	1015	500	120	10.30	1.0	clear
	16/Apr/20	16:15	8.75	183	100	40	0.10	0.2	cloudy
	27/May/20	12:42	8.55	1060	800	240	12.30	0.1	clear
LBRR-UC	21/Jun/20	12:02	8.40	1180	450	240	16.20	0.1	clear
LBRK-0C	29/Jul/20	11:40	7.97	1195	450	240	17.06	0.1	clear
	23/Aug/20	13:38	7.30	1131	450	180	15.03	0.1	clear
	28/Sep/20	15:25	8.40	-	450	180	n/a	0.0	clear
	27/Feb/20	14:08	8.42	910	450	120	0.00	0.1	clear
	25/Mar/20	12:27	8.67	1256	450	80	0.10	3.0	turbid/brow
	16/Apr/20	14:50	8.57	1156	250	120	6.00	1.0	turbid
LBRR-12+500	21/Jun/20	11:25	8.40	1119	450	240	21.80	0.2	clear
	28/Sep/20	14:50	8.28	1183	450	180	10.75	0.1	clear
	20/Oct/20	14:46	8.03	1326	450	180	0.37	0.1	clear
	27/Feb/20	14:26	8.87	933	450	120	0.00	1.0	clear
	25/Mar/20	12:55	8.55	1300	800	80	0.00	3.0	turbid
LBRR-12+600	16/Apr/20	16:00	8.52	1240	250	120	3.00	0.8	turbid
	28/Sep/20	15:01	8.26	1189	450	180	11.06	0.0	clear
	27/Feb/20	14:32	8.61	763	450	80	0.00	1.0	clear
					800				turbid
LBRR-12+700	25/Mar/20	13:00	8.50	1212		80	0.00	2.0	
	16/Apr/20	16:05 11:48	8.27 8.40	1091	500 450	120 240	7.10 23.50	0.5 0.1	turbid clear
	21/Jun/20 28/Sep/20	15:08	8.30	1193 1198	450	180	11.18	0.1	clear
	27/Feb/20	14:39	8.58	1211	450	120	0.00	0.8	clear
	25/Mar/20	13:03	8.57	1200	450	80	0.00	0.3	turbid
	16/Apr/20	16:10	8.54	947	250	120	3.70	0.5	cloudy
LBRR-12+810	27/May/20	12:33	7.98	1169	450	240	14.70	0.1	clear
LDKK-12+010	21/Jun/20	11:55	8.40	1187	450	240	21.90	0.2	clear
	29/Jul/20	11:28	8.27	1200	450	240	22.70	0.1	clear
	23/Aug/20	13:17	8.14	1268	450-800	240	19.93	0.1	clear
	28/Sep/20	15:18	8.23	1234	450	180	11.03	0.1	clear
	20/Oct/20	15:10	8.40	n/a	450-800	120	n/a	0.1	clear
	27/Feb/20	14:45	8.34	1260	450	120	0.00	0.8	clear
	16/Apr/20	16:20	8.13	1409	500	180	0.00	0.2	cloudy
	27/May/20	12:50	8.11	1353	450	240	11.50	0.2	clear
LBRR-12+920	21/Jun/20	12:08	8.40	1237	450	240	21.50	0.1	clear
	29/Jul/20	12:00	8.22	1204	450	240	21.00	0.1	clear
	23/Aug/20	13:43	8.01	1340	450	180	16.81	0.2	clear
	28/Sep/20	15:36	8.18	1295	450	240	11.22	0.1	clear
	30/Nov/20	15:41	8.40	-	800	180	n/a	0.1	clear
RR8	ļ				o data collected				
RR9	27/Feb/20	12:08	8.24	1368	450	80	0.30	0.05	clear
	27/Feb/20	12:33	8.51	2.16 m/s	800	120	0.10	0.1	clear
	25/Mar/20	11:48	8.32	276	800	180	0.10	0.05	clear
LBRR-EDP	16/Apr/20	14:15	8.7	1080	500	120	4.90	1.0	turbid
	21/Jun/20	10:00	8.4	1635	450	240	18.00	0.2	clear
	29/Jul/20	10:10	8.04	2518	450-800	240	16.91	clear	stagnant

UR: Not Read (< 0.0)

	Sampling Dates	Total Iron (Fe)	Dissolved Aluminum (Al)	Total Arsenic (As)
LBRR-DD	27/Feb/20	✓	✓	
	16/Apr/20	\checkmark		
	27/Feb/20	\checkmark		
	25/Mar/20	\checkmark		\checkmark
LBRR-12+500	16/Apr/20	\checkmark		\checkmark
	21/Jun/20			
	28/Sep/20			
	20/Oct/20			
	27/Feb/20	\checkmark		
	25/Mar/20			
LBRR-EDP	16/Apr/20	✓		\checkmark
	21/Jun/20			
	29/Jul/20			
	28/Sep/20			
RR9	27/Feb/20			
LBRR-UC	29/Jul/20			
	23/Aug/20		√	
LBRR-LC	16/Apr/20			

Table 7: Summary of Water Quality Exceedances (BCAWQG-FST) Along River Road from Water Sampling Events in 2020

¹ British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

Calculated guideline is pH dependent for dissolved Aluminum.

					•	In-Situ Tests			
Sample Site	Date	Time	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity
	27/Feb/20	9:40	8.40	7.5	450	180	0.10	0.1	clear
	16/Apr/20	10:50	8.96	733	250	40	3.50	1.0	turbid
	27/May/20	9:35	7.83	989	450	180	12.20	1.0	clear
Ī	21/Jun/20	9:50	8.40	700	250	240	13.90	0.5	clear
RBSBIAR-DS	29/Jul/20	11:20	8.16	761	450	240	18.75	1.5	clear
-	23/Aug/20	10:12	8.14	800	250	180	13.92	0.4	clear
-	28/Sep/20	10:00	7.95	760	450	180	11.11	0.5	clear
-	20/Oct/20	11:35	7.04	810	450	180	5.58	0.4	clear
-	30/Nov/20	9:40	7.29	807	450	120	0.52	0.4	clear
	16/Apr/20	12:10	9.03	1097	250	120	0.00	1.0	highly turbid
-	27/May/20	0:00	8.44	998	250	180	15.70	0.2	clear
-	21/Jun/20	11:10	8.4	1012	450	240	15.10	0.4	slightly turbid
	29/Jul/20	12:04	8.25	923	450	240	21.30	1.3	clear
RBSBIAR-EDS	23/Aug/20	11:15	8.18	990	450	240	13.60	0.2	clear
ľ	28/Sep/20	11:50	8.23	895	450	240	10.55	0.2	clear
-	20/Oct/20	13:10	7.84	982	450	180	4.15	0.2	clear
-	30/Nov/20	11:20	8.12	976	450	120	0.45	0.2	clear
	27/Feb/20	10:04	8.34	794	450	40	0.10	0.1	clear
-	16/Apr/20	11:20	8.31	588	250	80	4.30	0.1	clear
-	27/May/20	10:20	8.37	805	450	180	8.40	0.1	clear
-	21/Jun/20	10:06	8.40	554	250	240	13.90	0.2	clear
-	29/Jul/20	11:33	7.86	768	250	180	15.37	1.5	clear
RBSBIAR-US	23/Aug/20	10:30	8.01	863	450	180	13.15	0.1	clear
-	28/Sep/20	11:00	7.96	939	450	180	10.67	0.1	clear
-	20/Oct/20	12:15	7.06	909	450	120	8.72	0.1	clear
-	30/Nov/20	10:25	7.46	991	450	180	3.22	0.1	clear
-	21/Dec/20	10:15	7.00	1016	800	120	1.40	0.2	clear
	23/Jan/20	10:35	8.07	620	250	120	0.70	0.8	clear
-	27/Feb/20	10:25	8.27	764	450	180	0.00	0.1	clear
-	16/Apr/20	11:50	7.74	1275	250	120	1.10	0.0	clear
-	27/May/20	10:40	8.45	831	450	180	9.00	0.0	clear
-	21/Jun/20	10:50	7.8	785	450	240	8.40	0.1	clear
RBSBIAR-EUS	29/Jul/20	11:48	7.27	853	250	180	14.80	1.0	clear
	23/Aug/20	10:45	7.33	867	450	240	14.91	0.1	clear
-	28/Sep/20	11:25	7.28	792	450	240	12.58	0.1	clear
-	20/Oct/20	12:40	7.03	846	450	180	8.74	0.1	clear
-	30/Nov/20	10:50	7.51	861	450	180	2.54	0.1	clear
-	21/Dec/20	10:30	7.2		800	120	2.54	0.1	clear
	23/Jan/20	11:45	8.3	910	800	240	5.10	n/a	clear
-	23/341/20 27/Feb/20	10:45	7.59	1202	800	240	4.20	n/a	clear
-		10:40	7.6	906	450	180	5.30		clear
	25/Mar/20 16/Apr/20	13:00	7.54	685	250	120	8.30	n/a	clear
	27/May/20	11:40	7.65	1630	450-800	240	16.20	n/a n/a	clear
RBSC-DS	21/Jun/20	11:38	6.8	1508	450	240	10.20		clear
1000-00		10:57	0.8 7.11	1360	450	240	12.70	n/a	clear
	29/Jul/20		-	-				n/a	
ŀ	23/Aug/20	12:10	6.96	1213	450	240	12.63	n/a	clear
ŀ	28/Sep/20	12:40	6.97	1522	450	240	8.62	n/a	clear
ļ	30/Nov/20	11:50	7.07	1384	450	180	6.03	n/a	clear
	21/Dec/20	11:15	7.18	-	800	180	5.52	n/a	clear

Table 8: In Situ Water Quality Measurements Along the South Bank Initial Access Road

UR: Not Read(< 0.0) n/a: not available

	Sampling Dates	Total Iron (Fe)	Dissolved Iron (Fe)	Dissolved Aluminum (Al)	Total Arsenic (As)	Total Zinc (Zn)	Total Manganese (Mn)
	27/Feb/20						
	16/Apr/20	✓		✓			
	27/May/20						
RBSBIAR-DS	22/Jun/20						
(West ditch;	29/Jul/20						
downstream)	24/Aug/20						
	28/Sep/20			√			
	20/Oct/20						
	30/Nov/20						
	27/Feb/20	✓					
	16/Apr/20						
	17/May/20						
	22/Jun/20						
RBSBIAR-US	29/Jul/20						
(West ditch; upstream)	24/Aug/20						
upoti ourit,	28/Sep/20						
	20/Oct/20						
	30/Nov/20						
	21/Dec/20						
	16/Apr/20	✓			✓	✓	
	27/May/20			✓			
	22/Jun/20	✓		✓		✓	
RBSBIAR-EDS	29/Jul/20						
(East ditch; downstream)	24/Aug/20						
downouldung	28/Sep/20						
	20/Oct/20						
	30/Nov/20						
	27/May/20						
	22/Jun/20						
RBSBIAR-EUS	29/Jul/20						
(East ditch;	24/Aug/20						
upstream)	28/Sep/20						
	20/Oct/20						
	30/Nov/20						
	23/Jan/20						
	27/Feb/20						
	25/Mar/20						
	16/Apr/20						
DD00 - 2	27/May/20						\checkmark
RBSC-DS (side channel)	22/Jun/20						
(side channel)	29/Jul/20			✓			
	24/Aug/20						✓
	28/Sep/20	✓	√				√
	30/Nov/20						
	21/Dec/20						

Table 9: Summary of Water Quality Exceedances (BCAWQG-FST) RBSBIAR from Water Sampling Events in 2020

¹ British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

Discharge/Downstream	Unit		LBRR-DD ^a		F	RBSBIAR-DS	b	R	BSBIAR-EDS	c		LBL3C-0.02 ^c	
Locations	Onit	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Hardness as CaCO3	mg/L	324	552	438	234	331	286	246	482	353	82	1,040	774
рН	pH Units	7.78	8.27	8.03	8.07	8.26	8.13	7.98	8.16	8.08	7.77	8.41	8.20
Acidity (Total as CaCO3)	mg/L	3.9	4.3	4.1	0.5	2.8	1.4	0.2	0.3	0.3	0.5	3.6	1.2
Alkalinity (Total as CaCO3)	mg/L	94.6	196	145.3	135	242	206	1,800	7,300	3,663	73.5	275	214
Total Dissolved Solids (TDS)	mg/L	543	783	663	412	572	473	495	818	597	276	1,730	1,244
Total Suspended Solids (TSS)	mg/L	55.5	68.8	62.2	0.5	341.0	40.3	0.5	5390.0	687.0	3.4	1,250	166
Anions and Nutrients													
Chloride (Cl-)	µg/L	77,100	83,100	80,100	35,200	111,000	54,089	50,700	121,000	65,463	7,870	53,100	35,859
Sulphate (SO4) 3	µg/L	309,000	429,000	369,000	64,200	149,000	104,089	29,200	223,000	115,425	30,200	895,000	666,650
Metals, Total													
Aluminum	µg/L	363	1790	1076.5	36.1	2440	368	5.7	11500	2001	361	3320	904
Iron	µg/L	1260	2310	1785	53	7730	1005	5.0	32600	4998	334	6530	1375
Arsenic	µg/L	1.14	1.31	1.225	0.2	4.48	0.78	0.140	14.7	2.3	0.460	3.75	1.01
Cadmium	µg/L	0.271	0.63	0.4505	0.0294	0.683	0.19	0.01	3.16	0.8	0.281	0.832	0.476
Cobalt	µg/L	4.79	7.38	6.085	0.39	7.85	2.45	0.05	43.7	12.7	3.85	12.8	6.46
Copper	µg/L	3.18	4.49	3.835	0.83	17.4	3.35	0.25	69.1	15.6	2.23	16.4	4.35
Zinc	µg/L	28.3	66.7	47.5	5.4	77	23.78	1.50	560	140	34.1	75.0	44.0
Metals, Dissolved													
Aluminum 5	µg/L	50.6	114	82.3	13.2	169	62.18	1.5	404	88.41	57.9	203.0	150.7
Iron	µg/L	26	40	33	5.0	39	15.67	5.0	26	12.00	5.0	229.00	56.8
Arsenic	µg/L	0.38	0.4	0.39	0.15	0.49	0.25	0.140	0.29	0.21	0.24	0.750	0.44
Cadmium	µg/L	0.185	0.384	0.285	0.026	0.126	0.076	0.013	1.000	0.205	0.076	0.473	0.333
Cobalt	µg/L	4.26	5.32	4.79	0.42	3.55	1.80	0.05	33.7	8.08	0.76	11.40	4.93
Copper	µg/L	1.6	2.28	1.94	0.65	3.35	1.28	0.38	3.2	1.04	0.76	11.4	4.93
Zinc	µg/L	17.3	27	22.15	4.8	26.5	11.82	0.05	33.7	8.08	1.5	2.61	1.89

Table 10: Minimum, Maximum and Mean Values for Measurements at Discharge and Downstream Locations in 2020

^a Samples collected in February and April only, outside of dry or frozen conditions.

^b Monthly sampling February through November, except March (nine sampling events).

^c Monthly sampling April through November 2020 (eight sampling events).

^d Mean value calculated between half the detection limit and all other values for dissolved iron (all locations) and TSS (RBSBIAR-DS only).

Values in red font are half the detection limit.

Sample Site	Date	Time	In-Situ Tests - 2020						
			рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity
LBL3C-0.02 (Discharge)	16/Apr/20	9:40	9.10	233	100	40	0.5	high	turbid
	27/May/20	10:20	8.32	1407	450	180	9.3	2.0	clear
	21/Jun/20	10:55	7.20	1025	250	180	14.4	3.00	clear
	29/Jul/20	10:32	8.07	1744	450	240	14.6	2.00	clear
	23/Aug/20	12:30	7.45	2056	450	240	13.7	1.50	clear
	28/Sep/20	12:20	8.05	1961	450	180	8.7	2.0	clear
	20/Oct/20	14:20	7.76	2019	450-800	120	2.3	2.00	clear
	30/Nov/20	15:07	7.03	2053	800	120	1.4	1.50	clear
LBL3C-1.43	27/Feb/20	15:44	8.17	1283	450	180	3.3	2.00	clear
	25/Mar/20	14:40	8.22	1496	800	180	3.4	3.00	clear
	16/Apr/20	11:10	8.83	224	100	40	0.4	0.40	turbid
	27/May/20	11:10	7.77	1243	450	180	9.2	2.00	clear
	21/Jun/20	14:15	7.80	910	450	180	14.5	3.00	slightly turbid
	29/Jul/20	12:55	7.60	1662	450	240	13.2	2.0	clear
	23/Aug/20	14:45	7.63	1844	450-800	240	10.8	1.50	clear
	28/Sep/20	15:00	6.56	1875	450	180	7.4	2.00	clear
	20/Oct/20	13:00	7.55	1970	800	120	4.4	2.0	clear
	30/Nov/20	13:20	7.75	1954	800	180	3.9	1.0	clear
	20/Dec/20	14:00	6.89	1792	800	120	3.5	1.50	clear
LBL3C-1.65	16/Apr/20	12:20	8.68	182	100	40	2.4	high	turbid
	27/May/20	11:50	8.33	967	450	180	6.0	1.50	clear
	21/Jun/20	13:14	7.80	755	250	180	14.5	2.00	slightly turbid
LBL3C-3.32	16/Apr/20	13:!0	8.33	174	100	40	0.6	high	turbid
	27/May/20	0:00	8.34	932	450	120-180	11.4	1.00	clear
	21/Jun/20	15:05	7.20	1144	450	180	16.0	1.50	slightly turbid
	29/Jul/20	15:00	7.23	1715	750	240	14.8	0.08	clear
	23/Aug/20	16:07	7.17	1840	450	240	10.9	0.02	clear
	28/Sep/20	15:25	7.80	-	450	240	-	-	stagnant/clear
	20/Oct/20	14:00	7.20	-	800	180	-	0.00	clear
LBL4C-0.18	16/Apr/20	12:45	9.24	245	100	40	0.6	high	turbid
	27/May/20	12:20	7.88	1176	450	80-120	8.4	1.00	clear
	21/Jun/20	13:40	7.20	1005	450	120	13.2	1.00	slightly turbid
	29/Jul/20	13:59	4.86	2262	450	30	16.6	0.12	clear
	23/Aug/20	15:28	4.82	2759	450	0-40	13.7	0.02	clear
	28/Sep/20	14:15	3.54	3100	450	0	9.8	-	stagnant/clear
	20/Oct/20	13:26	3.42	3202	450-800	0-40	2.9	0.05	clear
	30/Nov/30	13:50	4.06	3491	800	0	1.0	0.05	clear

Table 11: In Situ Water Quality Measurements Along L3 Creek

UR: Not Read (< 0.0)

	Sampling Dates	Total Iron (Fe)	Dissolved Iron (Fe)		Dissolved Cadmium (Cd)	Total Cobalt (Co)	Total Zinc (Zn)	Dissolved Copper (Cu)	Total Arsenic (As)	Total Manganese (Mn)	Total Silver (Ag)	рН
	17/Apr/20	✓					✓					
	27/May/20			✓								
	21/Jun/20	✓		✓								
LBL3C-0.02	29/Jul/20			\checkmark								
(discharge)	23/Aug/20			\checkmark								
	29/Sep/20			\checkmark								
	20/Oct/20			✓								
	30/Nov/20			✓								
	27/Feb/20											
	25/Mar/20											
	17/Apr/20	✓					~		✓		~	
	27/May/20	✓										
	21/Jun/20	✓		~								
LBL3C-1.43 (midstream)	29/Jul/20											
(inicisticality	23/Aug/20											
	29/Sep/20											
	21/Oct/20											
	30/Nov/20											
	20/Dec/20											
	17/Apr/20	✓					~	✓	✓		~	
LBL3C-1.65	27/May/20											
	21/Jun/20											
	17/Apr/20	✓					~		✓		~	
	27/May/20											
LBL3C-3.32 (upstream)	21/Jun/20	✓		✓								
(upotrouili)	29/Jul/20											
	23/Aug/20											
	17/Apr/20	✓					\checkmark		✓			
	27/May/20	✓		~								
	21/Jun/20	✓		✓								
LBL4C-0.18	29/Jul/20	✓	✓	✓	✓	~	~	✓		✓		\checkmark
LDL40-0.10	23/Aug/20	✓	✓	✓	✓	~	✓	✓		✓		✓
	29/Sep/20	✓	✓	✓	✓	~	✓			✓		~
	21/Oct/20	✓	\checkmark	✓	✓	✓	✓	✓		✓		\checkmark
	30/Nov/20	✓	✓	✓	✓	~	✓	✓		✓		✓

Table 12: Summary of Water Quality Exceedances (BCAWQG-FST) Along L3 Creek From Water Sampling Events in 2020

¹ British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

Note: L3 and L4 Creek are not considered a construction-related PAG management facility and are not monitored under requirement of the CEMP.

					Ir	n-Situ Tests	- 2020			
Sample Site	Date	Time	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity	Notes
	08/Oct/20	-	-	-	-	-	-	-	-	
LBP Pond	20/Nov/20	12:59	6.57	4114	450	240	0.2	-	-	
LB Channel E	08/Oct/20	-	-	-	-	-	-	-	-	

Table 13: In Situ Water Quality Sampling - Left Bank Debris Boom

UR / Or: Not Read (< 0.0)

	Sampling Dates	Total Iron (Fe)	Dissolved Iron (Fe)	Dissolved Aluminum (Al)	Total Arsenic (As)	Total Boron (B)	Total Cobalt (Co)	Total Manganese (Mn)	Total Zinc (Zn)	Dissolved Cadmium (Cd)	Dissolved Copper (Cu)	рН
LBP Pond	08/Oct/20	~	\checkmark					\checkmark				
	20/Nov/20	~	~	~				~	~			
LB Side Channel E	08/Oct/20	~	~	✓	~	~	~	~	~	~	~	~

Table 14: Summary of Water Quality Exceedances (BCAWQG-FST) at the Left Bank Debris Boom From Water Sampling Events in 2020

¹ British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

Hardness-dependent parameters (Cu, Pb, Mn, Zn, Cd) use capped hardness values in guideline calculations.

Copper-dissolved guideline is DOC-dependent (Dissolved Organic Carbon)

Calculated guideline is pH dependent for dissolved Aluminum.

					Ir	n-Situ Tests	- 2020			
Sample Site	Date	Time	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity	Notes
	08/Oct/20	11:27	7.11	313	100	80-120	11.54	0.5	slightly cloudy	
L2 DS	20/Nov/20	11:30	8.20	1131	450	240	0.56	0.05	clear	
22 00	04/Dec/20	12:24	7.44	922	250	180	7.09	0.50	-	Composite sample
	14/Dec/20	12:19	7.50	1707	800+	120-180	0.64	0.50	slightly turbid	
L2 US	08/Oct/20	12:28	7.68	859	250	120-180	9.7	-	stagnant, cloudy	
L2 00	04/Dec/20	12:47	7.60	465	250	180	5.5	0.10		

Table 15: In Situ Water Quality Sampling - L2 Powerhouse

UR: Not Read (< 0.0)

n/a: not available

Table 16: Summary of Water Quality Exceedances (BCAWQG-FST) at the L2 Powerhouse Area From Water Sampling Events in 2020

	Sampling Dates	Total Iron (Fe)	Dissolved Aluminum (Al)
	08/Oct/20		
L2 DS	20/Nov/20		\checkmark
	04/Dec/20		\checkmark
	14/Dec/20		\checkmark
L2 US	08/Oct/20	\checkmark	

¹ British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

Hardness-dependent parameters (Cu, Pb, Mn, Zn, Cd) use capped hardness values in guideline calculations.

Copper-dissolved guideline is DOC-dependent (Dissolved Organic Carbon)

Calculated guideline is pH dependent for dissolved Aluminum.

PHOTOGRAPHS

- Photo 1 River Road discharge location, LBRR-DD, October 20, 2020.
- Photo 2 River Road LBRR-EDP location, June 21, 2020.
- Photo 3 River Road LBRR-LC location, October 20, 2020.
- Photo 4 River Road LBRR-UC location, May 27, 2020.
- Photo 5 River Road LBRR-12+500 location, June 21, 2020.
- Photo 6 River Road LBRR-12+600 location, October 20, 2020.
- Photo 7 River Road LBRR-12+700 location, May 27, 2020.
- Photo 8 River Road LBRR-12+810 location, October 20, 2020.
- Photo 9 River Road LBRR-12+920 location, June 21, 2020.
- Photo 10 River Road RR8 location, June 21, 2020.
- Photo 11 River Road RR9 location, May 27, 2020.
- Photo 12 RBSBIAR-US upstream west ditch, June 22, 2020.
- Photo 13 RBSBIAR-DS downstream west ditch, June 22, 2020.
- Photo 14 RBSBIAR-EUS upstream east ditch, October 20, 2020.
- Photo 15 RBSBIAR-EDS downstream east ditch, September 28, 2020.
- Photo 16 RBSC-DS side channel location, June 22, 2020.
- Photo 17 L3 Creek LBL3C-0.02 discharge location, June 21, 2020.
- Photo 18 L3 Creek LBL3C-1.43 lower midstream location, May 28, 2020.
- Photo 19 L3 Creek LBL3C-1.65 upper midstream location, June 21, 2020.
- Photo 20 L3 Creek LBL3C-3.32 upstream location, October 21, 2020.
- Photo 21 L4 Creek LBL4C-0.18 location, June 21, 2020.
- Photo 22 Left Bank Debris Boom LBP Pond location, December 14, 2020.
- Photo 23 Left Bank Debris Boom Side Channel E location, December 14, 2020.
- Photo 24 Right Bank L2 Powerhouse Area L2 DS downstream location, October 8, 2020.
- Photo 25 Right Bank L2 Powerhouse Area L2 US upstream location, October 8, 2020.

Photo 1: River Road discharge location, LBRR-DD, October 20, 2020.

Photo 2: River Road LBRR-EDP location, June 21, 2020.

Photo 3: River Road LBRR-LC location, October 20, 2020.

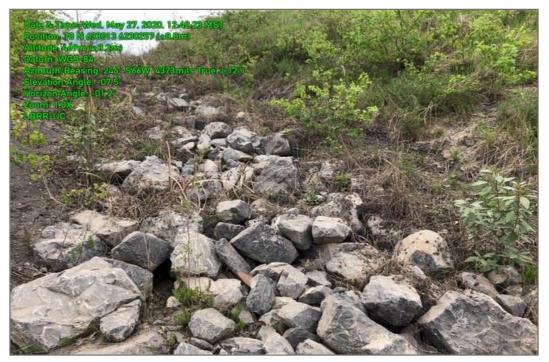


Photo 4: River Road LBRR-UC location, May 27, 2020.

Photo 5: River Road LBRR-12+500 location, June 21, 2020.

Photo 6: River Road LBRR-12+600 location, October 20, 2020.

Photo 7: River Road LBRR-12+700 location, May 27, 2020.

Photo 8: River Road LBRR-12+810 location, October 20, 2020.

Photo 9: River Road LBRR-12+920 location, June 21, 2020.

Photo 10: River Road RR8 location, June 21, 2020.

Photo 11: River Road RR9 location, May 27, 2020.

Photo 12: RBSBIAR-US upstream west ditch, June 22, 2020.

Photo 13: RBSBIAR-DS downstream west ditch, June 22, 2020.

Photo 14: RBSBIAR-EUS upstream east ditch, October 20, 2020.

Photo 15: RBSBIAR-EDS downstream east ditch, September 28, 2020.

Photo 16: RBSC-DS side channel location, June 22, 2020.

Photo 17: L3 Creek LBL3C-0.02 discharge location, June 21, 2020.

Photo 18: L3 Creek LBL3C-1.43 lower midstream location, May 28, 2020.

Photo 19: L3 Creek LBL3C-1.65 upper midstream location, June 21, 2020.

Photo 20: L3 Creek LBL3C-3.32 upstream location, October 21, 2020.

Photo 21: L4 Creek LBL4C-0.18 location, June 21, 2020.

Photo 22: Left Bank Debris Boom LBP-Pond location, December 14, 2020.

Photo 23: Left Bank Debris Boom Side Channel E location, December 14, 2020.

Photo 24: Right Bank L2 Powerhouse Area L2 DS downstream location, October 8, 2020.

Photo 25: Right Bank L2 Powerhouse Area L2 US upstream location, October 8, 2020.

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SURFACE WATER ANALYTICAL LABORATORY RESULT TABLES

B1 – 2020 Surface Water Laboratory Analytical Results from River Road Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B2 – 2020 Surface Water Laboratory Analytical Results from RBSBIAR Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B3 – 2020 Surface Water Laboratory Analytical Results from L3 Creek Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B4 – 2020 Surface Water Laboratory Analytical Results from Left Bank Debris Boom Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B5 – 2020 Surface Water Laboratory Analytical Results from L2 Powerhouse Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

					LBRR-DD	LBRR-DD	LBRR-LC	LBRR-12+500	LBRR-12+500	LBRR-12+500	LBRR-12+500																								
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	27-Feb-20	16-Apr-20	16-Apr-20	27-Feb-20	25-Mar-20	16-Apr-20	21-Jun-20																								
Physical Parameters Temperature (°C)	°C																																		
Flow Rate (L/sec)	L/s																																		
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000	NG NG	NG NG	4300 94.6	3900 196	3600 216	3300 158	4400 227	5800 172	500 178																								
Electrical Conductivity (EC)	μS/cm	2.0	NG	NG	838	1040	999	851	1560	1110	1190																								
Hardness as CaCO3, dissolved	µg/L	500	NG (Acceptable ranges exist when calculating	NG (Acceptable ranges exist when calculating																															
Hardness as CaCO3, from total Ca/Mg (New January 2020)) µg/L	500	exceedances for Cd, Cu, Pb, Mn, Zn)	exceedances for Cd, Cu, Pb, Mn, Zn)	324000 364000	552000	487000	317000 358000	574000 849000	529000	550000																								
pH	pH Units	0.10	6.5 - 9	6.5-9.0	7.78	8.27	8.32	8.06	8.00	8.14	8.17																								
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG NG	NG NG	543000 68800	783000 55500	750000 6200	544000 63200	1080000 744000	837000 2390000	842000 2000																								
Alkalinity (Hydroxide) as CaCO ₃	μg/L	1000	NG	NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000																								
Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃)	μg/L μg/L	1000	NG NG	NG NG	<1000 94600	<1000 196000	4800 211000	<1000 158000	<1000 227000	<1000 172000	<1000 178000																								
Anions and Nutrients (Matrix: Water)	µg/L	1000	NG	10	94600	196000	211000	158000	227000	172000	178000																								
Ammonia (NH4 as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	366 8770	58	50	272	157	428	<50																								
Ammonia FST Guideline Ammonia FLT Guideline	μg/L μg/L		pH dependent (at Temp 4 C or in situ T)	pH dependent (at Temp 4 °C or in situ T)	1690	3150 606	3150 606	4950 952	6220 1200	4950 952	3950 759																								
Chloride (Cl [°])	μg/L	500	600,000	150,000	77100	83100	83000	102000	227000	137000	145000																								
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-100	NG Cl-dependent (> 10,000 µg/L)	NG CI-dependent (> 10,000 µg/L)	438	24.7	16.8	388	322	150	116																								
Nitrite (NO ₂ ⁻ as N) Sulphate (SO ₄) ³	μg/L μg/L	1.0-20	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000	21.5 204000	1.2 246000	1.3 212000	20.9 124000	13.1 329000	8.3 225000	<5 274000																								
		300		Hardness 76,000-180,000 = 309,000																															
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	309000	429000	429000	309000	429000	429000	429000																								
Dissolved Organic Carbon (DOC) Metals, Total	mg/L		NG	NG	9.18	4.70	4.30	9.68	5.42	11.3	6.0																								
Aluminum	µg/L	3.00	NG	NG	1790	363	141	646	5440	11200	37.1																								
Antimony	µg/L	0.1-0.2	NG	NG	0.21	0.14	0.12	0.23	0.62	0.87	0.26																								
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	1.31 79.3	1.14 46.3	0.67 45.6	0.97 80.2	7.31 378	15.4 668	0.72 68																								
Beryllium	µg/L	0.10	NG	NG	0.128	<0.1	<0.1	<0.1	0.374	0.81	< 0.1																								
Bismuth Boron	μg/L μg/L	0.05-0.10 10.0	NG 1200	NG 1200	<0.05 34	<0.05 33	<0.05 30	<0.05 33	0.083 48	0.17 60	<0.05 67																								
Cadmium	µg/L	0.005	NG	NG	0.63	0.271	0.176	0.0637	0.788	1.71	0.006																								
Calcium Cesium	μg/L μg/L	50 0.01	NG	NG NG	104000 0.136	148000 0.057	142000 0.023	102000 0.085	234000 0.87	223000 1.37	141000 0.013																								
Cesium Chromium ⁴	μg/L μg/L	0.01	NG	NG	0.136 1.74	0.057	0.023	0.085 1.81	0.87 14.8	1.37 26.8	0.013																								
Cobalt	µg/L	0.10	110	4.0	7.38	4.79	4.55	1.75	11.6	18.1	0.64																								
Copper ³ Cu STM Guideline Calc.	μg/L μg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	4.49	3.18 39.6	2.28 39.6	21.6 31.8	18.1 39.6	40.7 39.6	1.6 39.6																								
			Hardness > 400,000 is Capped Value of 400,000	Hardness 50,000 - 250,000: calc.;																															
Cu LTA Guideline Calc.	µg/L	10		Hardness > 250,000, Cu = 10	10.0	10.0 1260	10.0 480	10.0	10.0 19200	10.0	10.0																								
Iron Lead ³	μg/L μg/L	0.05-0.1	1000 Calc. based on Hardness	NG Calc. based on Hardness	2310 0.995	0.371	480	1730 1.52	6.67	37200 15.4	26 <0.05																								
Pb FST Guideline Calc (Based on Hardness as CaCO3),	µg/L		Hardness ≤ 8000 is 3; Hardness 8000-360,000: calc.		365	417	417	355	417	417	417																								
applies to water hardness 8000-360,000 µg/L	P9/L		Hardness>360,000 is Capped Value of 360,000		000				417		417																								
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000	18	20	20	17	20	20	20																								
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	29.2 25000	29.8 41800	19.9 41000	12.7 24900	30.3 64000	37.9 53200	31.9 46000																								
Magnese ³	μg/L μg/L	0.10	Calc. based on hardness	Calc. based on Hardness	162	275	346	78.6	490	1280	7.97																								
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394.2	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2																								
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 37,000 - 450,000: calc.; Hardness > 450,000 is Capped Value of 450,000	2030.6	2585.0	2585.0	1999.8	2585.0	2585.0	2585.0																								
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	0.0054	0.0134	<0.005	0.0051	0.0168	<0.005	<0.005																								
Molybdenum Nickel	µg/L	0.05	2000	≤ 1000	2.87	3.56	3.89	2.81	6.14	5.53	4.16																								
		0.5			22.5	25	10	0.70																											
	μg/L μg/L	0.5 50-100	NG	NG	32.5 306	35 74	18 <50	9.78 363	41 865	61.1 1740	9.08 <50																								
Phosphorus Potassium	μg/L μg/L	50-100 50.0	NG NG	NG	306 7970	74 6490	<50 6390	363 8930	865 7960	1740 11400	<50 6820																								
Phosphorus Potassium Rubidium	µg/L	50-100	NG		306	74	<50	363	865	1740	<50																								
Phosphorus Potassium Rubidium Selenium Silicon	μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100	NG NG NG NG	NG NG 2.0 NG	306 7970 4.24 1.24 3640	74 6490 2.01 0.599 3320	<50 6390 1.31 0.543 3380	363 8930 2.66 0.552 4250	865 7960 9.99 1.88 10200	1740 11400 18.7 1.55 16700	<50 6820 1.77 0.66 5080																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³	μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	NG NG 2.0	306 7970 4.24 1.24 3640 0.026	74 6490 2.01 0.599 3320 <0.012	<50 6390 1.31 0.543 3380 <0.01	363 8930 2.66 0.552 4250 0.016	865 7960 9.99 1.88 10200 0.14	1740 11400 18.7 1.55 16700 0.326	<50 6820 1.77 0.66 5080 <0.01																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc	μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100	NG NG NG NG 0.10 - 3.0	NG NG 2.0 NG 0.05 - 1.5	306 7970 4.24 1.24 3640 0.026 3.0	74 6490 2.01 0.599 3320 <0.012 3.0	<50 6390 1.31 0.543 3380 <0.01 3.0	363 8930 2.66 0.552 4250 0.016 3.0	865 7960 9.99 1.88 10200 0.14 3.0	1740 11400 18.7 1.55 16700 0.326 3.0	<50 6820 1.77 0.66 5080 <0.01 3.0																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	50-100 50.0 0.2 0.05 100 0.01-0.02	NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5	74 6490 2.01 0.599 3320 <0.012 3.0 1.5	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5	363 8930 2.66 0.552 4250 0.016 3.0 1.5	865 7960 9.99 1.88 10200 0.14 3.0 1.5	1740 11400 18.7 1.55 16700 0.326 3.0 1.5	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05	306 7970 4.24 1.24 3640 0.026 3.0	74 6490 2.01 0.599 3320 <0.012 3.0	<50 6390 1.31 0.543 3380 <0.01 3.0	363 8930 2.66 0.552 4250 0.016 3.0	865 7960 9.99 1.88 10200 0.14 3.0	1740 11400 18.7 1.55 16700 0.326 3.0	<50 6820 1.77 0.66 5080 <0.01 3.0																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Sulfur	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG NG NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300	74 6490 2.01 0.599 3320 <0.012 3.0 1.5 25100 348 88300	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG NG NG NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG NG NG NG NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361	74 6490 2.01 0.599 3320 <0.012 3.0 1.5 25100 348 88300 <0.2	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Stuffur Tellerium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2	74 6490 2.01 0.599 3320 <0.012 3.0 1.5 25100 348 88300 <0.2 0.023 0.16	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2 0.024 0.12	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2 0.17 2.46	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thalium Thorium Tin	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2 500 0.2-2.0.4 0.01-0.055 0.1-0.2 0.1-0.2	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2 <0.1	74 6490 2.01 0.599 3320 <0.012	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2 0.024 0.12 0.13	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2 0.17 2.46 0.16	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Tellerium Thallium Thorium Tin Titanium Tungsten	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2 <0.1 16.8 <0.1	74 6490 2.01 0.599 3320 <0.012	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 <0.74 <0.1	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2 0.024 0.12 0.13 18.2 0.11	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.2 <0.2 <0.1 <0.1																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Tellerium Thalium Thorium Tin Tin Titanium Tungsten Uranium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2 <0.1 16.8 <0.1 1.46	74 6490 2.01 0.599 3320 <0.012 3.0 1.5 25100 348 88300 <0.2 0.023 0.16 <0.1 4.85 <0.1 2.14	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2 0.17 2.46 0.16 122 0.18 5.48	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.1 5.53																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Tellerium Thallium Thorium Tin Titanium Tungsten	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2 <0.1 16.8 <0.1	74 6490 2.01 0.599 3320 <0.012	<50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 <0.74 <0.1	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2 0.024 0.12 0.13 18.2 0.11	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.2 <0.2 <0.1 <0.1																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thalium Thalium Thailium Thailium Thainum Tin Suffac Strontium Stro	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0	NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2 0.04 0.2 <0.1 16.8 <0.1 1.46 2.66	74 6490 2.01 0.599 3320 <0.012	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52 <0.5</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 5.53 <0.62																								
Phosphorus Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thalium Thorium Thalium Thorium Tin Titanium Uranium Vanadium Zinc ³	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0	NG NG NG NG 0.10 - 3.0 Hardness ≤ 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG NG <	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52 <0.5 16.4</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <1.5 3.62 1.5																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Siliver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thalium Thorium Tin Titanium Uranium Uranium Vanadium Zinc ³ Zn FST Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52 <0.5 16.4</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.53 <0.62 1.5																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Stontium Stontium Tholium Thorium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zn FLT Guideline Calc. Zirconium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52 <0.5 16.4 330.8</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <1.5 340.5																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Stontium Sulfur Tellerium Thorium Thallium Thorium Tin Titanium Unangten Uranium Zan EST Guideline Calc. Zin FST Guideline Calc. Zirconium Metals, Dissolved	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.3-1.2 0.1-0.2 0.3-1.0 3.0 0.06-0.12	NG NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 - 33.0	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <1.6 340.5 187.5 <0.2																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Stontium Stortium Stuffur Tellerium Thorium Thorium Tin Titanium Utanium Vanadium Zinc ³ Zn FST Guideline Calc. Zn FLT Guideline Calc. Zirconium Metals, Dissolved Auminum ⁶	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0 3.0	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness \$ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<pre><50 6390 1.31 0.543 3380 <0.01 3.0 1.5 26200 325 79100 <0.2 0.012 <0.1 <0.1 0.74 <0.1 2.52 <0.5 16.4 330.8 187.5</pre>	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5	<pre><50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.1 0.32 <0.1 5.53 0.62 1.5 340.5 187.5</pre>																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thalium Thorium Tin Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH)	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.3-1.2 0.1-0.2 0.3-1.0 3.0 0.06-0.12	NG NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 - 53.0 Hardness > 500,000, Calc. Hardness > 500,000, Capped Value NG NG NG NG NG NG NG NG NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness 90,000 = 7.5 Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG 50 median pH < 6.5 : calc. Al	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <1.5 <340.5 <1.5 <340.5 <187.5 <0.2 <28.1 <100																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thalium Thorium Thalium Thorium Tin Titanium Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zir FLT Guideline Calc. Zir FLT Guideline Calc. Ag FLT Guideline Calc (based on pH) Af FLT Guideline Calc (based on median pH)	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0	NG NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness > 500,000, Capped Value NG 100 pH < 6.5 : 100.0 Al	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness > 90,000 = 7.5 Hardness > 30,000, Caped Value NG 50 median pH < 6.5 : calc. Al	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50	<pre><50 </pre> <50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.1 <5.53 <0.62 <1.6 <340.5 </td																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thorium Thallium Thorium Tin Tin Titanium Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zir FLT Guideline Calc. Zir FLT Guideline Calc. Ag FLT Guideline Calc (based on pH) Antimony Arsenic	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.3-1.2 0.1-0.2 0.3-1.0 3.0 0.06-0.12	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness 90,000 = 7.5 Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG 50 median pH < 6.5 : calc. Al	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100	<pre><50 </pre> 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <1.5 <340.5 <1.5 <340.5 <187.5 <0.2 <28.1 <100																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thorium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. ZI FLT Guideline Calc. ZI FLT Guideline Calc. ZI FLT Guideline Calc. Ag FLT Guideline Calc (based on pH) Antimony Arsenic Barium	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10 0	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S0,000 - 330,000, Calc. Hardness > 300,000, Calpo, Calc. Hardness > 330,000, Calpo, Calc. Hardness > 50,000 - 350,000 S0 median pH < 6.5 : sol. Al	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.1 <0.2 <0.1 5.53 <0.62 1.5 340.5 187.5 <0.2 <28.1 100 <50 <0.24 <0.62 <68.1																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thorium Thallium Thorium Tin Titanium Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zir FLT Guideline Calc. Zir FLT Guideline Calc. Ag FLT Guideline Calc (based on pH) Antimony Arsenic Barium Berylium	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10.2 0.10.10 0.1-0.2 0.10	NG NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Solow - 330,000, Calc. Hardness > 300,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : calc. Al	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 5.53 <0.62 1.5 340.5 187.5 <0.2 <28.1 100 50 <0.24 <0.62																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sofium Suffur Tellerium Thorium Thorium Thorium Tin Titanium Thorium Uranigten Uranium Zinc ³ Zin FST Guideline Calc. Zir FLT Guideline Calc. Zir FLT Guideline Calc. Zir FLT Guideline Calc. Ag FLT Guideline	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.01 0.05-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10 0.	NG NG NG NG NG 0.10 - 3.0 Hardness ≤ 100.000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 Hardness > 100,000 Ag = 3.0 NG 100 pH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness > 30,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. NG S0 MG NG NG NG NG NG <td< td=""><td>306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2</td> 0.04 0.2 <0.1</td<>	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 46	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.1 <0.1 <0.2 <0.2 <0.2 <0.1 <0.1 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 <0.2																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Stontium Stortium Thorium Thorium Thorium Thorium Tin Titanium Uranium Vanadium Zinc ³ Zr FST Guideline Calc. Zr FLT Guideline Calc. Zir FLT Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ⁸	μg/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10	NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 - 330,000, Calc.	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 46 0.0669	<50 6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 0.02 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 28.1																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Siliver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thalium Thorium Tin Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. ZI FLT Guideline Calc. ZI FLT Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Artimony Arsenic Barium Beryllum Bismuth Boron Cadmium ³ Cd FST Guideline Calc.	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.01 0.05-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10 0.	NG NG NG NG NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 - 53.0	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S0,000 - 330,000, Calc. Hardness < 90,000 - 330,000, Calc.	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 46 0.0669 2.80	<50 <6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 5.53 0.62 1.5 340.5 187.5 <0.2 <28.1 100 50 <0.24 <0.62 <68.1 <0.1 <0.05 74 <0.0025 <2.80																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thorium Thalium Thorium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Bismuth Bismuth Bismuth Bismuth Calc Calc. Cd FST Guideline Calc. Cd FLT Guideline Calc.	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.1-0.2 0.01 0.05-0.1 1.0 0.1-0.2 0.1-0.2 0.1-0.2 0.05-0.1 1.0 0.005-0.1 1.0 0.005 0.0 0.005 0.0 0.005 0.0 0.0	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 Hardness > 100.000 Ag = 3.0 NG 100 pH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness \$ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 - 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 < 0.15 46 0.0669 2.80 0.46	<50																								
Phosphorus Potassium Potassium Potassium Rubildium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Sulfur Tellerium Thalium Thorium Thalium Thorium Tin Tin Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zr FLT Guideline Calc (based on pH) Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.01 0.05-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10 0.	NG NG NG NG 0.10 - 3.0 Hardness < 100,000 Ag = 0.10	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness 90,000 = 7.5 Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG S0 S0 MG NG NG NG NG NG NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 46 0.0669 2.80	<50 <6820 1.77 0.66 5080 <0.01 3.0 1.5 52400 601 93200 <0.2 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 5.53 0.62 1.5 340.5 187.5 <0.2 <28.1 100 50 <0.24 <0.62 <68.1 <0.1 <0.05 74 <0.0025 <2.80																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thallium Thorium Thallium Thorium Thalium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zir FLT Guideline Calc Iter Guideline Calc (based on pH) Attimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Cesium Chromium	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 0.10 0.10 0.10 0.10 0.05-0.1 1.0 0.055 0.10 0.10 0.5-1.0 0.01 0.05 0.10 0.10 0.5 0.10 0.5 0.10 0.5 0.10 0.5 0.10 0.10 0.5 0.10 0.5 0.10 0.10 0.5 0.10 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0	NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG 100 pH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness 4ardness > 30,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. MG NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 46 0.0669 2.80 0.46 148000 0.018 <0.1	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Thallium Thorium Tin Titanium Uranium Vanadium Zinc ³ Zn FST Guideline Calc. ZIr Suideline Calc. ZIr Suideline Calc (based on pH) At FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Bismuth Bioron Cadmium ³ Cd FST Guideline Calc. Calcium Chromium Cobalt	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.06-0.12 0.06-0.12 0.01 0.1-0.2 0.10 0.5-1.0 3.0 0.05-0.1 1.0 0.05-0.1 0.005 0.10 0.10 0.005 0.10 0.10 0.005 0.10 0.10 0.005 0.10 0.00 0.10 0.10 0.00 0.10 0.00 0.10 0.0	NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG 100 pH < 6.5 : catc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S0,000, Calc. Hardness > 30,000, Calc. Hardness > 30,000, Calc. Hardness > 30,000, Calc. NG NG NG NG NG NG NG NG NG NG <	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.5 46 0.0669 2.80 0.46 148000 0.018 <0.1 2.75	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thallium Thorium Thallium Thorium Thanium	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 0.10 0.10 0.10 0.10 0.05-0.1 1.0 0.055 0.10 0.10 0.5-1.0 0.01 0.05 0.10 0.10 0.5 0.10 0.5 0.10 0.5 0.10 0.5 0.10 0.10 0.5 0.10 0.5 0.10 0.10 0.5 0.10 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0	NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG 100 pH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness 4ardness > 30,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. MG NG	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 46 0.0669 2.80 0.46 148000 0.018 <0.1	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thorium Thalium Thorium Thorium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁹ Al FST Guideline Calc (based on pH) Artimony Artsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT	μց/L μg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 0.1-0.2 0.10 0.5-1.0 3.0 0.05-0.1 1.0 0.005 50.0 0.005 50.0 0.010 0.05 0.10 0.5-1.0 0.00 0.10 0.000 0.00	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG NG <	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.1 2.75 1.85 71.2 13.7	<50																								
Phosphorus Potassium Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thorium Thailum Thorium Tin	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.06-0.12 0.06-0.12 0.01 0.1-0.2 0.10 0.5-1.0 3.0 0.05-0.1 1.0 0.05-0.1 0.005 0.10 0.10 0.005 0.10 0.10 0.005 0.10 0.10 0.005 0.10 0.00 0.10 0.10 0.00 0.10 0.00 0.10 0.0	NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 Hardness > 100,000 Ag = 3.0 NG	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 46 0.0669 2.80 0.46 148000 0.018 <0.1 2.75 1.85 71.2	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Stuffur Tellerium Thallium Thorium Thallium Thorium Tin Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zr FLT Guideline Calc Sodium Strontum Statimony At FST Guideline Calc (based on pH) Attrimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Cesium Chromium Cobalt Coper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Lithium Lead Lithium Lithium Lithium	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 0.10 0.05-0.1 10.0 0.005 0.10 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.005 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.05 0.0	NG NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG 100 pH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000, Calc.	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.05 4.80 0.0669 2.80 0.46 148000 0.018 <0.1 2.75 1.85 71.2 13.7 5.0 <0.05 23.1	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thalium Thorium Tin Tin Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. ZI FLT Guideline Calc Signer Al FST Guideline Calc (based on pH) AltErt Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Chromium Cobalt Coper ⁶ Cu FST Guideline Calc. Cu FLT Guideline Calc.	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 0.10 0.10 0.5-1.0 3.0 0.05-0.1 10.0 0.005 0.10 0.05 0.10 0.05 0.10 0.10 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.10 0.5 0.10 0.10 0.5 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.10 0.10 0.05 0.10 0.00	NG NG NG NG 0.10 - 3.0 Hardness > 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness > 500,000, Calc. Hardness > 500,000, Calc. Al PH < 6.5 : calc. Al	NG NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 - 330,000, Calc.	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 <0.28 0.41 56.5 <0.1 <0.05 1.5 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Suffur Tellerium Thalium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zr FLT Guideline Calc Sodium Metals, Dissolved Aluminum ⁹ Al FST Guideline Calc (based on pH) Altfur Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guid	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.05 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.05 0.12 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.15 0.	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG Hardness 90,000 - 53.0 Hardness 90,000 - 500,000, Calc. Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness ANG Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. NG NG <td< td=""><td>306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2</td> 0.04 0.2 <0.1</td<>	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 3.6400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.27 1.5 1.5 .25 .25 .25 .25 .25 .25 .25	<50	Phosphorus Potassium Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thorium Thalium Thorium Tin Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Beryllium Bismuth Beryllium Calc in Ca	µg/L µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 1.0 0.1-0.2 0.10 0.1-0.2 0.10 0.05-0.1 1.0 0.005 0.20 0.05-0.1 1.0 0.005 0.10 0.20 0.05-0.1 1.0 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.00 0.05 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.05 0.0	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG NG <	NG NG 2.0 NG 0.05 - 1.5 Hardness \$ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1	<50	Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thalium Thorium Thalium Thorium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zr FLT Guideline Calc Strontium Strontium Strontium Attiso, Dissolved Atuminum ⁹ At FST Guideline Calc (based on pH) Attimony Artsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT G	µg/L µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.05 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.05 0.12 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.15 0.	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG Hardness 90,000 - 53.0 Hardness 90,000 - 500,000, Calc. Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness ANG Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. NG NG <td< td=""><td>306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2</td> 0.04 0.2 <0.1</td<>	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 3.6400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.27 1.5 1.5 .25 .25 .25 .25 .25 .25 .25	<50
363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 3.6400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.27 1.5 1.5 .25 .25 .25 .25 .25 .25 .25	<50																																
Phosphorus Potassium Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thorium Thalium Thorium Tin Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Beryllium Bismuth Beryllium Calc in Ca	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.06-0.12 1.0 0.1-0.2 0.10 0.1-0.2 0.10 0.05-0.1 1.0 0.005 0.20 0.05-0.1 1.0 0.005 0.10 0.20 0.05-0.1 1.0 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.00 0.05 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.05 0.0	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG NG <	NG NG 2.0 NG 0.05 - 1.5 Hardness \$ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 = 7.5	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 36400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1	<50																								
Phosphorus Potassium Potassium Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thalium Thorium Thalium Thorium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zr FLT Guideline Calc Strontium Strontium Strontium Attiso, Dissolved Atuminum ⁹ At FST Guideline Calc (based on pH) Attimony Artsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT G	µg/L	50-100 50.0 0.2 0.05 100 0.01-0.02 50.0 0.2-0.4 0.01-0.05 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.10 0.05 0.11 0.05 0.12 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.11 0.05 0.15 0.	NG NG NG NG NG 0.10 - 3.0 Hardness > 100.000 Ag = 0.10 Hardness > 100.000 Ag = 3.0 NG Hardness 90,000 - 53.0 Hardness 90,000 - 500,000, Calc. Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness ANG Hardness > 330,000, Calc. Hardness > 330,000, Calc. Hardness > 330,000, Calc. NG NG <td< td=""><td>306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2</td> 0.04 0.2 <0.1</td<>	306 7970 4.24 1.24 3640 0.026 3.0 1.5 22400 361 74300 <0.2	74 6490 2.01 0.599 3320 <0.012	<50	363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 3.6400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.27 1.5 1.5 .25 .25 .25 .25 .25 .25 .25	<50																								
363 8930 2.66 0.552 4250 0.016 3.0 1.5 30400 422 46400 <0.2	865 7960 9.99 1.88 10200 0.14 3.0 1.5 57400 716 110000 <0.2	1740 11400 18.7 1.55 16700 0.326 3.0 1.5 3.6400 1180 83400 0.27 0.366 4.85 0.35 156 0.19 4.32 36.9 209 340.5 187.5 0.8 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 26.4 100 50 0.28 0.41 56.5 <0.1 2.80 0.46 148000 0.018 <0.27 1.5 1.5 .25 .25 .25 .25 .25 .25 .25	<50																																

					LBRR-12+500	LBRR-12+500	LBRR-EDP	LBRR-EDP	LBRR-EDP	LBRR-EDP
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG-FLT ²	28-Sep-20	20-Oct-20	27-Feb-20	25-Mar-20	16-Apr-20	21-Jun-20
Physical Parameters Temperature (°C)	°C									
Flow Rate (L/sec)	L/s									
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000	NG NG	NG NG	2300 179	3500 214	7400 256	7100 298	4700 179	4700 194
Electrical Conductivity (EC)	μS/cm	2.0	NG	NG	1120	1030	1900	2910	1200	1630
Hardness as CaCO3, dissolved	µg/L	500	NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	494000	507000	070000	1000000	500000	042000
Hardness as CaCO3, from total Ca/Mg (New January 2020) µg/L	500	exceedances for Cd, Cu, Pb, Min, Zh)	exceedances for Cd, Cu, Pb, Min, Zh)	481000	527000	878000 744000	1600000 1640000	598000	942000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.1	7.99	8.03	8.13	8.16	8.04
Total Suspended Solids (TSS)	μg/L	3000	NG	NG	849000 1500	790000 22100	1510000 21800	2440000 13500	993000 1350000	1300000 4300
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	µg/L	1000 1000	NG NG	NG NG	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃)	μg/L μg/L	1000	NG	NG	<1000 179000	<1000 214000	<1000 256000	<1000 298000	<1000 179000	<1000 194000
Anions and Nutrients (Matrix: Water) Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)				100		
Ammonia FST Guideline	μg/L	5.0	pH dependent (at Temp 4 °C or in situ T)	pri dependent (0.5-9.0)	<50 4950	<50 6220	196 6220	183 4950	367 3950	<50 6220
Ammonia FLT Guideline	μg/L μg/L	500	600,000	pH dependent (at Temp 4 [°] C or in situ T) 150,000	952	1430	1200	952	759	1200
Chloride (Cl [°]) Nitrate (NO ₃ [°] as N)	μg/L	5.0-100	NG	NG	136000 <25	155000 251	222000 667	268000 621	138000 160	115000 380
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-20	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	CI-dependent (> 10,000 µg/L) Guideline: 200 ug/L	<5	<5	31.1	28.8	8	<5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000	218000	244000	496000	1230000	281000	641000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000	429000	429000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC)	mg/L		NG	Hardness > 250,000 site-specific NG	4.9	6.2	7.45	7.63	10.0	6.5
Metals, Total										
Aluminum Antimony	μg/L μg/L	3.00 0.1-0.2	NG NG	NG NG	93.4 0.18	207 0.16	783 0.24	196 0.31	7100 0.78	60.8 0.27
Arsenic	µg/L	0.10	5.0	5.0	0.44	0.54	1.01	0.6	9.67	0.61
Barium Beryllium	μg/L μg/L	0.10	NG	NG	57.9 <0.1	56.4 <0.1	99.1 <0.1	77.3 <0.2	393 0.52	58.8 <0.1
Bismuth	µg/L	0.05-0.10	NG	NG	<0.05	<0.05	<0.05	<0.1	0.096	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	73 0.0095	67 0.0292	60 0.492	152 0.592	58 1.22	109 0.361
Calcium	µg/L	50	NG	NG	127000	160000	209000	402000	217000	262000
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-0.7	NG	NG NG	<0.01 0.14	0.023	0.11	0.035	0.828 17.5	0.014 0.18
Cobalt	μg/L	0.10	110	4.0	0.14	0.69	9.16	30.4	15.4	2.16
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	1.79	2.31	3.18	3.07	26.4	1.74
Cu STM Guideline Calc.	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness > 400,000 is Capped Value of 400,000		39.6	39.6	39.6	39.6	39.6	39.6
Cu LTA Guideline Calc.	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10	10.0	10.0	10.0	10.0	10.0	10.0
Iron Lead ³	μg/L μg/L	10 0.05-0.1	1000 Calc. based on Hardness	NG Calc. based on Hardness	57 <0.05	485 0.147	1540 0.673	275 <0.1	23300 8.04	81 <0.05
Pb FST Guideline Calc (Based on Hardness as CaCO3),		0.00-0.1	Hardness ≤ 8000 is 3;							
applies to water hardness 8000-360,000 µg/L	µg/L		Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of 360,000		417	417	417	417	417	417
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000	20	20	20	20	20	20
Lithium	µg/L	1.0	NG	NG	24.2	22.7	43.2	113	36.1	48.1
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on hardness	NG Calc. based on Hardness	43400 5.24	42500 25.1	53700 220	156000 702	52000 1030	72800 109
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 37,000 - 450,000: calc.; Hardness > 450,000 is Capped Value of 450,000	2585.0	2585.0	2585.0	2585.0	2585.0	2585.0
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	<0.005	<0.005	<0.005	0.016	0.0075	<0.005
Molybdenum Nickel	μg/L μg/L	0.05	2000 NG	≤ 1000	2.9 3.85	2.75 4.68	3.33 47.8	4.78 248	4.55 60.6	3.42 37.3
Phosphorus	μg/L	50-100	NG	NG	<50	4.08 <50	120	<100	1120	<50
Potassium	µg/L	50.0	NG	NG	6560	5980	10100	15400	10200	7260
		0.0	NC		4.04	4.50	2.00	2.22	11.0	
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	1.34 0.376	1.56 0.48	3.99 1.56	3.33 2.28	11.8 1.23	1.84 2.87
Rubidium Selenium Silicon	μg/L μg/L μg/L	0.05 100	NG	NG 2.0 NG	0.376 4520	0.48 4650	1.56 5100	2.28 5190	1.23 11800	2.87 5440
Rubidium Selenium Silicon Silver ³	μg/L μg/L μg/L μg/L	0.05	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	NG 2.0	0.376 4520 <0.01	0.48 4650 <0.01	1.56 5100 0.022	2.28 5190 <0.02	1.23 11800 0.156	2.87 5440 <0.01
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc	μg/L μg/L μg/L	0.05 100	NG 0.10 - 3.0	NG 2.0 NG	0.376 4520 <0.01 3.0	0.48 4650 <0.01 3.0	1.56 5100 0.022 3.0	2.28 5190 <0.02 3.0	1.23 11800 0.156 3.0	2.87 5440 <0.01 3.0
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc	µg/L µg/L µg/L µg/L µg/L	0.05 100 0.01-0.02	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	0.376 4520 <0.01 3.0 1.5	0.48 4650 <0.01 3.0 1.5	1.56 5100 0.022 3.0 1.5	2.28 5190 <0.02 3.0 1.5	1.23 11800 0.156 3.0 1.5	2.87 5440 <0.01 3.0 1.5
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc	μg/L μg/L μg/L μg/L	0.05 100	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05	0.376 4520 <0.01 3.0	0.48 4650 <0.01 3.0	1.56 5100 0.022 3.0	2.28 5190 <0.02 3.0	1.23 11800 0.156 3.0	2.87 5440 <0.01 3.0
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Sulfur	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG NG NG NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100	0.48 4650 <0.01 3.0 1.5 45600 657 79300	1.56 5100 0.022 3.0 1.5 53000 807 156000	2.28 5190 <0.02 3.0 1.5 92800 1280 454000	1.23 11800 0.156 3.0 1.5 35100 1180 102000	2.87 5440 <0.01 3.0 1.5 52100 802 229000
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG NG	0.376 4520 <0.01 3.0 1.5 46200 481	0.48 4650 <0.01 3.0 1.5 45600 657	1.56 5100 0.022 3.0 1.5 53000 807	2.28 5190 <0.02 3.0 1.5 92800 1280	1.23 11800 0.156 3.0 1.5 35100 1180	2.87 5440 <0.01 3.0 1.5 52100 802
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thallium Thallium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2 0.038 0.23	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Storntium Suffur Teilerium Thallium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2 0.038	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Tellerium Tellerium Thallium Thorium Tin Titanium Tungsten	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 0.51 <0.1	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2 0.038 0.23 <0.1 9.28 <0.1	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 3 <0.2	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thellerium Thallium Thorium Tin Titanium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 0.51	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2 0.038 0.23 <0.1 9.28	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 3	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strotium Strotium Sulfur Tellerium Tellerium Thallium Tharium Tin Titanium Tungsten Uranium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness	NG 2.0 NG 0.05 - 1.5 Hardness \$ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 0.51 <0.1 3.86	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2 0.038 0.23 <0.1 9.28 <0.1 2.78	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 3 <0.2 6.07	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57
Rubidium Selenium Silicon Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Tellerium Thalium Thorium Tin Titanium Tungsten Uranium Vanadium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.01 0.5-1.0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG <	NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 3.86 <0.5	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85	1.56 5100 0.022 3.0 1.5 53000 807 166000 <0.2 0.038 0.23 <0.1 9.28 <0.1 2.78 1.68	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 3 <0.2 6.07 <1	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5
Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.01 0.5-1.0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness Hardness Hardness	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness Hardness < 90,000 = 7.5	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5
Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zine ³ Zn FST Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG NG <	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 3 <0.2 6.07 <1 88.1 340.5 187.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Uranium Vanadium Zin FST Guideline Calc. Zn FST Guideline Calc. Zirconium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.01 0.5-1.0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90.000 - 33.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Turgsten Urandium Zinc ³ Zn FST Guideline Calc. Zn FLT Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 = 33.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 3 <0.2 6.07 <1 88.1 340.5 187.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5
Rubidium Selenium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Strontium Thallium Thallium Thallium Thallium Tin Titanium Uranium Vanadium Zine ³ Zn FST Guideline Calc. Zn FLT Guideline Calc. Zirconium Metals, Dissolved	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 = 33.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2
Rubidium Selenium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Suffur Tellerium Thallium Thallium Thorium Tin Titanium Uranium Vanadium Zing ³ Zn FST Guideline Calc. Zn FLT Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 = 33.0 Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4 -0.2 -0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.2 -0.5 -0.7 -0.2 -0.4 -0.7 -0.4 -0.7 -0.2 -0.4 -0.7 -0.4 -0.7 -0.4 -0.5 -0.4 -0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36
Rubidium Selenium Selenium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Thallium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Alt FLT Guideline Calc (based on median pH) Antimony	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.0 3.0 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 = 33.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness > 90,000 = 7.5 Hardness > 30,000, Capped Value NG 50 50 median pH < 6.5 : calc. Al median pH < 6.5 : sol.0 Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.3 <0.3 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24
Rubidium Selenium Silicon Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Sulfur Tellerium Thallium Thorium Uranium Uranium Zine ³ Zn FST Guideline Calc. Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH)	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10.2 0.1-0.2 0.10.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 = 33.0 Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG 100 pH ≥ 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S0,000 - 330,000, Calc. Hardness > 300,000, Capped Value NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : calc. Al median pH ≥ 6.5 : calo. Al NG NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.3 0.47 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Titanium Tungsten Uranium Zan FST Guideline Calc. Zn FST Guideline Calc. Zir FST Guideline Calc. Zironium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.0 3.0 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 = 33.0	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness > 90,000 = 7.5 Hardness > 30,000, Capped Value NG 50 50 median pH < 6.5 : calc. Al median pH < 6.5 : sol.0 Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.3 <0.3 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57
Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium	μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.01-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01-0.2 0.10 0.1-0.2 0.10 0.10 0.1-0.2 0.10 0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.0 50 0.14 0.41 <0.5 9 <0.1 <0.2 0.0 0.1 <0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.1 <0.39 49 <0.1 <0.5 <0.39 49 <0.1 <0.1 <0.39 <0.5 0.39 0.35	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.2 <0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thatium Thomat Strontium Suffur Tellerium Thatium Uranium Vanadium Zin G ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01 0.06-0.12 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 - 500,000, Calc.	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S000 - 330,000, Calc. Hardness > 300,000, Calped Value NG 50 median pH < 6.5 : sol. Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.4 -0.2 -0.1 -0.5 -0.2 -0.1 -0.5 -0	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.3 <0.47 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.0 <0.3 <0.47 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 148 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.1 0.2 -0.5 -0.5
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³	μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.010 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.0-0.1 0.0 0.1-0.2 0.0-0.1 0.0 0.1-0.2 0.0-0.1	NG $0.10 - 3.0$ Hardness < 100,000 Ag = 0.10	NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.5 68	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.1 <0.39 49 <0.1 <0.5 55	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4 	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 5.7.5 <0.1 <0.5 110
Rubidium Selenium Silicon Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Titanium Tungsten Uranium Vanadium Zin f ST Guideline Calc. Zn FST Guideline Calc. Zin FST Guideline Calc. Zironium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc.	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.010 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.100 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.0-0.1 0.0 0.1-0.2 0.0-0.1 0.0 0.1-0.2 0.0-0.1	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 - 500,000, Calc. Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG N	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness 90,000 = 7.5 Hardness 90,000 - 330,000, Calc. Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG S0 50 median pH < 6.5 : calc. Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 68 0.005 68 0.0025	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.5 55 0.0145	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4 -0.4 -0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.7 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.3 0.47 <0.7 <0.2 <0.1 <0.5 <0.3 0.47 <0.2 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.5 27 340.5 110 0.2 36 100 50 0.24 0.2 100 50 0.2 100 50 0.24 0.2 100 50 0.2 100 50 0.2 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 50 100 50 100 50 100 50 50 50 100 50 50 100 50 50 100 50 50 100 50 50 50 50 50 50 50 50 50
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Tungsten Uranium Zan FST Guideline Calc. Zn FST Guideline Calc. Zir FST Guideline Calc. Zir FST Guideline Calc. Zironium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadrium ³	µg/L µg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.1-0.2 0.05-0.1 0.1-0.2 0.05-0.1 0.1-0.2 0.05-0.1 0.05-0.1 0.005-0.	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 - 500,000, Calc.	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness 4ardness > 30,000, Calc. Hardness > 30,000, Calc. Al MG 50 median pH < 6.5 : solo Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.05 68 0.0025 2.80 0.46 124000	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.015 <0.2 0.0 0.15 0.2 0.0 0.46 143000	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.5 <0.4 <0.2 <0.2 <0.2 <0.2 <0.4 <0.5 <0.2 <0.2 <0.2 <0.4 <0.5 <0.4 <0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.0 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.4 <0.5 <0.5 <0.4 <0.4 <0.5 <0.5 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.24 0.57 57.5 <0.2 0.2 36 100 50 0.24 0.24 0.57 57.5 <0.5 27 340.5 187.5 20 0.2 27 340.5 187.5 20 0.2 27 340.5 27 340.5 187.5 20 0.2 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 28 0.2 27 340.5 27 340.5 27 340.5 28 0.2 27 340.5 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 27 340.5 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.5 27 27 27 28 0.2 28 0.2 28 0.2 28 0.2 280 0.3 28 0.4 2.80 0.46 258000
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thation Thation Trin Titanium Vanadium Zing ³ Zn FST Guideline Calc. Zironium Vanadium Zine ³ Zn FST Guideline Calc. Zironium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadmium ³	µg/L µg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01 0.06-0.12 0.01 0.01-0.2 0.10 0.1-0.2 0.01 0.05-0.1 1.0 0.005 0.1-0.2 0.10 0.005 0.1-0.2 0.00 0.1-0.2 0.01 0.005 0.1-0.2 0.01 0.05-0.1 0.005 0.1-0.2 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.005 0.1-0.2 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.05 0.1-0.2 0.01 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.05-0.1 0.005-0.1 0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness < 90,000 - 330,000, Calc.	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.2 0.0 0.2 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.2 0.0 0.2 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.2 0.0 0.2 0.0 0.2 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.015 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.015 0.39 49 <0.1 <0.1 <0.2 0.015 0.39 49 <0.1 <0.1 <0.2 0.015 0.2 0.1 0.0 55 0.015 0.39 49 <0.1 <0.1 <0.0 55 0.015 0.00 <0.1 0.00 <0.2 0.015 0.015 0.01 0.01 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.02 0.015 0.039 0.015 0.039 0.015 0.015 0.039 0.015 0.015 0.039 0.015 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.039 0.015 0.015 0.039 0.0145 0.016 0.0145 0.0145 0.016 0.0145 0.016 0.0145 0.016 0.0145 0.016 0.0145 0.016 0.0145 0.016 0.016 0.0145 0.016 0.016 0.0145 0.016 0.016 0.016 0.0145 0.016 0.016 0.016 0.016 0.016 0.016 0.0145 0.016	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 0.4 0.3 0.47 70.7 <0.2 <0.2 <0.2 <0.2 <0.4 0.47 0.7 <0.2 <0.2 <0.2 <0.4 0.56 2.80 0.46 384000 0.026 2.80 0.026 0.026 0.056 2.80 0.026 0.026 0.056 0.026 0.026 0.026 0.056 0.026 0.026 0.026 0.026 0.026 0.026 0.056 0.026	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.5 7.5 <0.1 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 5.57 <0.5 27 340.5 36 100 50 0.24 0.25 36 100 50 0.24 0.57 5.57 <0.5 27 340.5 36 100 50 0.24 0.57 5.57 <0.2 36 100 50 0.24 0.57 5.57 <0.2 36 0.2 0.5 36 0.0 0.24 0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Tungsten Uranium Zan FST Guideline Calc. Zn FST Guideline Calc. Zir FST Guideline Calc. Zir FST Guideline Calc. Zironium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadrium ³	µg/L µg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.1-0.2 0.05-0.1 0.1-0.2 0.05-0.1 0.1-0.2 0.05-0.1 0.05-0.1 0.005-0.	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness < 90,000 - 500,000, Calc.	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness 4ardness > 30,000, Calc. Hardness > 30,000, Calc. Al MG 50 median pH < 6.5 : solo Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.05 68 0.0025 2.80 0.46 124000	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.015 <0.2 0.0 0.15 0.2 0.0 0.46 143000	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.5 <0.4 <0.2 <0.2 <0.2 <0.2 <0.4 <0.5 <0.2 <0.2 <0.2 <0.4 <0.5 <0.4 <0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.2 <0.0 <0.4 <0.5 <0.2 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.5 <0.4 <0.4 <0.5 <0.5 <0.4 <0.4 <0.5 <0.5 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.24 0.57 57.5 <0.2 0.2 36 100 50 0.24 0.24 0.57 57.5 <0.5 27 340.5 187.5 20 0.2 27 340.5 187.5 20 0.2 27 340.5 27 340.5 187.5 20 0.2 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 27 340.5 28 0.2 27 340.5 27 340.5 27 340.5 28 0.2 27 340.5 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 27 340.5 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.2 28 0.5 27 27 27 28 0.2 28 0.2 28 0.2 28 0.2 280 0.3 28 0.4 2.80 0.46 258000
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zinr Ga Zn FST Guideline Calc. Zirconium Metals, Dissolved Auminum ⁵ Al FST Guideline Calc (based on pH) Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadmium ³ Cd FLT Guideline Calc. Calcium Cessium Chromium	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01 0.05-0.1 1.0 0.1-0.2 0.10 0.1-0.2 0.01 0.05-0.1 1.0 0.005 0.1-0.2 0.005 0.1-0.2 0.01 0.05-0.1 0.005 0.1-0.2 0.01 0.05-0.1 0.005 0.1-0.2 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.01 0.05-0.1 0.05-0.1 0.01 0.05-0.1 0.05-0.1 0.01 0.05-0.1 0.05-0.1 0.01 0.05-0.1 0.05-0.1 0.05-0.1 0.01 0.05-0.1 0.05-0.1 0.01 0.05-0.1 0.05-0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG 100 pH ≥ 6.5 : calc. Al pH ≥ 6.5 : calc. Al pH ≥ 6.5 : calc. Al NG	NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.1 <0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.41 56.9 <0.1 <0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.1 0.53 1.87	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4 - - - - - - - - - - - - -	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.5 27 340.5 187.5 <0.2 - - - - - - - - - - - - -
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thomat Strontium Quifur Tellerium Thallium Thomat Strontium Vanium Vanadium Zur Gata Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Calcium Calcium Calcium	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.3-1.2 0.1-0.2 0.3-1.2 0.1-0.2 0.01-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 = 53.0 Hardness 90,000 = 53.0 Hardness 90,000 = 53.0 Hardness > 500,000, Calc. Hardness > 500,000, Calc. Hardness > 500,000, Capped Value 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 = 7.5	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.0 0.1 <0.5 1.5 326.3 187.5 <0.2 0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.12 0.14 0.1	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.1 5.5 0.39 49 <0.1 <0.1 <0.2 0.0 0.45 0.45 0.39 0.49 <0.1 <0.2 0.0 0.45 0.45 0.2 0.1 0.45 0.45 0.45 0.45 0.39 0.49 <0.1 <0.2 0.1 0.45 0.01 0.45 0.01 0.45 0.01 0.45 0.01 0.45 0.01 0.01 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.53 0.01 0.55 0.55	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.2 <0.1 <0.4 <0.5 <0.2 <0.1 <0.56 <0.56 <0.2 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.5 27 340.5 187.5 <0.2 -0.5 50 0.24 0.02 36 100 50 0.24 0.02 2.80 0.46 2.58000 0.013 <0.1 2.80 0.46 -0.58000 0.013 <0.1 -0.58000 0.013 <0.1 -0.58000 0.013 <0.1 -0.58000 0.013 <0.1 -0.58000 0.013 <0.1 -0.58000 0.013 <0.1 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.58000 0.013 -0.580000 -0.58000 -0.58000 -0.58000 -0.59000 -0.58000 -0.59000 -0.58000 -0.59000 -0.58000 -0.59000 -0.58000 -0.59000 -0.59000 -0.59000 -0.580000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.59000 -0.590000 -0.590000 -0.590000 -0.590000000 -0.5900000000000000000000000000000000000
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Turagsten Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zir FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadrium ³ Cd FLT Guideline Calc. Cadrium ³ <td>µg/L µg/L µg/L</td> <td>0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.05-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 0.100 0.005-0 0.01 0.100 0.100 0.005-0 0.01 0.100 0.005-0 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020</td> <td>NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness > 500,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG NG</td> <td>NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness > 30,000, Calc. Hardness > 30,000, Calc. All MG 50 50 median pH < 6.5 : calc. Al</td> median pH ≥ 6.5 : 50.0 Al NG NG <	µg/L µg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.10 0.1-0.2 0.05-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 0.100 0.005-0 0.01 0.100 0.100 0.005-0 0.01 0.100 0.005-0 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.01 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness > 500,000 - 500,000, Calc. Hardness > 500,000, Capped Value NG	NG 2.0 NG 0.05 - 1.5 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness > 30,000, Calc. Hardness > 30,000, Calc. All MG 50 50 median pH < 6.5 : calc. Al	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.05 68 0.0025 2.80 0.46 124000 <0.01 <0.1 0.5 68 0.0025 2.80 0.46 1.61 31.1 5.8 5.0	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.55 0.0145 2.80 0.46 143000 <0.01 <0.53 1.87 36.2 6 5.0	1.56 5100 0.022 3.0 1.5 53000 807 1566000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 187.5 <0.4 187.5 <0.4 187.5 <0.4 100 50 0.3 0.47 70.7 <0.2 <0.4 100 50 0.3 0.47 70.7 <0.2 <0.4 100 50 0.3 0.47 70.7 <0.2 <0.4 145 0.56 2.80 0.46 384000 0.026 <0.2 <0.2 2.0 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.2 36 100 50 0.24 0.57 57.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.2 36 100 50 0.24 0.57 57.5 <0.2 36 100 50 0.24 0.57 57.5 <0.2 0.2 36 100 50 0.24 0.57 57.5 <0.2 0.2 36 100 50 0.24 0.57 57.5 <0.2 0.2 36 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.2 0.2 36 0.1 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.1 100 50 0.24 0.57 57.5 <0.1 100 0.59 0.1 100 0.24 0.57 57.5 <0.1 100 0.24 0.57 57.5 <0.1 100 0.342 2.80 0.46 258000 0.013 <0.1 1.62 37.9 6.0 12.0
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Sulfur Tellerium Thallium Thomation Tin Titanium Turasten Vanadium Zin a Zin FST Guideline Calc. Zin FST Guideline Calc. Zin FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on median pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Caldium Calcium Casium Cherylium Bismuth Boron Calcium Calcium Calcium Calcium Calcium Calobalt Cobper ⁶ <td>µg/L µg/L µg/L</td> <td>0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01 0.05 0.1-0.2 0.10 0.5-1.0 3.0 0.01 0.1-0.2 0.10 0.1-0.2 0.10 0.5-1.0 0.0 0.0 0.0 0.1-0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness 90,000 - 530,000, Calc. Hardness > 500,000, Capped Value NG NG 100 pH < 6.5 : calc. Al</td> pH ≥ 6.5 : 100.0 Al NG NG </td <td>NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05</td> Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness 30,000, Capped Value NG S0 S0 MG NG	µg/L µg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.01 0.05 0.1-0.2 0.10 0.5-1.0 3.0 0.01 0.1-0.2 0.10 0.1-0.2 0.10 0.5-1.0 0.0 0.0 0.0 0.1-0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness 90,000 - 530,000, Calc. Hardness > 500,000, Capped Value NG NG 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness < 100,000 Ag = 0.05	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.0 0.15 3.86 0.0 0.5 1.5 3.86 0.0 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 0.2 0.1 0.1 0.2 0.1 0.5 1.5 3.86 0.0 0.1 0.5 0.2 0.1 0.1 0.1 0.5 1.5 3.86 0.0 0.1 0.1 0.5 0.2 0.1 0.1 0.1 0.1 0.5 0.2 0.1 0.1 0.1 0.5 0.2 0.1 0.1 0.1 0.5 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.05 55 0.0145 2.80 0.46 143000 <0.01 <0.53 1.87 36.2 6	1.56 5100 0.022 3.0 1.5 53000 807 1566000 807 156000 2.0.38 0.23 <0.1	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 0.5 0.3 0.47 <0.7 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 0.56 2.80 0.46 384000 0.026 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 36 100 50 0.24 0.57 57 <0.5 27 340.5 187.5 <0.2 0.2 36 100 50 0.24 0.57 57.5 <0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Uranium Vanadium Zuragen Vanadium Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Al FLT Guideline Calc (based on pH) Artimony Arsenic Barium Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cadmium ³ Cd FST Guideline Calc. Calcium Cabalt Copper ⁶ Cu FST Guideline Calc. Calcium Calcium Calcolue Chronnium	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.05-1.0 1.0 0.05-0.1 1.0 0.100 0.1-0.2 0.10 0.10 0.1-0.2 0.05-0.1 1.0 0.05-0.1 1.0 0.05-0.1 1.0 0.05-0.1 1.0 0.05-0.1 1.0 0.05-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 1.0 0.005-0.1 0.05-0.1	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness > 500,000, Calc. Hardness > 500,000, Capped Value 100 pH < 6.5 : calc. Al	NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness < 90,000 - 330,000, Calc.	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.01 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.1 <0.2 0.1 3.86 0.02 50 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 0.14 0.41 56.9 <0.1 <0.1 <0.1 0.14 0.14 0.14 0.14 0.5 50 0.025 2.80 0.46 1.61 3.1.1 5.8 5.0 <0.05 2.1.7 41500 <0.1 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.15 0.14 0.15 0.05 68 0.0025 2.80 0.46 1.61 3.1.1 5.8 5.0 <0.05 21.7 41500	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3 1.87 36.2 0.015 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 50 0.15 0.39 49 <0.1 <0.1 <0.5 0.39 49 <0.1 <0.1 55 0.0145 2.80 0.46 1.87 3.62 0.01 <0.1 0.15 0.39 49 <0.1 <0.1 0.15 0.39 49 <0.1 <0.5 0.015 0.39 49 <0.1 <0.05 55 0.0145 2.80 0.46 1.87 3.62 2.80 0.46 1.87 3.62 2.44 41400	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.3 0.47 <0.7 <0.2 <0.1 <0.56 <0.80 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.0 <0.1 <0.1 <0.1 <0.0 <0.1 <0.0 <0.1 <0.0 <0.1 <0.0 <0.1 <0.0 <0.0 <0.0 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.5 27 340.5 187.5 <0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.5 -0.2 -0.5 -0.1 -0.5 -0.5 -0.5 -0.1 -0.5 -0.5 -0.1 -0.5
Rubidium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Alt FST Guideline Calc (based on pH) Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Coselum Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu IFT Guideline Value (Chronic) Iron Lead Lithium Magnesium	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 1.0 0.05-0.1 1.0 0.005 50.0 0.01 0.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 10.005 1	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Hardness 90,000 = 33.0 Hardness 90,000, Calc. Hardness > 500,000, Calc. Hardness > 500,000, Calc. Al pH ≥ 6.5 : calc. Al pH ≥ 6.5 : calc. Al pH ≥ 6.5 : calc. Al NG NG NG NG NG NG NG NG NG	NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG S0,000, Calc. Hardness > 30,000, Calc. Hardness > 30,000, Calc. NG	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 0.51 <0.1 0.51 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.2 69 100 50 0.14 0.41 56.9 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.2 69 100 50 0.14 0.41 56.9 <0.2 0.013 <0.5 1.5 326.3 187.5 50 0.02 69 100 50 0.14 0.41 56.9 <0.1 <0.2 0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.5 68 0.0025 2.80 0.46 1.61 31.1 5.8 5.0 <0.05 21.7	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 360 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.1 0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.1 0.5 3.5 0.015 0.05 55 0.0145 2.80 0.46 1.87 3.62 0.01 <0.1 0.1 0.5 0.05 55 0.0145 2.80 0.46 1.87 3.62 0.01 0.05 55 0.0145 2.80 0.46 0.46 0.45 0.5 0.0145 0.5 0.0145 0.05 55 0.0145 0.01 0.05 55 0.0145 0.01 0.05 55 0.0145 0.05 55 0.0145 0.05 55 0.0145 0.05 0.01 0.05 0.5 0.01 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.3 0.47 <0.7 <0.2 <0.1 <0.4 <0.5 <0.2 <0.1 <0.45 <0.56 <0.80 <0.46 <0.884000 0.026 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.7 <0.2 <0.1 <0.1 <0.1 <0.1 <0.0 <0.7 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	1.23 11800 0.156 3.0 1.5 35100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 39.1 100 50 0.26 0.42 56.4 <0.1	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.5 27 340.5 187.5 <0.2
Rubidium Selenium Selenium Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Sulfur Tellerium Thallium Thorium Uranium Vanadium Zinc ³ Zn FST Guideline Calc. Zn FST Guideline Calc. Zn FST Guideline Calc. Zirconium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on median pH) Al FST Guideline Calc (based on median pH) Artimony Arsenic Barium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cadmium ³ Cd FST Guideline Calc. Calcium Cadmium ³ Cd FST Guideline Calc. Calcium Cadmium ³ Cd FST Guideline Calc. Calcium Cabalt Copper ⁶ Cu F	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.01 0.5-1.0 3.0 0.06-0.12 0.0 0.05-0.1 1.0 0.100 0.100 0.100 0.005 0.01 0.10 0.005 0.01 0.10 0.005 0.01 0.10 0.005 0.01 0.10 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness 90,000 - 53.0 Hardness 90,000, Caped Value NG NG <t< td=""><td>NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness 3,000, Capped Value NG N</td><td>0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.51 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.41 56.9 <0.1 <0.5 68 0.0025 2.80 0.46 124000 <0.1 0.46 1.61 31.1 5.8 5.0 <0.05 21.7 41500 4.22 <0.005 2.9</td><td>0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 <0.5 0.39 49 <0.1 <0.5 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 3.5 0.5 0.15 0.39 49 <0.1 <0.5 0.39 3.0 0.15 0.39 <0.1 <0.5 0.39 49 <0.1 <0.5 0.15 0.39 49 <0.1 <0.5 0.5 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 0.5 0.015 0.5 0.0145 2.80 0.46 143000 <0.1 0.5 0.5 0.015 0.5 0.015 0.015 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.015 0.05 0.5 0.0145 0.5 0.015 0.5 0.015 0.05 0.5 0.0145 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.0145 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.5 0.015 0.5 0.015 0.5 0.5 0.015 0.5 0.5 0.015 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.</td><td>1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2</td> 0.038 0.23 <0.1</t<>	NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness 3,000, Capped Value NG N	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.51 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.41 56.9 <0.1 <0.5 68 0.0025 2.80 0.46 124000 <0.1 0.46 1.61 31.1 5.8 5.0 <0.05 21.7 41500 4.22 <0.005 2.9	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.1 <0.2 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 <0.5 0.39 49 <0.1 <0.5 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 3.5 0.5 0.15 0.39 49 <0.1 <0.5 0.39 3.0 0.15 0.39 <0.1 <0.5 0.39 49 <0.1 <0.5 0.15 0.39 49 <0.1 <0.5 0.5 0.0145 2.80 0.46 143000 <0.1 <0.5 3.1 0.5 0.015 0.5 0.0145 2.80 0.46 143000 <0.1 0.5 0.5 0.015 0.5 0.015 0.015 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.015 0.05 0.5 0.0145 0.5 0.015 0.5 0.015 0.05 0.5 0.0145 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.0145 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.05 0.5 0.015 0.5 0.015 0.5 0.015 0.5 0.5 0.015 0.5 0.5 0.015 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.4 <0.4 <0.5 <0.4 <0.2 <0.2 <0.1 <0.47 <0.7 <0.2 <0.2 <0.1 <0.56 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.2 <0.5 <0.5 <0.5 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	1.23 11800 0.156 3.0 1.5 3.5100 1180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 23.8 152 340.5 187.5 0.7 0.7 0.7 0.7 0.7 0.7 0.29 146 0.19 3.66 0.29 146 0.19 3.66 0.29 146 0.19 3.66 0.29 146 0.19 3.66 0.28 0.28 0.28 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.5 27 340.5 187.5 <0.2 0.2 36 100 50 0.24 0.57 5.57 <0.5 2.7 340.5 187.5 <0.2 2.7 340.5 187.5 <0.2 0.2 36 100 50 0.24 0.57 5.7 <0.5 2.7 340.5 187.5 <0.2 0.2 36 100 50 0.24 0.57 5.7 <0.5 2.7 340.5 100 0.24 0.57 5.7 <0.5 2.7 340.5 100 0.24 0.57 5.7 <0.5 2.7 340.5 100 0.24 0.57 5.7 <0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Rubidium Selenium Silicon Silicon Silver ³ Ag FST Guideline Calc Ag FLT Guideline Calc Sodium Strontium Suffur Tellerium Thallium Thorium Tin Titanium Vanadium Zinc ³ Zn FST Guideline Calc. Zinc ³ Zn FST Guideline Calc. Zirconium Metals, Dissolved Auminum ⁵ Al FST Guideline Calc (based on pH) Al FST Guideline Calc (based on pH) Artimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium Magnesiu	μg/L μg/L	0.05 100 0.01-0.02 50.0 0.2 500 0.2-0.4 0.01-0.055 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.05-1.0 3.0 0.0 0.0 0.1-0.2 0.05-1.0 0.0 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.0-0.12 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.1-0.2 0.0-0.12 0.1-0.2 0.05-0.1 1.0 0.005 0.1-0.2 0.005 0.01 0.005 0.1-0.2 0.01 0.005 0.1-0.2 0.01 0.005 0.1-0.2 0.01 0.005 0.1-0.2 0.01 0.005 0.10 0.10 0.10 0.10 0.005 0.10 0.05-0.1 1.0 0.05-0.1 1.0 0.05-0.1 0.05 0.10 0.05-0.1 0.05 0.10 0.05-0.1 0.05 0.10 0.05-0.1 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.005 0.10	NG 0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 NG Calc. based on Hardness Hardness 90,000 = 33.0 Hardness 90,000, Cappel Value NG Calc. based on Hardness Hardness > 500,000, Cappel Value 100 pH < 6.5 : calc, Al	NG 2.0 NG 0.05 - 1.5 Hardness > 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 NG Hardness > 90,000 = 7.5 Hardness > 90,000 - 330,000, Calc. Hardness > 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG NG </td <td>0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.51 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.01 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.41 56.9 <0.1 <0.5 68 0.0025 2.80 0.46 124000 <0.01 <0.1 0.46 1.61 31.1 5.8 5.0 <0.05 21.7 41500 4.22 <0.005</td> <td>0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 365 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 365 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 0.5 0.15 0.05 55 0.0145 2.80 0.46 143000 <0.01 <0.1 0.53 1.87 36.2 6 5.0 <0.05 24.4 41400 15.5 <0.05 0.05 24.4 41400 15.5 <0.05 0.5 0.</td> <td>1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2</td> 0.038 0.23 <0.1	0.376 4520 <0.01 3.0 1.5 46200 481 78100 <0.2 0.013 <0.1 <0.1 <0.1 <0.1 <0.51 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.013 <0.2 0.01 3.86 <0.5 1.5 326.3 187.5 <0.2 69 100 50 0.14 0.41 56.9 <0.1 <0.41 56.9 <0.1 <0.5 68 0.0025 2.80 0.46 124000 <0.01 <0.1 0.46 1.61 31.1 5.8 5.0 <0.05 21.7 41500 4.22 <0.005	0.48 4650 <0.01 3.0 1.5 45600 657 79300 <0.2 0.015 <0.1 <0.1 <0.1 5.97 <0.1 3.66 0.85 3.1 340.5 187.5 <0.2 21.6 100 50 0.15 0.39 49 <0.1 <0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 365 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 365 0.15 0.39 49 <0.1 <0.5 55 0.0145 2.80 0.46 143000 <0.01 <0.5 3.1 0.5 0.15 0.05 55 0.0145 2.80 0.46 143000 <0.01 <0.1 0.53 1.87 36.2 6 5.0 <0.05 24.4 41400 15.5 <0.05 0.05 24.4 41400 15.5 <0.05 0.5 0.	1.56 5100 0.022 3.0 1.5 53000 807 156000 <0.2	2.28 5190 <0.02 3.0 1.5 92800 1280 454000 <0.4 0.025 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 88.1 340.5 187.5 <0.4 - - - - - - - - - - - - -	1.23 1.800 0.156 3.0 1.5 3.5100 1.180 102000 0.25 0.19 2.76 0.29 146 0.19 3.66 2.3.8 152 340.5 187.5 0.7 	2.87 5440 <0.01 3.0 1.5 52100 802 229000 0.24 0.023 <0.1 <0.1 0.9 <0.1 5.57 <0.5 27 340.5 187.5 <0.2 187.5 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.2 36 100 50 0.24 0.57 57.5 <0.1 <0.5 57.5 <0.1 <0.2 110 0.342 2.80 0.46 258000 0.013 <0.1 2.03 1.62 37.9 6.0 12.0 <0.5 72600 102 <0.055 45 72600 102 <0.055 45 72600 102 <0.055 45 72600 102 <0.055 57 57 57 57 57 57 57 57 57

Appendix B1: LBRR Surface Water		al Results			LBRR-EDP	LBRR-EDP	LBRR-UC	LBRR-UC	RR9
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	29-Jul-20	28-Sep-20	29-Jul-20	23-Aug-20	27-Feb-20
Physical Parameters Temperature (°C)	°C								
Flow Rate (L/sec)	L/s								
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000	NG NG	NG NG	6000 176	3000 185	500 238	2700 198	3500 92
Electrical Conductivity (EC)	µS/cm	2.0	NG	NG	2350	1240	1090	981	1340
Hardness as CaCO3, dissolved	µg/L	500	NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	299000	570000	551000	414000	514000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L	500							474000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.02 2170000	8.06 929000	8.27 754000	7.98 716000	7.78 911000
Total Suspended Solids (TSS)	μg/L	3000	NG	NG	6000	7100	10100	34400	<3000
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients (Matrix: Water)	μg/L	1000	NG	NG	176000	185000	238000	198000	92000
Ammonia (NH ₄ as N)	μg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	<50	95	<50	54	226
Ammonia FST Guideline Ammonia FLT Guideline	μg/L μg/L		pH dependent (at Temp 4 °C or in situ T)	pH dependent (at Temp 4 °C or in situ T)	6220 1200	4950 9520	3150 6060	6220 1200	8770 1690
Chloride (Cl [°])	µg/L	500	600,000	150,000	51900	124000	101000	120000	254000
Nitrate (NO ₃ ⁻ as N) Nitrite (NO ₂ ⁻ as N)	μg/L μg/L	5.0-100	NG Cl-dependent (> 10,000 µg/L)	NG Cl-dependent (> 10,000 µg/L)	<25	<25	<25	74	582
Sulphate $(NO_2 as N)$	μg/L	300	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000	<5 1290000	<5 315000	<5 224000	<5 198000	80.2 179000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000	429000	429000	429000	429000	309000
Dissolved Organic Carbon (DOC)	mg/L		NG	Hardness > 250,000 site-specific NG	3.9	4.2	6.5	8.9	8720
Metals, Total					3.9	4.2	0.0	0.3	0720
Aluminum Antimony	μg/L μg/L	3.00 0.1-0.2	NG NG	NG NG	48 0.5	133 0.18	66.4 0.25	1100 0.3	72.80 0.28
Arsenic	µg/L	0.10	5.0	5.0	0.5	0.67	1.5	2.01	0.46
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG NG	20.1 0.5	52 <0.1	67.8 <0.1	43.4 0.15	167 <0.1
Bismuth	µg/L	0.05-0.10	NG	NG	0.25	<0.05	<0.05	<0.05	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	152 0.092	84 0.118	49 0.0235	48 0.384	72 0.124
Calcium	µg/L	50	NG	NG	434000	157000	138000	127000	137000
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-0.7	NG	NG	0.05	<0.01 0.24	0.056	0.07	<0.01
Cobalt	µg/L	0.10	110	4.0	9.74	1.35	0.15	2.26	1.93
Copper ³ Cu STM Guideline Calc.	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	2.5	1.97 39.6	1.98 39.6	7.63	2.46
Cu STM Guideline Calc.	µg/L		Hardness > 400,000 is Capped Value of 400,000	Hardness 50,000 - 250,000: calc.;					
Cu LIA Guideline Calc.	μg/L μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	10.0 50	10.0 299	10.0	10.0 294	76.00
Lead ³	μg/L	0.05-0.1	Calc. based on Hardness	Calc. based on Hardness	0.25	<0.05	0.152	0.155	<0.05
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 μg/L	μg/L		Hardness ≤ 8000 is 3; Hardness 8000-360,000: calc.		329	417	417	417	417
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	ug/l		Hardness>360,000 is Capped Value of 360,000	Hardness 8000-360,000: calc.	16	20	20	20	20
Lithium	μg/L μg/L	1.0	NG	Hardness > 360,000 is Capped Value of 360,000 NG	75.2	33.3	19.6	14.4	31.8
Magnesium	µg/L	5.0	NG	NG	113000	50500	40800	39200	32100
Manganese ³ Mn FST Guideline Calc (Based on Hardness as CaCO3)	μg/L μg/L	0.10	Calc. based on hardness Hardness 25,000 - 259,000 : calc.;	Calc. based on Hardness	401 3394.2	19.8 3394.2	4.04 3394.0	20 3394.0	110
			Hardness > 259,000 is Capped Value of 259,000	Hardness 37,000 - 450,000: calc.;					3394
Mn FLT Guideline Calc (Based on Hardness as CaCO3) Mercury (Based on methyl Hg & total mass Hg)	μg/L μg/L	0.005	NG	Hardness > 450,000 is Capped Value of 450,000 Calc.	1920.6 <0.005	2585.0 <0.005	2585.0 <0.005	2427.0 <0.005	2585 <0.005
Molybdenum	μg/L	0.05	2000	≤ 1000	1.24	2.68	6.41	7.35	4.19
Nickel Phosphorus	μg/L μg/L	0.5 50-100	NG NG	NG	129 <250	16.5 <50	3.35 <50	12 <63	12.4 62
Potassium	µg/L	50.0	NG	NG	8210	6910	5570	5420	15200
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	2.9 1.15	1.55 0.639	2.21 0.834	3 1.2	3.34 1.01
Silicon	μg/L	100		NG	5040	4590	3260	5930	2950
Silver ³ Ag FST Guideline Calc	μg/L μg/L	0.01-0.02	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	0.05	<0.01	<0.01	<0.01	<0.01 3.0
	µg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05					
Ag FLT Guideline Calc Sodium	µg/L	50.0	NG	Hardness > 100,000 Åg = 1.5 NG	1.5 41900	1.5 45600	1.5	1.5 35500	1.5 58400
Strontium	μg/L	0.2	NG	NG	973	557	410	331	1600
Sulfur Tellerium	μg/L μg/L	500 0.2-0.4	NG NG	NG NG	425000	113000 <0.2	73100 <0.2	65500 <0.2	70100 0.21
Thallium	µg/L	0.01-0.055	NG	NG	0.05	0.017	0.025	0.029	0.021
Thorium Tin	μg/L μg/L	0.1-0.2	NG NG	NG NG	0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
Titanium	μg/L	0.3-1.2	NG	NG	1.5	1.23	1.45	1.85	1.6
Tungsten Uranium	μg/L μg/L	0.1-0.2	NG	NG	0.5 3.33	<0.1 3.72	<0.1 4.95	<0.1 4.23	<0.1 1.42
Vanadium Zinc ³	μg/L	0.5-1.0	NG Calc. based on Hardness	NG Calc. based on Hardness	2.5 17	<0.5 12.1	0.78 5.6	1.26 38.5	<0.5
	µg/L	3.0	Hardness < 90,000 = 33.0	Carc. based on Hardness					6.3
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value		189.8	340.5	340.5	276.0	340.5
Zn FLT Guideline Calc.				Hardness < 90,000 = 7.5 Hardness 90,000 - 330,000, Calc.	164.3	187.5	187.5	187.5	187.5
Zirconium	µg/L	0.06-0.12	NG	Hardness > 330,000, Capped Value NG	<1.0	<0.2	<0.2	<0.2	0.21
Metals, Dissolved Aluminum ⁵	µg/L	1.0	100	50	8.6	64.6	3.9	137	15.80
Al FST Guideline Calc (based on pH)	μg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100	100	100	100	15.80
AI FLT Guideline Calc (based on median pH)			pri20.0.100.0 Ai	median pH < 6.5 : calc. Al	50	50	50	50	50
A TET Ourdenne Carc (Dased on median pH)			NG	median pH ≥ 6.5:50.0 Al NG	<0.1	0.14	0.21	0.28	0.28
AI FLT Guideline Calc (based on median pH) Antimony	µg/L	0.1-0.2		NG			1.00	1.32	0.54
Antimony Arsenic	µg/L	0.10	NG		<0.1	0.34	1.62		400
Antimony			NG NG NG	NG NG NG	<0.1 4.06 <0.1	0.34 49.9 <0.1	70.3 <0.1	37.6	183 <0.1
Artimony Arsenic Barium Beryllium Bismuth	μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1	NG NG NG	NG NG NG	4.06 <0.1 <0.05	49.9 <0.1 <0.05	70.3 <0.1 <0.05	37.6 <0.1 <0.05	<0.1 <0.05
Antimony Arsenic Barium Beryllium	μg/L μg/L μg/L	0.10 0.10 0.1-0.2	NG NG NG NG Calc, based on Hardness	NG NG	4.06 <0.1	49.9 <0.1	70.3 <0.1	37.6 <0.1	<0.1
Antimony Arsenic Barium Beryllium Bismuth Boron	μg/L μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0	NG NG NG NG	NG NG NG Calc. based on hardness	4.06 <0.1 <0.05 29	49.9 <0.1 <0.05 82	70.3 <0.1 <0.05 54	37.6 <0.1 <0.05 46	<0.1 <0.05 65
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³	μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	NG NG NG NG	4.06 <0.1 <0.05 29 0.0173	49.9 <0.1 <0.05 82 0.0905	70.3 <0.1 <0.05 54 0.016	37.6 <0.1 <0.05 46 0.33	<0.1 <0.05 65 0.139
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.1-0.2 0.05-0.1 10.0 0.005 50.0	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG	NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000	70.3 <0.1 <0.05 54 0.016 2.80 0.46 145000	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000	<0.1 <0.05 65 0.139 2.80 0.46 150000
Antimony Ansenic Barlum Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10.2 0.05-0.1 10.0 0.005	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	4.06 <0.1 <0.05 29 0.0173 1.82 0.46	49.9 <0.1 <0.05 82 0.0905 2.80 0.46	70.3 <0.1 <0.05 54 0.016 2.80 0.46	37.6 <0.1 <0.05 46 0.33 2.54 0.46	<0.1 <0.05 65 0.139 2.80 0.46
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.10	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG	NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12	70.3 <0.1 <0.05 54 0.016 2.80 0.46 145000 0.029 <0.1 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10	NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG	NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67
Antimony Arsenic Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.20	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG Calc. based on BLM Model BLM Ligand Model value	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.01 <0.01 2.05 0.25 14.1 2.4	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12 1.52 24.9 4.4	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6 8.9	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5
Antimony Antimony Antimony Arsenic Barium Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.10	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG Calc. based on BLM Model	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12 1.52 24.9	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2
Antimony Arsenic Barium Beryllium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FST Guideline Value (Chronic) Iron Lead Lithium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.20 10.0-20.0 0.05-0.1 1.0	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value NG NG NG NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1 2.4 5.0 <0.05 14.6	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12 1.52 24.9 4.4 5.0 <0.05 30.5	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6 8.9 12.0 <0.05 14.5	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5 5.00 <0.05 30.7
Antimony Anterior Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.20 10.0-20.0 0.05-0.1	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value NG NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1 2.4 5.0 <0.05	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12 1.52 24.9 4.4 5.0 <0.05	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6 8.9 12.0 <0.05	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5 5.00 <0.05
Antimony Ansenic Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Acute) Cu FLT Guideline Value (Acute) Cu FLT Guideline Value (Acute) Lead Lithium Magnesium Manganese Mercury	μg/L μg/L	0.10 0.10. 0.1-0.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.10 0.20 10.0-20.0 10.0-20.0 1.0 5.0 0.10 0.05-0.1 1.0 5.0 0.10 0.05-0.1	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG NG NG NG NG NG NG NG NG	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value NG NG NG NG NG NG NG NG NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1 2.4 5.0 <0.05 14.6 23400 78.5 <0.005	49.9 <0.1	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6 8.9 12.0 <0.05 14.5 35400 16.5 <0.005	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5 5.00 <0.05 30.7 33500 110 <0.005
Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Acute) Lead Lithium Magnesium Manganese	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.10 0.20 10.0-20.0 0.05-0.1 1.0 5.0 0.10 0.005 0.05 0.05 0.50	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG NG NG NG NG NG NG NG NG NG NG NG	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model Calc. based on BLM Model BLM Ligand Model value NG NG NG NG NG NG NG NG NG NG NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1 2.4 5.0 <0.05 14.6 23400 78.5 <0.005 0.238 24.4	49.9 <0.1	70.3 <0.1	37.6 <0.1	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5 5.00 <0.05 30.7 33500 110
Antimony Ansenic Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd FST Guideline Calc. Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Cchromium Cobalt Copper ⁹ Cu FST Guideline Value (Acute) Cu FLT Guidel	μg/L μg/L	0.10 0.10 0.1-0.2 0.05-0.1 10.0 0.005 50.0 0.01 0.10 0.10 0.20 10.0-20.0 0.05-0.1 1.0 5.0 0.10 0.005 0.05 0.05 0.05	NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG NG NG NG NG NG NG NG NG NG	NG NG NG Calc. based on hardness Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value NG NG NG NG NG NG NG NG NG NG NG NG NG	4.06 <0.1 <0.05 29 0.0173 1.82 0.46 81200 <0.01 <0.1 2.05 0.25 14.1 2.4 5.0 <0.05 14.6 23400 78.5 <0.005 0.238	49.9 <0.1 <0.05 82 0.0905 2.80 0.46 154000 <0.01 <0.1 1.12 1.52 24.9 4.4 5.0 <0.05 30.5 45000 16.8 <0.005 2.61	70.3 <0.1	37.6 <0.1 <0.05 46 0.33 2.54 0.46 107000 0.038 0.2 1.97 5.98 48.6 8.9 12.0 <0.05 14.5 35400 16.5 <0.005 6.65	<0.1 <0.05 65 0.139 2.80 0.46 150000 <0.01 0.67 1.97 2.43 35.2 8.5 5.00 <0.05 30.7 33500 110 <0.005 4.23

					LBRR-DD	LBRR-DD	LBRR-LC	LBRR-12+500	LBRR-12+500	LBRR-12+500	LBRR-12+500
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	27-Feb-20	16-Apr-20	16-Apr-20	27-Feb-20	25-Mar-20	16-Apr-20	21-Jun-20
Selenium	µg/L	0.05	NG	2.0	1.39	0.63	0.559	0.566	1.29	0.739	0.857
Silicon	µg/L	50.0	NG	NG	2620	3120	3220	3240	2250	2520	5020
Silver	µg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	20300	25600	25600	27300	42800	35900	50600
Strontium	µg/L	0.20	NG	NG	354	368	315	409	506	1060	664
Sulfur	µg/L	500	NG	NG	67300	98200	82000	43800	103000	93200	98200
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.013	0.012	<0.01	0.013	<0.01	0.027	0.019
Thorium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.3-0.6	NG	NG	1.68	<0.3	<0.3	0.7	<0.3	<0.3	<0.3
Tungsten	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.43	2.01	2.26	1.72	4.22	1.85	5.27
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	27	17.3	8.1	3.8	2.1	3	<1
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					VA20A2572	L2438183	L2438183	VA20A2572	VA20A4062	L2438183	L2464256
Laboratory Identification Number					VA20A2572-007	L2438183-10	L2438183-11	VA20A2572-005	VA20A4062-003	L2438183-12	L2464256-2
Notes:	•			•							

Notes:

Notes: Screening completed on BCAWQG-FST¹ and FLT² guideline values. ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) guidelines. ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Long Term Average (LT) guidelines. ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.

⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

⁵ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.
 ⁵ Guideline is pH dependant.
 NG - No Guideline
 Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite.
 BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
 Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline.
 RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

					LBRR-12+500	LBRR-12+500	LBRR-EDP	LBRR-EDP	LBRR-EDP	LBRR-EDP
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	28-Sep-20	20-Oct-20	27-Feb-20	25-Mar-20	16-Apr-20	21-Jun-20
Selenium	µg/L	0.05	NG	2.0	0.339	0.467	1.94	2.19	0.84	3.54
Silicon	μg/L	50.0	NG	NG	4360	4400	5400	4630	2570	5540
Silver	μg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01
Sodium	μg/L	50.0	NG	NG	41900	45800	66100	92500	35800	50200
Strontium	μg/L	0.20	NG	NG	467	653	998	1230	1100	848
Sulfur	μg/L	500	NG	NG	72200	78600	181000	430000	111000	242000
Tellerium	μg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2
Thallium	μg/L	0.01	NG	NG	<0.01	0.012	0.025	0.022	0.026	0.018
Thorium	μg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Tin	μg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Titanium	μg/L	0.3-0.6	NG	NG	<0.3	<0.3	<0.3	<0.6	<0.3	<0.3
Tungsten	μg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Uranium	μg/L	0.01	NG	NG	3.19	3.46	3.74	6.43	2.1	5.08
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	<1	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	<1	1.1	49	86.5	10	22.9
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2
Laboratory Work Order Number					L2509865	L2520229	VA20A2572	VA20A4062	L2438183	L2464256
Laboratory Identification Number					L2509865-7	L2520229-5	VA20A2572-006	VA20A4062-002	L2438183-13	L2464256-1

Notes:

 Notes:

 Screening completed on BCAWQG-FST¹ and FLT² guideline values.

 ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36

 ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36

 ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36

 ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36

 ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.

 ⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

 ⁶ Guideline is brit dependent.

⁵ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.
 ⁵ Guideline is pH dependant.
 NG - No Guideline
 Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite.
 BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
 Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline.
 RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

					LBRR-EDP	LBRR-EDP	LBRR-UC	LBRR-UC	RR9
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	29-Jul-20	28-Sep-20	29-Jul-20	23-Aug-20	27-Feb-20
Selenium	µg/L	0.05	NG	2.0	0.26	0.71	0.869	1.34	0.935
Silicon	µg/L	50.0	NG	NG	995	4510	3480	5830	2540
Silver	µg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	8160	39500	39800	34100	58700
Strontium	µg/L	0.20	NG	NG	181	540	405	310	1770
Sulfur	µg/L	500	NG	NG	87000	108000	81700	63100	64500
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	0.013	0.018	0.012	0.019
Thorium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.3-0.6	NG	NG	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	0.667	3.18	4.92	3.94	1.46
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	0.77	<0.5
Zinc	µg/L	1.00	NG	NG	3.5	7.9	1.7	36.6	6.1
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					L2482349	L2509865	L2482349	L2493339	VA20A2572
Laboratory Identification Number					L2482349-1	L2509865-6	L2482349-5	L2493339-7	VA20A2572-012

Notes:

 Notes;

 Screening completed on BCAWQG-FST ¹ and FLT ² guideline values.

 ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) guidelines.

 ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Long Term Average (LT) guidelines.

 ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.

 ⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

⁵ Guideline is pH dependant. NG - No Guideline

NG - No Subleme
Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite.
BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline.
RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

Appendix B2: SBIAR Surface Water Analytical Results RBSBIAR-DS RBSBIAR-DS RBSBIAR-DS RBSBIAR-DS RBSBIAR-DS RBSBIAR-DS RBSBIAR-DS BCAWQG - FLT 2 RDL BCAWQG - FST 1 Unit Paramete 27-Feb-20 16-Apr-20 27-May-20 22-Jun-20 29-Jul-20 24-Aug-20 28-Sep-20 Physical Parameters °C 12.2 Temperature L/sec 1.00 Flow Rate Acidity (Total as CaCO₃) µg/L 1000 NG NG 1300 1900 1700 2800 1300 <1000 1000 Alkalinity (Total as CaCO₃) 1.0 NG NG mg/L 242 135 196 196 185 234 211 Electrical Conductivity (EC) µS/cm 2.0 NG NG 742 590 903 654 651 702 693 Hardness as CaCO3, dissolved 500 NG NG µg/L 234000 331000 294000 318000 286000 307000 235000 Hardness as CaCO3, from total Ca/Mg (New January 2020) µg/L 233000 pН pH Units 0.10 6.5 - 9 6.5-9.0 8.10 8.08 8.07 8.10 8.22 8.20 8.08 Total Dissolved Solids (TDS) 10000 NG NG µg/L 572000 449000 412000 470000 463000 449000 493000 Total Suspended Solids (TSS) 3000 NG NG µg/L 341000 6300 3900 1400 3500 2000 1500 Alkalinity (Hydroxide) as CaCO 1000 NG NG µg/L <1000 <1000 <1000 <1000 <1000 <1000 <1000 Alkalinity (Carbonate as CaCO₃) 1000 NG NG µg/L <1000 <1000 <1000 <1000 <1000 <1000 <1000 Alkalinity (Bicarbonate as CaCO₃) µg/L 1000 NG NG 196000 185000 234000 211000 242000 135000 196000 Anions and Nutrients pH dependent (6.5-9.0) Ammonia (NH₄ as N) µg/L 5.0 pH dependent (6.5-9.0) 548 980 299 136 65 130 100 Ammonia FST Guideline pH dependent (at Temp 4 $^{\circ}\text{C}$ or in situ T) µg/L 3950 4950 3950 4950 4950 4950 4950 pH dependent (at Temp 4 °C or in situ T) Ammonia FLT Guideline 759 952 9520 759 952 952 9520 Chloride (Cl⁻) µg/L 500 600000 150,000 57100 49500 111000 59500 41300 46700 35200 5.0-25.0 NG NG Nitrate (NO3⁻ as N) µg/L 2210 843 831 4750 1160 1050 900 Cl-dependent (> 10,000 µg/L) Cl-dependent (> 10,000 µg/L) itrite (NO₂⁻ as N) µg/L 1.0-5.0 Guideline: 200 ug/L 19.2 18.3 46.5 93.4 45.4 6.4 5.4 Sulphate (SO₄) µg/L 300 NG 309.000 - 429.000 69100 149000 103000 64200 96500 106000 111000 Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000 SO4 FLT Guideline Calc µg/L NG 309000.00 429000 429000 429000 429000 429000 429000 Hardness > 250,000 site-specific NG Dissolved Organic Carbon (DOC) mg/L NG 7.72 7.7 1.32 <1.0 1.7 1.5 1.2 Metals, Total NG NG Aluminum µg/L 3.00 59.4 2440 46.7 116 36.1 142 309 0.10 NG NG Antimony µg/L 0.42 0.72 0.33 0.28 0.34 0.37 0.26 5.0 5.0 Arsenic µg/L 0.10 4.48 0.31 0.31 0.22 0.59 0.31 0.39 0.10 Barium µg/L NG NG 73.2 385 139 164 193 131 150 Beryllium µg/L 0.10 NG NG <0.1 <0.1 0.49 <0.1 <0.1 0.26 <0.1 0.05 NG NG Bismuth µg/L < 0.05 < 0.05 < 0.05 < 0.05 <0.05 <0.05 < 0.05 10.0 1200 oron µg/L 1200 95 94 161 93 81 82 81 Cadmium µg/L 0.005 NG NG 0.0729 0.451 0.0866 0.104 0.0294 0.683 0.158 alcium µg/L 50 NG NG 67800 87600 90900 86800 81000 97600 90000 cesium µg/L 0.01 NG NG 0.11 0.725 0.047 0.027 0.026 0.029 0.028 0.1-1.0 Chromium µg/L NG NG 6.7 0.27 0.24 0.55 15 0.25 0.42 4.0 0.10 110 Cobalt µg/L 0.84 7.85 1.16 2.36 0.39 2.78 3.96 0.50 µg/L Calc. based on Hardnes 2 to 10 17.4 1.19 0.83 2.28 reggo 1.11 3.29 Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of 33.114 Cu FST Guideline Calc. (relevant prior to August 2019) µg/L 400,000 29.636 31.892 28.884 30.858 Hardness 50,000 - 250,000: calc. Hardness > 250,000, Cu = 10 Cu FLT Guideline Calc. (relevant prior to August 2019) µg/L 10 10 10 10 10 1000 ron µg/L 10 NG 58 7730 65 140 71 233 493 0.05 Lead ³ µg/L 101 - 348 Calc. based on Hardness < 0.05 < 0.05 3 02 <0.04 0.454 <0.04 ed on Hardness 8000-360,000 Hardness ≤ 8000: 3 Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 μg/L 356.1 311.1 µg/L 241.0 242.3 374.7 322.2 340.5 Hardness > 8000 : ca Applies to Hardness 8000-360,0 15.9 17.2 15.4 16.6 Pb FLT Guideline Calc (Based on Hardness as CaCO3) µg/L Hardness ≤ 8000, NG 12.7 12.8 17.9 Hardness > 8000 : calc NG Lithium µg/L 1.0 NG 21.8 29.1 36.5 21.6 16.5 18.5 21.5 5.0 Magnesium µg/L NG NG 16900 25500 18800 20000 22700 24100 15500 0.10 Manganese µg/L Calc. based on Hardness Calc. based on Hardness 16.8 164 25.7 44.2 9.72 29.1 38.8 Applies to H 25000-259000 µg/L 3394.2 In FST Guideline Calc (Based on Hardness as CaCO3) µg/L 3118.7 3129.7 3394.2 3394.2 3394.2 3394.2 Mn : calc. Applies to Hardness 37000-450000 µg/L 1634.6 2004.2 1863.4 1955.8 Mn FLT Guideline Calc (Based on Hardness as CaCO3) µg/L 1639.0 2061.4 1898.6 Mn : calc Mercury (Based on methyl Hg & total mass Hg) 0.005 NG Calc µg/L < 0.005 0.0214 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Molybdenum 0.05 2000 ≤ 1000 µg/L 19.7 23.8 7.43 4.56 3.42 4.71 4.11 0.50 Nickel NG µg/L NG 7.59 27 9.96 10.9 4.31 10.9 16 50.0 NG Phosphorus NG µg/L <50 327 <50 <50 <50 <50 <50 50.0 Potassium NG NG µg/L 7090 7970 4220 3790 4080 4170 3900 Rubidium 0.2 NG NG µg/L 14.1 15.7 2.46 1.59 1.37 2.1 1.63 0.05 2.0 Selenium NG µg/L 1.13 2.43 0.873 0.738 0.918 1.02 0.816 100.0 NG Silicon NG µg/L 4270 5580 3790 4040 4280 4200 4510 0.01 0.10 - 3.0 0.05 - 1.5 Silver ³ (Based on Hardness < or > 100000) µg/L < 0.01 0.067 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 s ≤ 100,000 Ag : ness ≤ 100,000 Ag = 0.10 iness > 100,000 Ag = 3.0 Ag FST Guideline Calo 3.0 3.0 3.0 3.0 3.0 3.0 3.0 µg/L Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 Ag FLT Guideline Calc µg/L 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Sodium µg/L 50.0 NG NG 55600 53100 79700 35400 28100 34300 33500 Strontium 0.2 NG NG µg/L 619 489 393 487 461 505 526 Sulfur 500.0 NG NG µg/L 25500 40600 32400 34200 39500 53000 22200 Tellerium 0.2 NG NG µg/L <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 Thallium µg/L 0.01 NG NG 0.016 0.025 0.103 0.018 <0.01 0.68 0.012 Thorium 0.10 NG NG µg/L <0.1 0.11 <0.1 2.05 <0.1 <0.1 0.24 0.10 NG NG Tin µg/L 0.15 <0.1 <0.1 <0.1 0.12 <0.1 <0.1 Titanium 0.3-4.5 NG NG µg/L 28.4 0.72 1.04 0.37 0.38 1.33 < 0.3 0.10 NG NG Tungsten µg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Uranium µg/L 0.01 NG NG 0.892 1.77 1.21 1.28 1.01 1.45 1.35 Vanadium 0.50 NG NG µg/L 7.67 0.59 <0.5 <0.5 <0.5 <0.5 0.53 Zinc ³ (Based on Hardness < or > 90,000) 3.0 Calc, based on Hardness Calc. based on Hardness µg/L 77 9.4 6.5 20.3 44.2 5.4 21.3 Hardness 90,000 - 500,000, Calc. ardness > 500,000, is Capped Value of 500,000 Zn FST Guideline Calc µg/L 141.00 141.7 213.75 186.00 204.00 180.00 195.75 Hardness 90,000 - 330,000, Calc Zn FLT Guideline Calc. Hardness > 330,000, is Capped Value of 116 116 188 161 179 155 170 330,000 Zircronium μg/L 0.06 NG NG <0.2 0.53 <0.2 <0.2 <0.2 <0.2 <0.2 Metals, Dissolved Aluminum µg/L 1.0 100 50 18.7 59.9 18.3 82.7 13.2 103 169 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al AI FST Guideline Calc (based on pH) µg/L 100 100 100 100 100 100 100 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al AI FLT Guideline Calc (based on median pH) µg/L 50 50 50 50

	- 5-			median pH ≥ 6.5 : 50.0 Al					50	50	50
Antimony	µg/L	0.10	NG	NG	0.41	0.58	0.32	0.29	0.24	0.24	0.2
Arsenic	µg/L	0.10	NG	NG	0.37	0.49	0.24	0.2	0.21	0.21	0.2
Barium	µg/L	0.10	NG	NG	71	68.1	131	157	205	126	159
Beryllium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth		0.05	NG	NG	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Boron	µg/L	10.0	NG	NG	97	87	150	97	87	87	83
Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.0658	0.115	0.0719	0.0859	0.0258	0.0794	0.126
Cd FST Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000		1.412	1.418	2.018	1.786	1.937	1.736	1.868
Cd FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.395	0.397	0.457	0.457	0.457	0.457	0.457
Calcium	µg/L	50.0	NG	NG	68300	69500	92600	84700	91500	79800	84800
Cesium		0.01	NG	NG	0.106	0.062	0.038	0.025	0.02	0.023	0.021
Chromium	µg/L	0.10	NG	NG	6.72	11	0.17	0.15	0.16	<0.1	<0.1
Cobalt	µg/L	0.10	NG	NG	0.82	3.47	1.02	2.21	0.42	2.06	3.55
Copper ⁶	µg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	1.85	3.35	0.84	0.80	0.70	0.99	1.48
Cu FST Guideline Value (Acute)	µg/L		BLM Ligand Model value		39.3	57.2	10.2	3.5	10.6	9.7	8.5
Cu FLT Guideline Value (Chronic)	µg/L			BLM Ligand Model value	9.6	11.5	1.6	0.6	2	1.8	1.6
Iron	µg/L	10.0	350	NG	5.0	12	5.00	5	12	5	34
Lead	µg/L	0.05	NG	NG	0.057	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	µg/L	1.0	NG	NG	22.8	27	30	20.9	16.2	18.4	21.6
Magnesium	µg/L	5.0	NG	NG	15500	14900	24200	20100	21700	21100	23100
Manganese	µg/L	0.10	NG	NG	16	70.8	22.4	41.9	10.1	27.4	36.3
Mercury	µg/L	0.005	NG	NG	<0.005	0.0074	<0.005	0.025	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	NG	NG	19.8	25.8	7.36	4.62	3.3	4.39	4.23
Nickel	µg/L	0.50	NG	NG	7.51	16.2	9.32	9.89	4.29	9.91	14.6

Appendix B2: SBIAR Surface Water Anal	vtical Res	sults										IED FOR USE
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US
Physical Parameters					20-Oct-20	30-Nov-20	27-Feb-20	16-Apr-20	17-May-20	22-Jun-20	29-Jul-20	24-Aug-20
Temperature	°C L/sec								8.4			
Flow Rate Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	1600	<1000	3300	2500	0.100 2100	2200	3400	1700
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L μS/cm	1.0 2.0	NG NG	NG NG	215 682	240 744	68.3 780	131 556	218 712	184 495	170 690	197 757
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	303000	267000	159000 174000	228000	370000	286000	348000	335000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.08	8.26	7.72	8.23	8.09	7.98	8.02	8.01
Total Suspended Solids (TSS)	µg/L	3000	NG	NG	462000 2800	489000 500	511000 32400	386000 3300	518000 1300	362000 3600	498000 500	544000 2500
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000							
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	215000	240000	68300	131000	218000	184000	170000	197000
Ammonia (NH₄ as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0) pH dependent (at Temp 4 °C or in situ T)	pH dependent (6.5-9.0)	100 4950	62 3150	612 10300	25 3950	10 4950	25 6220	25 6220	64 6220
Ammonia FLT Guideline		500		pH dependent (at Temp 4 °C or in situ T)	9520	606	1980	759	952	1200	1200	1200
Chloride (Cl [°]) Nitrate (NO ₃ [°] as N)	μg/L μg/L	500 5.0-25.0	600000 NG	150,000 NG	51100 1170	35400 922	176000 762	84200 268	93800 1720	41400 653	20900 884	21000 482
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L 309,000 - 429,000	8.1	2.5	106	12.9	1.25	3.6	1.7	1.5
Sulphate (SO ₄) ³	μg/L μg/L	300	NG	Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000	111000 429000	127000 429000	16900 309000	17200 429000	25900 429000	23200 429000	169000 429000	221000 429000
Dissolved Organic Carbon (DOC)	mg/L		NG	Hardness > 250,000 site-specific NG	2.2	1.8	17.8	3.1	1.26	1.2	2.1	3.1
Metals, Total Aluminum	μg/L	3.00	NG	NG								
Antimony	µg/L	0.10	NG	NG	93.8 0.17	66.1 0.3	772 0.61	75.1 0.46	27.9 0.14	35.9 0.21	34.7 0.21	71.1 0.14
Arsenic Barium	μg/L μg/L	0.10 0.10	5.0 NG	5.0 NG	0.21 146	0.2 88.8	1.58 178	0.52 242	0.12 235	0.28 270	0.2 228	0.32
Beryllium Bismuth	μg/L μg/L	0.10	NG NG	NG NG	<0.1 <0.05							
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	69 0.0477	59 0.0719	42	47 0.0593	25 0.0405	25 0.0133	23 0.017	25 0.0414
Calcium	µg/L	50	NG	NG	95400	85800	59000	80400	112000	87300	105000	117000
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-1.0	NG NG	NG NG	0.023 0.25	0.013 0.11	0.123 5.07	<0.01 0.39	<0.01 0.18	<0.01 0.24	<0.01 0.32	<0.01 0.32
Cobalt Copper ³	μg/L μg/L	0.10 0.50	110 Calc. based on Hardness	4.0 2 to 10	1.24 1.03	1.43 0.99	0.94 9.93	0.47	0.44	0.13 0.25	0.05 0.55	0.17 0.79
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of		00.155				36.78	00.00		
Cu FLT Guideline Calc. (relevant prior to August 2019)	μg/L		400,000	Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10	30.482 10	27.098			10	28.884 10	34.712 10	34.712 10
Iron	µg/L	10	1000	NG	203	53	1750	139	56	56	55	117
Lead ³ Pb FST Guideline Calc (Based on Hardness as CaCO3),	µg/L	0.05	101 - 348 Based on Hardness 8000-360,000	Calc. based on Hardness	< 0.05	<0.05	0.995	0.128	< 0.05	<0.05	<0.05	0.072
applies to water hardness 8000-360,000 µg/L	µg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.	Applies to Hardness 8000-360,000	334.8	285.0	147.3	233.1	417.0	311.1	399.4	380.5
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness < 8000, NG Hardness > 8000 : calc.	16.4	14.4	9.1	12.4	19.6	15.4	18.9	18.1
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	20.3 23100	18 21300	6.5 6540	6.9 11900	9.1 24600	7.9 15700	8.1 18700	6.3 21600
Manganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	17.8	16.2	75.9	224	7.84	54.9	14.2	72.4
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Applies to Hardness 25000-259000 µg/L Mn : calc.	Applies to Hardness 37000-450000 µg/L	3394.2	3394.2	2292.2	3052.6	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3) Mercury (Based on methyl Hg & total mass Hg)	μg/L μg/L	0.005	NG	Mn : calc.	1938.2 <0.005	1779.8 <0.005	1304.6 0.0062	1608.2 <0.005	2233.0 <0.005	1863.4 <0.005	2136.2 <0.005	2079.0 <0.005
Molybdenum Nickel	μg/L μg/L	0.05	2000 NG	≤ 1000 NG	3.99	4.19	7.12	3.89	1.15	1.96	0.914	1.27
Phosphorus	µg/L	50.0	NG	NG	7.39 <50	9.99 <50	3.88 136	2.08 <50	2.5 <50	0.93 <50	0.6 <50	1.18 <50
Potassium Rubidium	μg/L μg/L	50.0 0.2	NG NG	NG NG	3480 1.33	2860 1.02	7680 2.37	3850 0.54	3390 0.58	3060 0.55	3320 0.47	4070 0.75
Selenium Silicon	μg/L μg/L	0.05	NG NG	2.0 NG	0.841 4000	0.989 3350	0.434 4660	0.139 3460	0.686	0.473 4050	1.4 4190	1.3 4470
Silver ³ (Based on Hardness < or > 100000)	µg/L	0.01	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	<0.01	<0.01	0.014	<0.012	<0.01	<0.01	<0.01	<0.01
Ag FST Guideline Calc Ag FLT Guideline Calc	μg/L μg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Sodium	μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	32700	36900	1.5 72100	1.5 8990	1.5 8830	1.5 6600	1.5 20700	1.5 29800
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG	NG NG	503 35500	452 43100	522 6330	817 5380	371 11100	428 8010	264 53700	294 74600
Tellerium Thallium	μg/L μg/L	0.2	NG NG	NG NG	<0.2 <0.01	<0.2	<0.2	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01	<0.2 0.028
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	0.21	<0.1	<0.1	<0.1	<0.1	<0.1
Tin Titanium	μg/L μg/L	0.10 0.3-4.5	NG NG	NG NG	<0.1 0.68	<0.1 <0.3	<0.1 17.2	8.99 1.84	<0.1 <0.3	<0.1 1	<0.1 0.77	<0.1 1.35
Tungsten Uranium	μg/L μg/L	0.10	NG	NG NG	<0.1 1.14	<0.1 1.18	0.16	<0.1 1.07	<0.1 1.22	<0.1 1.19	<0.1 0.91	<0.1 0.912
Vanadium Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50	NG Calc. based on Hardness	NG Calc. based on Hardness	<0.5 14.6	<0.5 15.3	3.34 14.8	<0.5 1.5	<0.5 6.1	<0.5 1.5	<0.5 5.3	0.51
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of									
			500,000	Hardness 90,000 - 330,000, Calc.	192.75	165.75	84.75	136.50	243.00	180.00	226.50	216.75
Zn FLT Guideline Calc. Zircronium	µg/L	0.06	NG	Hardness > 330,000, is Capped Value of 330,000 NG	167	140	59	111	188	155	188	188
Metals, Dissolved					<0.2	<0.2	0.6	<0.2	<0.2	<0.2	0.29	<0.2
Aluminum ⁵ Al FST Guideline Calc (based on pH)	μg/L μg/L	1.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al	50	46.1	48.7	5.5 100	3.9 100	6 100	3.3 100	3.2	5.0
Al FLT Guideline Calc (based on median pH)	μg/L		- pir- a.o. 100.0 Ai	median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	100 50	100 50	50	50	50	50	100 50	100 50
Antimony Arsenic	µg/L	0.10	NG	NG NG	0.2	0.19	0.5	0.41	0.13	0.2	0.13	0.13
Arsenic Barium	μg/L μg/L	0.10	NG NG	NG	0.17 138	0.15 91.8	0.66 150	0.47 237	0.05 233	0.23 291	0.18 258	0.26 198
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05							
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	57 0.0475	57 0.0647	42 0.0819	41 0.0429	24 0.0522	26 0.0124	25 0.0184	24 0.0175
Cd FST Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		1.843	1.617	0.948	1.375	2.263	1.736	2.125	2.043
			455,000	Hardness 3,400 - 285,000, Calc.	0.457	0.100	0.000	0.000	0.457	0.455	0.477	0.455
Cd FLT Guideline Calc. Calcium	µg/L	50.0	NG	Hardness > 285,000, is Capped Value of 285,000 NG	0.457	0.436	0.298	0.388	0.457	0.457	0.457	0.457
Cesium		0.01	NG	NG	83500 0.016	73700 0.012	53600 <0.01	72800 <0.01	109000 <0.01	89000 <0.01	105000 <0.01	98600 <0.01
Chromium Cobalt	μg/L μg/L	0.10	NG NG	NG NG	0.11 1.19	<0.1 1.43	3.36 0.28	0.25	0.16 0.54	0.17 <0.1	0.24 <0.1	0.15 0.12
Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L	0.20	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	0.65	0.86 13.5	4.93 56.5	1.0 18.5	0.42	0.36	0.44 11.6	0.59
Cu FLT Guideline Value (Chronic)	μg/L μg/L	10.0	350	BLM Ligand Model value NG	2.6	2.6	17.7	3.4	1.3	1.1	2.1	3.1
Lead	µg/L	0.05	NG	NG	<0.05	<0.05	5.0 0.106	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	20.1 23000	20.2 20300	6 6200	6.2 11300	8.3 23800	7.3 15600	8 21100	6.9 21700
Manganese Mercury	μg/L μg/L	0.10 0.005	NG NG	NG NG	16.4 <0.005	15.1 <0.005	38.7 <0.005	200 <0.005	8.95 <0.005	47.5 0.025	14.2 <0.005	75.4 <0.005
Molybdenum Nickel	μg/L μg/L	0.05	NG	NG NG	4.04	4.21	6.86 1.47	5.21	1.13	1.9 0.95	0.999	1.18
[ro' -				1.4	0.00	1.47	1.77	2.10	J.JJ	~ ∪.J	1.00

Appendix B2: SBIAR Surface Water Anal	ytical Res	sults	1									
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSBIAR-US 28-Sep-20	RBSBIAR-US 20-Oct-20	RBSBIAR-US 30-Nov-20	RBSBIAR-US 21-Dec-20	RBSC-DS 23-Jan-20	RBSC-DS 27-Feb-20	RBSC-DS 25-Mar-20	RBSC-DS 16-Apr-20
Physical Parameters												
Temperature Flow Rate	°C L/sec											
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	µg/L mg/L	1000 1.0	NG NG	NG NG	2700 183	2300 201	4700 215	4200 212	12200 368	14100 349	1000 329	23800 315
Electrical Conductivity (EC)	µS/cm	2.0	NG	NG	874	760	945	965	1050	1200	871	841
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	416000	403000	380000	466000	502000 580000	533000 556000	418000 460000	373000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.05 641000	7.97 567000	8.04 679000	8.15 730000	8.26 721000	7.76 762000	7.97 558000	7.95 604000
Total Suspended Solids (TSS)	µg/L	3000	NG	NG	2700	1100	500	<1000	1500	1500	3500	12900
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	183000	201000	215000	212000	368000	349000	329000	315000
Ammonia (NH₄ as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0) pH dependent (at Temp 4 °C or in situ T)	pH dependent (6.5-9.0)	25	25	25	<50	29.5	50.6	25.2	25
Ammonia FLT Guideline				pH dependent (at Temp 4 °C or in situ T)	4950 9520	6220 1200	6220 1200	3950 759	3150 606	8770 1690	6220 1200	6220 1200
Chloride (Cl [°]) Nitrate (NO ₃ [°] as N)	μg/L μg/L	500 5.0-25.0	600000 NG	150,000 NG	18400 171	41700 1060	42800 1070	39700 1110	18600 12.5	19200 12.5	10500 12.5	10600 2.5
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	3.8	0.5	2.5	2.5	2.5	2.5	2.5	0.5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	270000	205000	277000	292000	230000	302000	169000	156000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	429000	429000	429000	429000	429000	309000	429000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L		NG	NG	2.6	3.4	2.4	1.9	2.34	2.63	2.19	3.1
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG	21.5	10.6	9.4	<15	4.9	8	7.8	60.7
Arsenic	μg/L μg/L	0.10	5.0	5.0	0.18 0.39	0.12	0.15 0.05	<0.5 0.25	<0.1 0.38	<0.1 0.37	<0.1 0.39	<0.1 0.86
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG	118 <0.1	268 <0.1	118 <0.1	81.9 <0.5	29.2 <0.1	27.4 <0.1	33.5 <0.1	57.7 <0.1
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.05	<0.05	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05
Cadmium	µg/L	0.005	NG	NG	32 0.0152	22 0.015	15 0.0092	<50 <0.025	66 0.0292	87 0.183	54 0.0249	45 0.0819
Calcium Cesium	μg/L μg/L	50 0.01	NG NG	NG	126000 <0.01	127000 <0.01	135000 <0.01	146000 <0.05	168000 <0.01	158000 <0.01	130000 <0.01	117000 0.013
Chromium ⁴ Cobalt	μg/L μg/L	0.1-1.0	NG 110	NG 4.0	0.13	0.14	0.12	<0.05	<0.1	<0.1	0.16	0.11
Copper ³	μg/L μg/L	0.10	Calc. based on Hardness	2 to 10	0.11 0.51	0.05 <0.5	0.05 <0.5	<0.5 <2.5	0.84 0.25	1.58 0.25	0.54 0.25	1.48 0.25
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of 400,000		00.0		07.70		00.0	00.0	00.5	
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L		400,000	Hardness 50,000 - 250,000: calc.;	39.6	39.6	37.72	39.6	39.6	39.6	39.6	39.6
Iron	μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	10 47	10 20	10 21	10 <50	10 359	10 332	10 319	10 600
	µg/L	0.05	101 - 348 Based on Hardness 8000-360,000	Calc. based on Hardness	<0.05	<0.05	<0.05	<0.25	<0.05	<0.05	<0.05	0.07
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.		417.0	417.0	417.0	416.968	417.0	417.0	417.0	417.0
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	19.6	19.6	19.6		19.6	19.6	19.6	19.6
Lithium	µg/L	1.0	NG	Hardness > 8000 : calc. NG	9.1	9	7.1	19.57 7.5	33.1	47.4	22.8	24.9
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on Hardness	NG Calc. based on Hardness	25300 31.3	25600 0.96	27800 0.93	32000 5.27	39100 1860	39500 2330	32900 1460	28500 1760
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L	0.10	Applies to Hardness 25000-259000 µg/L Mn : calc.		3394.2	3394.2	3394.2	3394	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 μg/L Mn : calc.	2435.4	2378.2	2277.0	2585	2585.0	2585.0	2444.2	2246.2
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0192	<0.005
Molybdenum Nickel	μg/L μg/L	0.05	2000 NG	≤ 1000 NG	1.63 1.54	1.18 <0.5	0.94 <0.5	1.08 <2.5	1.46 21.2	1.19 45.4	3.05 11.6	1.4 21.3
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG	<50 4260	<50 3860	<50 3450	<250 3370	<50 1700	<50 1750	<50 1460	<50 1540
Rubidium	µg/L	0.2	NG	NG	0.63	0.66	0.55	<1	1.22	1.53	0.98	1.18
Selenium Silicon	μg/L μg/L	0.05	NG NG	2.0 NG	1.48 5050	1.31 4710	1.64 3990	1.88 3750	<0.05 4670	<0.05 4060	<0.05 3860	0.094 3510
Silver ³ (Based on Hardness < or > 100000)	µg/L	0.01	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	<0.01
Ag FST Guideline Calc Ag FLT Guideline Calc	μg/L μg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Sodium	μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	1.5 37600	1.5 15500	1.5 21600	1.5 24100	1.5 40800	1.5 52700	1.5 32100	1.5 27900
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG NG	NG NG	340 97700	389 66500	379 91100	385 96200	413 87700	461 107000	348 58900	347 50900
Tellerium	µg/L	0.2	NG	NG	<0.2	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
Thallium Thorium	μg/L μg/L	0.01	NG NG	NG	0.011 <0.1	<0.01 <0.1	<0.01 <0.1	<0.05	<0.01 <0.1	0.011 <0.1	<0.01 <0.1	0.011 <0.1
Tin Titanium	μg/L μg/L	0.10	NG NG	NG NG	<0.1 0.67	<0.1 <0.3	<0.1 <0.3	<0.5 <1.5	<0.1 <0.3	<0.1 0.33	<0.1 <0.3	<0.1 1.44
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.3	<0.3	<0.5	<0.3	<0.1	<0.3	<0.1
Uranium Vanadium	μg/L μg/L	0.01	NG NG	NG	1.3 0.65	1.3 <0.5	1.31 <0.5	1.55 <2.5	1.59 <0.5	1.36 <0.5	1.1 <0.5	1.13 <0.5
Zinc ³ (Based on Hardness < or > 90,000)	µg/L	3.0	Calc. based on Hardness Hardness 90,000 - 500,000, Calc.	Calc. based on Hardness	1.5	1.5	1.5	7.5	3.4	21.7	1.5	8.3
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of 500,000		277.50	267.75	250.50	315	340.50	340.50	279.00	245.25
Zn FLT Guideline Calc.				Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	188	188	188		188	188	188	188
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	187.5 <1	<0.2	<0.2	0.23	<0.2
Metals, Dissolved Aluminum ⁵	µg/L	1.0	100	50	2.6	1.4	0.5	0.5	0.5	0.5	0.5	1.1
AI FST Guideline Calc (based on pH)	μg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100	100	100	100	100	100	100	100
AI FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50	50	50	50	50	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG	NG	0.17	0.13	<0.1	<0.5	<0.1	< 0.1	<0.1	<0.1
Barium	µg/L	0.10	NG	NG	0.36 120	0.05 259	0.05 117	0.25 77	0.36 28.9	0.36 26.6	0.35 31.9	0.83 56.6
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.5 <0.25	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	31	19	13	<50	58	90	51	38
Cadmium (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L	0.000	Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Calo, based on hardness	0.0127 2.554	0.013	0.0096	<0.025	0.0131 2.801	0.0516 2.801	0.0211 2.567	0.0182 2.282
	μy/L		Hardness > 455,000, is Capped Value of 455,000	Hardness 3,400 - 285,000, Calc.	2.004	2.412	2.021	2.8008	2.001	£.001	2.001	2.202
Cd FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.457	0.457	0.457	0.4571	0.457	0.457	0.457	0.457
Calcium Cesium	µg/L	50.0 0.01	NG	NG	126000	119000	110000	138000	144000	145000	117000	104000
Chromium	µg/L	0.10	NG	NG NG	<0.01 <0.1	<0.01 0.11	<0.01 <0.1	<0.05 <0.5	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1
Cobalt Copper ⁶	μg/L μg/L	0.10	NG Calc. based on BLM Model	NG Calc. based on BLM Model	<0.1 0.42	<0.1	<0.1	<0.5 <1	0.74	1.76 0.1	0.52	1.47 0.1
Cu FST Guideline Value (Acute)	µg/L		BLM Ligand Model value		15.3	16.6	12.9	11.3	0.1	10.4	12	16.5
Cu FLT Guideline Value (Chronic) Iron	μg/L μg/L	10.0	350	BLM Ligand Model value NG	2.7 5	3.0 <10	2.3 5	2.1 <50	338	1.6 234	2.1 300	2.8 184
	µg/L	0.05	NG	NG	<0.05	<0.05	<0.05	<0.25	<0.05	< 0.05	<0.05	<0.05 23
Lead	-	1.0	NG	NG	8.3	0.5	76	6.0	20.9		21.9	
Lithium Magnesium	μg/L μg/L	5.0	NG NG	NG NG	8.3 24400	9.5 25700	7.6 25400	6.9 29600	29.8 35000	49.2 41400	24.8 30400	27500
Lithium	µg/L											
Lithium Magnesium Manganese	μg/L μg/L μg/L	5.0 0.10	NG NG	NG NG	24400 28.9	25700 0.51	25400 0.46	29600 4.73	35000 2030	41400 2570	30400 1340	27500 1730

Appendix B2: SBIAR Surface Water Analy	tical Res	sults	I	I						1	1	
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSC-DS 27-May-20	RBSC-DS 22-Jun-20	RBSC-DS 29-Jul-20	RBSC-DS 24-Aug-20	RBSC-DS 28-Sep-20	RBSC-DS 30-Nov-20	RBSC-DS 21-Dec-20	RBSBIAR-EDS 16-Apr-20
Physical Parameters												
Temperature Flow Rate	°C L/sec				- 16.2							
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	µg/L mg/L	1000 1.0	NG NG	NG NG	20000	9300	3600	4800	5400	23100	17100	5800
Electrical Conductivity (EC)	μS/cm	2.0	NG	NG	412 1660	382 1510	255 779	350 1080	350 1410	395 1220	388 1180	197 999
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	871000	763000	363000	513000	682000	568000	601000	482000
pH Total Dissolved Solids (TDS)	pH Units	0.10	6.5 - 9 NG	6.5-9.0 NG	7.97	8.02	8.10	8.00	8.05	7.76	7.98	8.16
Total Suspended Solids (TSS)	μg/L μg/L	3000	NG	NG	1230000 6700	1190000 9300	517000 11500	801000 8000	1050000 5500	903000 2400	891000 <1000	818000 5390000
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG	NG NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	412000	382000	255000	350000	350000	395000	388000	197000
Anions and Nutrients Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	2.5	25	304	25	25	25	<50	326
Ammonia FST Guideline Ammonia FLT Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)	pH dependent (at Temp 4 °C or in situ T)	6220 1200	6220	4950	6220	4950	8770 1690	6220	3950 759
Chloride (Cl')	µg/L	500	600000	150,000	40500	1200 43400	952 53300	1200 24000	952 30800	25100	1200 22400	121000
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0 1.0-5.0	NG CI-dependent (> 10,000 µg/L)	NG CI-dependent (> 10,000 µg/L)	2.5	12.5	718	45	12.5	12.5	<25	536
Nitrite (NO ₂ ⁻ as N) Sulphate (SO ₄) ³	μg/L μg/L	300	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000	0.5 563000	2.5 507000	8.2 86600	2.5 312000	2.5 455000	2.5 329000	2.5 310000	13.1 169000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000	429000	429000	429000	429000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC)	mg/L		NG	Hardness > 250,000 site-specific NG	3.25	3.3	1.9	2.7	3.1	4.2	3.1	6.4
Metals, Total												
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG	NG	24.6 <0.1	32.3 <0.1	146 0.22	59.6 <0.1	15.4 <0.1	11.2 <0.1	<15 <0.5	11500 0.87
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	0.64	0.95	0.23	0.65	0.8	0.23	0.25	14.7
Beryllium	μg/L μg/L	0.10	NG	NG	57.8 <0.1	60.9 <0.1	191 <0.1	115 <0.1	59 <0.1	39.2 <0.1	35 <0.5	913 1.49
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.05 128	<0.05 126	<0.05 171	<0.05 57	<0.05 98	<0.05 91	<0.25 79	0.168 79
Cadmium	µg/L	0.005	NG	NG	0.172	0.319	0.0865	0.168	0.171	0.179	0.113	3.16
Calcium Cesium	μg/L μg/L	50 0.01	NG NG	NG NG	245000 0.011	229000 0.012	94900 0.031	151000 0.012	196000 <0.01	193000 0.012	162000 <0.05	236000 2.07
Chromium ⁴	µg/L	0.1-1.0	NG	NG 4.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	22.9
Cobalt Copper ³	μg/L μg/L	0.10	110 Calc. based on Hardness	4.0 2 to 10	3.94 0.25	3.19 0.53	3.89 1.61	2.63 0.25	3.02 <0.5	0.37 <0.5	0.52 <2.5	43.7 69.1
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of		39.6							
Cu FLT Guideline Calc. (relevant prior to August 2019)	ug/l		400,000	Hardness 50,000 - 250,000: calc.;	10	39.6	36.122	39.6	39.6	39.6	39.6	
Iron	μg/L μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	659	10 679	10 373	10 765	10 1090	10 157	10 177	4997.625 32600
Lead ³	µg/L	0.05	101 - 348	Calc. based on Hardness	<0.05	<0.05	<0.05	0.053	<0.05	0.417	<0.25	13.5
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3 Hardness > 8000 : calc.		417.0	417.0	417.0	417.0	417.0	417.0	446.000	417.0
Pb FLT Guideline Calc (Based on Hardness as CaCO3)			Hardness > 6000 . calc.	Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	19.6	19.6	19.6	19.6	19.6	19.6	416.968	19.6
	µg/L	10	10	Hardness > 8000 : calc.							19.57	
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	70 68300	70.6 57100	33.3 23800	31.8 39000	52.4 55100	40.6 52300	34.8 43600	53.1 52500
Manganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	4880	3320	65.8	3430	3960	1830	2320	1250
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Mn : calc.	Applies to Hardness 37000-450000 µg/L	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2	3394	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3) Mercury (Based on methyl Hg & total mass Hg)	μg/L μg/L	0.005	NG	Mn : calc. Calc.	2585.0	2585.0	2202.2	2585.0	2585.0	2585.0	2585	2585.0
Molybdenum	μg/L μg/L	0.05	2000	≤ 1000	<0.005 1.3	<0.005 0.916	<0.005 1.19	<0.005 1.2	<0.005 1.05	<0.005 0.728	<0.005 0.8	0.0059 3.38
Nickel Phosphorus	μg/L μg/L	0.50 50.0	NG NG	NG NG	61.4 <50	51.3 209	16.1 <50	36.4 <80	53.5 53	22.4 <50	21.9 <250	124 1480
Potassium	µg/L	50.0	NG	NG	2430	2550	3230	1880	2290	2280	1880	4740
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	1.94 0.159	1.8 0.213	1.37 0.339	1.11 0.055	2 0.091	1.73 0.081	1.4 <0.25	21.4 2.25
Silicon Silver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	4830	5060	4630	4020	4620	4820	4000	16100
Ag FST Guideline Calc	μg/L	0.01	Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	0.03 - 1.3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	0.255
Ag FLT Guideline Calc	µg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Sodium	µg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	1.5 96900	1.5 84600	1.5 57300	1.5 47900	1.5 72300	1.5 66500	1.5 47300	1.5 31400
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG	NG NG	710 231000	650 178000	452 28600	436 98900	631 167000	575 149000	476 101000	1030 63800
Tellerium	µg/L	0.2	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	0.3
Thallium Thorium	μg/L μg/L	0.01	NG NG	NG	0.022 <0.1	0.023 <0.1	0.011	0.024 <0.1	0.014	0.016 <0.1	<0.05 <0.5	0.338
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	0.33
Titanium Tungsten	μg/L μg/L	0.3-4.5 0.10	NG	NG NG	0.63 <0.1	1.5 <0.1	<0.3 <0.1	1.3 <0.1	0.47 <0.1	<0.3 <0.1	<1.5 <0.5	91.8 <0.1
Uranium Vanadium	μg/L μg/L	0.01	NG NG	NG NG	3.03 <0.5	3.03 <0.5	1.03 <0.5	1.43 <0.5	2.53 <0.5	2.3 <0.5	1.94 <2.5	4.4 30.3
Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	3.0	Calc. based on Hardness	Calc. based on Hardness	<0.5 23.7	<0.5 26.6	<0.5 28.9	<0.5 13.6	<0.5 17.6	<0.5 7.9	<2.5 7.5	30.3 474
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of		0.00	o - o		o - o	o 10	040	o ::o =	007.0
Zo ELT Quideline Orl-			500,000	Hardness 90,000 - 330,000, Calc.	340.50	340.50	237.75	340.50	340.50	340.50	340.5	327.00
Zn FLT Guideline Calc.			110	Hardness > 330,000, is Capped Value of 330,000	188	188	188	188	188	188	187.5	188
Zircronium Metals, Dissolved	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	0.48
Aluminum ⁵	µg/L	1.0	100 pH < 6.5 : calc. Al	50	7.1	2.5	108	1.8	1.4	0.5	5.4	82.6
Al FST Guideline Calc (based on pH)	µg/L		pH < 6.5 : Caic. Ai pH ≥ 6.5 : 100.0 Al	modion r11 + 0.5	100	100	100	100	100	100	100	100
Al FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50	50	50	50	50	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG NG	NG NG	<0.1 0.51	<0.1 0.57	0.16	<0.1 0.52	<0.1 0.73	<0.1 0.27	<0.5 0.25	0.24
Barium	µg/L	0.10	NG	NG	57.3	53.6	210	111	58.3	46.7	33.8	109
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.5 <0.25	<0.1 <0.05
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L µg/l	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	132	133	186	61	95	77	85	59
	µg/L	0.005	Hardness 7,000 - 455,000, Calc.	Jaio. Dased on hardness	0.0654	0.144	0.0568	0.0418	0.0292	0.154	0.093	0.407
Cd FST Guideline Calc.	µg/L		Hardness > 455,000, is Capped Value of 455,000		2.801	2.801	2.219	2.801	2.801	2.801	2.8008	2.801
Cd FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.457	0.457	0.457	0.457	0.457	0.457	0 4574	0.457
Calcium	µg/L	50.0	NG	NG	242000	208000	98400	142000	189000	149000	0.4571 168000	133000
Cesium Chromium	µg/L	0.01	NG NG	NG NG	<0.01 <0.1	<0.01 <0.1	0.031	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.05 <0.5	0.022
	µg/L	0.10	NG	NG	3.82	3.11	4.54	2.54	2.76	0.58	<0.5	17.2
Cobalt		0.20	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	0.1 20.2	0.1 21.7	0.86	0.1 16.2	0.1 20.4	0.22	<1 18.1	1.18 40.7
	μg/L μg/L		BLIVI LIGANG WOORI VAILIE			. 41./	14.0	. 10.4	LU.4			40.7
Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L		5	BLM Ligand Model value	2.6	3.0	2.3	2.5	3.0	2.5	2.8	7.8
Cobalt Copper ⁶ Cu FST Guideline Value (Acute)	µg/L	10.0	350 NG	BLM Ligand Model value NG NG			2.3 28 <0.05		3.0 518 <0.05			7.8 5 <0.05
Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium	μg/L μg/L μg/L μg/L μg/L	0.05 1.0	350 NG NG	NG NG NG	2.6 236 <0.05 65.3	3.0 341 <0.05 71.5	28 <0.05 34.7	2.5 335 <0.05 33	518 <0.05 50.2	2.5 152 <0.05 37.3	2.8 124 <0.25 33	5 <0.05 43.5
Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead	μg/L μg/L μg/L μg/L	0.05	350 NG	NG NG	2.6 236 <0.05	3.0 341 <0.05	28 <0.05	2.5 335 <0.05	518 <0.05	2.5 152 <0.05	2.8 124 <0.25	5 <0.05
Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium Magnesium	μg/L μg/L μg/L μg/L μg/L μg/L	0.05 1.0 5.0	350 NG NG NG NG	NG NG NG NG	2.6 236 <0.05 65.3 64600	3.0 341 <0.05 71.5 59000	28 <0.05 34.7 28400	2.5 335 <0.05 33 38300	518 <0.05 50.2 50700	2.5 152 <0.05 37.3 47800	2.8 124 <0.25 33 44400	5 <0.05 43.5 36200

OrdePartPa	Appendix B2: SBIAR Surface Water Anal	tical Res	sults	I								
Name </td <td>Parameter</td> <td>Unit</td> <td>RDL</td> <td>BCAWQG - FST 1</td> <td>BCAWQG - FLT 2</td> <td>RBSBIAR-EDS 27-May-20</td> <td>RBSBIAR-EDS 22-Jun-20</td> <td>RBSBIAR-EDS 29-Jul-20</td> <td>RBSBIAR-EDS 24-Aug-20</td> <td>RBSBIAR-EDS 28-Sep-20</td> <td>RBSBIAR-EDS 20-Oct-20</td> <td>RBSBIAR-EDS 30-Nov-20</td>	Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSBIAR-EDS 27-May-20	RBSBIAR-EDS 22-Jun-20	RBSBIAR-EDS 29-Jul-20	RBSBIAR-EDS 24-Aug-20	RBSBIAR-EDS 28-Sep-20	RBSBIAR-EDS 20-Oct-20	RBSBIAR-EDS 30-Nov-20
math 	Physical Parameters											
Sind of ControlControControlControlC												
Name<	Acidity (Total as CaCO ₃)	µg/L				3400						
math and any and any												
3355	,	1	500	NG	NG	319000	417000	448000	307000	315000	286000	246000
characte into and and any and any and any any and any	pH		0.10	6.5 - 9	6.5-9.0	8.11	8.10	7.98	8.00	8.08	8.07	8.11
Addition <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
NameNo. <td>Alkalinity (Hydroxide) as CaCO₃</td> <td>µg/L</td> <td>1000</td> <td>NG</td> <td>NG</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Alkalinity (Hydroxide) as CaCO ₃	µg/L	1000	NG	NG							
Name Name <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
number of a part of the section of a part												
And <td></td> <td></td> <td>5.0</td> <td></td> <td>pH dependent (6.5-9.0)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			5.0		pH dependent (6.5-9.0)							
Name <t< td=""><td></td><td>ug/l</td><td>500</td><td>600000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		ug/l	500	600000								
matrix matrix jate	• •			NG	NG							
Party and pa	Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L		17.4	5.3	0.5	14.2	5.9	5.7	2.5
Control<	Sulphate (SO ₄) ³	µg/L	300	NG		112000	223000	29200	111000	84200	96200	98800
No. AndNo. A	SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000	429000	429000	429000	429000	429000	429000	429000
Name		mg/L		NG	NG	1.49	1.7	1.6	1.4	1.2	3.1	2.0
Can </td <td></td> <td>µg/L</td> <td>3.00</td> <td>NG</td> <td>NG</td> <td>166</td> <td>3970</td> <td>5.7</td> <td>137</td> <td>108</td> <td>76.7</td> <td>41.3</td>		µg/L	3.00	NG	NG	166	3970	5.7	137	108	76.7	41.3
And<		1										
math pictra pictra </td <td>Barium</td> <td>µg/L</td> <td>0.10</td> <td>NG</td> <td>NG</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Barium	µg/L	0.10	NG	NG							
omono		1										
Solution <th< td=""><td>Boron</td><td>µg/L</td><td>10.0</td><td>1200</td><td>1200</td><td>214</td><td>181</td><td>20</td><td>162</td><td>181</td><td>191</td><td>163</td></th<>	Boron	µg/L	10.0	1200	1200	214	181	20	162	181	191	163
And <td></td> <td>1</td> <td></td>		1										
300301 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0.125</td> <td><0.01</td> <td></td> <td></td> <td></td> <td></td>		1					0.125	<0.01				
Problem <		1										
bit bit <td>Copper ³</td> <td>µg/L</td> <td>0.50</td> <td></td> <td>2 to 10</td> <td></td> <td>49.9</td> <td>0.25</td> <td>1.3</td> <td>0.94</td> <td>0.63</td> <td>0.6</td>	Copper ³	µg/L	0.50		2 to 10		49.9	0.25	1.3	0.94	0.63	0.6
bit bit <td>Cu FST Guideline Calc. (relevant prior to August 2019)</td> <td>µg/L</td> <td></td> <td>Hardness ≥ 400,000 is Capped Value of</td> <td></td> <td>31.986</td> <td>39.6</td> <td>39.6</td> <td><u>3</u>0.858</td> <td>31.61</td> <td>28.884</td> <td>25.124</td>	Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of		31.986	39.6	39.6	<u>3</u> 0.858	31.61	28.884	25.124
m m	Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L				10						
Barbon							6550	5	302	199	152	87
participant sector partic		µg/L	0.05	Based on Hardness 8000-360,000	Calc. based on Hardness							
ValueUnitFunctionTargetT		µg/L				357.5	417.0	417.0	340.5	351.8	311.1	256.8
Image Image <t< td=""><td>Pb FLT Guideline Calc (Based on Hardness as CaCO3)</td><td>µg/L</td><td></td><td></td><td>Hardness ≤ 8000, NG</td><td>17.3</td><td>19.6</td><td>19.6</td><td>16.6</td><td>17.0</td><td>15.4</td><td>13.3</td></t<>	Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG	17.3	19.6	19.6	16.6	17.0	15.4	13.3
Image Image <t< td=""><td>Lithium</td><td>µg/L</td><td>1.0</td><td>NG</td><td></td><td>49.1</td><td>74.5</td><td>10.1</td><td>29.4</td><td>34.3</td><td>35.9</td><td>37.7</td></t<>	Lithium	µg/L	1.0	NG		49.1	74.5	10.1	29.4	34.3	35.9	37.7
Normal matrix stands and start	-											
Process of the second secon	•		0.10	Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness							
biolog				Min : Caic.		2008.6	2439.8	2576.2	1955.8	1991.0	1863.4	1687.4
Name<			0.005	NG								
NameNameNoN	Molybdenum	µg/L		2000		1.84	1.7	0.707	1.45	1.23	1.33	1.4
make inf inf </td <td></td>												
NameNameNo. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
back box bar set of sourcesr												
art and												
ph 1 and any and any			0.01	Hardness ≤ 100,000 Ag = 0.10	0.00 - 1.0							
IndexMath	Ag FLT Guideline Calc	µg/L		Hardness > 100,000 Ag = 3.0								
Jack and by a by	Sodium	µg/L	50.0	NG	-							
Taking(m) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
International Informational Informational Informational Informational Informational Informational 			0.2	NG	NG							
Internation1960.40MO </td <td></td>												
Implement Unplement UsationImplement Implement Implement UsationImplement Implement	Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
unamineunamineunamineunamineNumeNumeUnit111												
Data Data <thdata< th=""> Data Data <th< td=""><td>Uranium</td><td>µg/L</td><td></td><td></td><td></td><td>1.21</td><td>4.35</td><td>1.3</td><td>0.948</td><td>0.872</td><td>0.778</td><td>0.672</td></th<></thdata<>	Uranium	µg/L				1.21	4.35	1.3	0.948	0.872	0.778	0.672
Zhi Yang Markene 280,000 (space) and with the space of				Calc. based on Hardness								
Image: state in the s	Zn FST Guideline Calc.	μg/L	_	Hardness > 500,000, is Capped Value of								
imageimag				500,000								
Methe, DatosoldInternet <th< td=""><td></td><td>ļ</td><td>ļ</td><td></td><td>330,000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		ļ	ļ		330,000							
Alurinon'191101100100100100101101100		µg/L	0.06	NG	NG	<0.2	<0.39	<0.2	<0.2	0.78	<0.2	<0.2
Part of content cancer of the part s 5: : : : : : : : : : : : : : : : : :		µg/L	1.0		50	109	404	1.5	44.9	31.5	16.9	16.9
ar let Quadent due (pand matering matering)inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<inpl<<	Al FST Guideline Calc (based on pH)	µg/L				100	100	100	100	100	100	100
ArenicµµL0.10NG 0.29 0.140.150.270.20.210.100.10BarlumµQL0.10NGNG1641543.861511193142106.BernulmµQL0.05NGNG 0.05 </td <td>AI FLT Guideline Calc (based on median pH)</td> <td>µg/L</td> <td></td> <td></td> <td>median pH ≥ 6.5 : 50.0 AI</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td>	AI FLT Guideline Calc (based on median pH)	µg/L			median pH ≥ 6.5 : 50.0 AI	50	50	50	50	50	50	50
Bailum jupit 0.10 NG NG 164 134 336 151 1183 142 106 Benyllinm upit 0.10 NG NG <0.1												
Blamuth NG NG NG NG < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.01 < 0.01 < 0.01 < 0.01 <td>Barium</td> <td>µg/L</td> <td>0.10</td> <td>NG</td> <td>NG</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Barium	µg/L	0.10	NG	NG							
Bairon µgL 10.0 NG NG 217 112 112 114 116 170 Cadmium ³ (Based on Hardness as CaCO.) µgL 0.05 Calc. based on Hardness 0.103 1.00 0.017 0.031 0.0205 0.0243 0.0421 Cd FST Guideline Calc. µgL 1 Hardness > 455,000, Calc. 1.943 2.560 2.756 1.868 1.918 1.736 1.487 Cd FST Guideline Calc. µgL 5.00 NG NG 0.457 <td></td> <td>µg/L</td> <td></td>		µg/L										
Cd FST Gudeline Calc. µgL Hardness 7,000 -485,000 Calc. Hardness > 455,000 1.943 2.560 2.756 1.868 1.918 1.736 1.487 Cd FST Gudeline Calc.	Boron		10.0	NG	NG	217	182	20	172	174	146	170
Cdr EST Guideline Calc. up1. Hardness 245000 , is Capped Value of 455000 . 1.943 2.560 2.756 1.888 1.918 1.736 1.487 Cdr ELT Guideline Calc. $kp1$ $km2$		µg/L	0.005	Hardness 7,000 - 455,000, Calc.	Calc. based on hardness							
CdFLTGuideline Calc.fundiness>2862000, is Capped Valued 2850000.457	Cd FST Guideline Calc.	µg/L		Hardness > 455,000, is Capped Value of		1.943	2.560	2.756	1.868	1.918	1.736	1.487
Image: A constraint of the const	Cd FLT Guideline Calc.				Hardness > 285,000, is Capped Value of	0.457	0.457	0.457	0.457	0.457	0.457	0.410
Cesium 0.01 NG NG 0.037 0.002 0.01 0.003 0.021 0.010 0.010 Chromium µg/L 0.10 NG NG 0.037 0.028 <0.01		μg/L	50.0	NG	285,000							
Log Log On NG N	Cesium		0.01	NG	NG	0.037	0.028	<0.01	0.03	0.021	0.019	0.016
hg/L 0.20 Calc. based on BLM Model Calc. based on BLM Model 1.77 3.2 0.38 0.59 0.43 0.39 0.40 Cu FST Guideline Value (Acute) $\mu g/L$ V BLM Ligand Model value 11.5 12.5 8.1 9.9 9.1 22.8 15.3 Cu FST Guideline Value (Acute) $\mu g/L$ V BLM Ligand Model value 1.9 2.0 1.4 1.4 1.4 3.6 2.4 Cu FLT Guideline Value (Chronic) $\mu g/L$ 1.00 350 NG 5.00 5 5 2.1 2.4 2.6 Iron $\mu g/L$ 1.00 350 NG 6.05 5.00 5.05 5.00 5.05 5.00 5.00 5.00 5.00 5.005												
Cu FLT Guideline Value (Chronic) μ g/L i </td <td>Copper ⁶</td> <td>µg/L</td> <td></td> <td>Calc. based on BLM Model</td> <td></td> <td>1.77</td> <td>3.2</td> <td>0.38</td> <td>0.59</td> <td>0.43</td> <td>0.39</td> <td>0.40</td>	Copper ⁶	µg/L		Calc. based on BLM Model		1.77	3.2	0.38	0.59	0.43	0.39	0.40
Iron Ind 350 NG 500 5 5 21 24 26 Lead µg/L 0.05 NG NG 500 5 5 21 24 26 Lead µg/L 0.05 NG NG 0.05 <0.05				BLM Ligand Model value	BLM Ligand Model value							
Lithium µg/L 1.0 NG NG All 70.1 10.3 29.9 31.3 37 40.6 Magnesium µg/L 5.0 NG NG 26000 35800 29600 23900 24300 22800 19200 Magnesium µg/L 0.10 NG NG 66.7 371 2.56 83.6 51.6 57.1 52.8 Mercury µg/L 0.005 NG NG 0.005 <0.005	Iron	µg/L			NG	5.00	5	5	5	21	24	26
Magnesium µg/L 5.0 NG NG 26000 35800 29600 23900 24300 22800 19200 Magnesium µg/L 0.10 NG NG 66.7 371 2.56 83.6 51.6 57.1 52.8 Marganese µg/L 0.005 NG 66.7 371 2.56 83.6 51.6 57.1 52.8 Mercury µg/L 0.005 NG <0.005												
Mercury µg/L 0.005 NG <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Magnesium	µg/L	5.0	NG	NG	26000	35800	29600	23900	24300	22800	19200
Molybdenum µg/L 0.05 NG NG 1.79 1.34 0.754 1.46 1.23 1.31 1.45												
Nickel µg/L 0.50 NG NG 14.6 114 <0.5 14.2 8.25 7.5 9	Molybdenum	µg/L	0.05	NG	NG	1.79	1.34	0.754	1.46	1.23	1.31	1.45

Appendix B2: SBIAR Surface Water Analy	vtical Res	sults							0021 00 1 100 1	101120211100	SUED FOR US
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS
Physical Parameters					27-May-20	22-Jun-20	29-Jul-20	24-Aug-20	28-Sep-20	20-Oct-20	30-Nov-20
Temperature	°C				9.0						
Flow Rate Acidity (Total as CaCO ₃)	L/sec µg/L	1000	NG	NG	0.120 7300	5400	9000	6100	6000	4300	9000
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	NG	NG NG	239 678	259 689	311 1170	324 742	256 673	269 648	307 781
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	411000	416000	617000	371000	380000	383000	369000
рН	pH Units	0.10	6.5 - 9	6.5-9.0	7.92	7.92	8.06	7.90	7.95	7.92	7.92
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG NG	NG NG	470000 3200	491000 2700	904000 1300	504000 500	494000 500	469000 500	503000 500
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	239000	259000	311000	324000	256000	269000	307000
Ammonia (NH₄ as N) Ammonia FST Guideline	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	14.5	25	25	25	25	25	25
Ammonia FLT Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)	pH dependent (at Temp 4 °C or in situ T)	6220 1200	7420 1430	4950 952	7420 1430	6220 1200	7420 1430	7420 1430
Chloride (Cl ⁻) Nitrate (NO ₃ ⁻ as N)	μg/L μg/L	500 5.0-25.0	600000 NG	150,000 NG	69200 1030	59400 1130	23800 12.5	60000 1340	52800 1290	62500 1310	70100 1090
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	CI-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	0.5	0.5	2.5	0.5	0.5	0.5	0.5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	28100	36800	339000	30500	30500	34100	30100
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	429000	429000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L		NG	NG	1.8	1.2	3.4	1.5	1.3	2.6	2.0
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG NG	11.4 <0.1	11.5 0.11	7.5 0.5	26 0.19	9 0.13	21 0.11	5.5 0.14
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	0.13 265	0.15 281	0.54	0.22 335	0.16 295	0.15	0.05 251
Beryllium	µg/L	0.10	NG	NG	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.05 15	<0.05 19	0.25 81	<0.05 19	<0.05 20	<0.05 19	<0.05 14
Cadmium Calcium	μg/L μg/L	0.005 50	NG NG	NG NG	0.0135	0.0127	0.163	0.0555 134000	0.0158	0.0136	0.0097 114000
Cesium Chromium ⁴	μg/L μg/L	0.01	NG NG	NG NG	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01
Cobalt	µg/L	0.10	110	4.0	0.11	<0.1	0.5	0.18	0.12	0.43	<0.1
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	0.25	0.25	2.5	0.55	<0.5	<0.5	<0.5
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000	Hardness 50,000 - 250,000: calc.;	39.6	39.6	39.6	36.874	37.72	38.002	36.686
Cu FLT Guideline Calc. (relevant prior to August 2019) Iron	μg/L μg/L	10	1000	Hardness > 250,000 - 230,000 - calc., Hardness > 250,000, Cu = 10 NG	10	10	10	10 45	10	10	10
Lead ³	μg/L μg/L	0.05	101 - 348	Calc. based on Hardness	17 <0.05	19 <0.05	279 0.25	45 <0.05	11 <0.05	35 <0.05	5 <0.05
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3 Hardness > 8000 : calc.		417.0	417.0	417.0	417.0	417.0	417.0	417.0
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	μg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	19.6	19.6	19.6	19.6	19.6	19.6	19.6
Lithium	μg/L	1.0	NG	Hardness > 8000 : calc. NG	8.1	8.9	47.1	8	9.6	9	7.1
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on Hardness	NG Calc. based on Hardness	29100 3.58	26300 3.74	42500	27500	27500	26800 1.65	25500 0.79
Manganese Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L	0.10	Applies to Hardness 25000-259000 µg/L Mn : calc.	Calc. based on Hardness	3.58 3394.2	3.74 3394.2	1600 3394.2	5.21 3394.2	1.93 3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 μg/L Mn : calc.	2413.4	2435.4	2585.0	2237.4	2277.0	2290.2	2228.6
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005
Nickel	µg/L	0.50	NG	NG	0.714 0.87	0.793 <0.5	1.25 36.6	0.912	0.824 <0.5	0.758	0.594 <0.5
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG NG	<50 3050	<50 3560	<250 2450	<50 4050	<50 3780	<50 3550	<50 2940
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	0.43	0.43	1.4 0.25	0.67	0.61	0.5 0.527	0.38
Silicon	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	4610	5220	4740	6080	5840	5510	4580
Silver ³ (Based on Hardness < or > 100000) Ag FST Guideline Calc	µg/L	0.01	Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	0.03 - 1.3	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01
Ag FLT Guideline Calc	µg/L		Haranooo 100,000 Ag 0.0	Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium Strontium	μg/L μg/L	50.0 0.2	NG NG	NG	5480 312	5520 314	50100 512	5280 315	5610 297	5400 306	5030 307
Sulfur	µg/L	500.0	NG	NG	11300	12600	108000	10500	11200	11500	10700
Tellerium Thallium	μg/L μg/L	0.2	NG NG	NG NG	<0.2 <0.01	<0.2 <0.01	1 0.05	<0.2 0.043	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01
Thorium Tin	μg/L μg/L	0.10	NG NG	NG	<0.1 <0.1	<0.1 <0.1	0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Titanium Tungsten	μg/L μg/L	0.3-4.5	NG NG	NG	<0.3 <0.1	<0.3 <0.1	1.5 0.5	0.59 <0.1	0.33 <0.1	0.4 <0.1	<0.3 <0.1
Uranium	µg/L	0.01	NG	NG	1.15	1.23	2	1.29	1.19	1.19	1.15
Vanadium Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	<0.5 1.50	<0.5 1.5	2.5 7.5	<0.5 1.5	0.7 1.5	<0.5 1.5	<0.5 1.5
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000		070 70	077 50	240.50	040 75	250.50	050 75	040.05
Zn FLT Guideline Calc.				Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of	273.75	277.50	340.50	243.75	250.50	252.75	242.25
Zircronium	μg/L	0.06	NG	330,000 NG	<0.2	<0.2	<1.0	<0.2	<0.2	<0.2	<0.2
Metals, Dissolved	μg/L	1.0	100	50	1.4	17.1	5				0.5
Al FST Guideline Calc (based on pH)	μg/L μg/L	1.0	pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		1.4	17.1	5 100	2.4	1.4	1.3	0.5
Al FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50	50	50	50	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG	NG	<0.1	<0.1	0.5	0.15	0.11	0.11	<0.1
Barium	µg/L	0.10	NG	NG	266	272	0.58	0.14 312	0.11 311	0.05 272	260
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	0.5	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	15 0.01	19 0.0109	79 0.096	18 0.0161	19 0.0094	16 0.0096	15 0.0105
Cd FST Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		2.522	2.554	2.801	2.270	2.327	2.345	2.257
			455,000	Hardness 3,400 - 285,000, Calc.							
Cd FLT Guideline Calc.	,		20	Hardness > 285,000, is Capped Value of 285,000	0.457	0.457	0.457	0.457	0.457	0.457	0.457
Calcium Cesium	µg/L	50.0 0.01	NG NG	NG NG	119000 <0.01	121000 <0.01	178000 0.05	108000 <0.01	110000 <0.01	110000 <0.01	107000 <0.01
Chromium Cobalt	μg/L μg/L	0.10	NG NG	NG NG	<0.1 <0.1	0.14 <0.1	0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L	0.20	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	0.32	0.36	0.5	0.41	0.33	0.31	0.24
Cu FLT Guideline Value (Chronic)	µg/L			BLM Ligand Model value	8.5 1.5	5.8 1.0	3.5	1.2	6.4 1.1	2.1	1.7
Iron Lead	μg/L μg/L	10.0 0.05	350 NG	NG NG	5.00 <0.05	5 <0.05	96 0.25	5 <0.05	5 <0.05	5 <0.05	5 <0.05
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	7.5 27400	8.6 27500	51.5 42100	8.1 24900	8.5 25900	9.4 26400	8.5 24900
Manganese Mercury	μg/L μg/L	0.10	NG NG	NG NG	2.78	3.26	1780	4.31	1.63	0.81	0.56
Molybdenum	µg/L	0.05	NG	NG	0.686	0.628	1.44	0.787	0.795	0.735	0.59
Nickel	µg/L	0.50	NG	NG	0.79	< 0.5	34.7	<0.5	<0.5	<0.5	<0.5

					RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-DS
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	27-Feb-20	16-Apr-20	27-May-20	22-Jun-20	29-Jul-20	24-Aug-20	28-Sep-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	7150	7280	4290	3630	4090	4120	3620
Rubidium	µg/L	0.20	NG	NG	14.6	10.6	2.19	1.5	1.48	2.11	1.46
Selenium	µg/L	0.05	NG	2.0	1.01	2.53	0.922	0.708	1.16	0.744	0.9
Silicon	µg/L	50.0	NG	NG	4170	2900	3400	3930	4660	4390	4600
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	54300	52900	72500	33200	30800	33600	31400
Strontium	µg/L	0.20	NG	NG	504	503	561	470	371	461	472
Sulfur	µg/L	500	NG	NG	23700	56000	38900	21500	35600	35300	38500
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.03	0.023	0.018	0.014	0.013	0.012	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	0.873	1.25	1.2	1.15	0.995	1.15	1.18
Vanadium	µg/L	0.50	NG	NG	<0.5	0.57	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	4.9	6.3	6.7	15.4	4.8	13.8	26.5
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					VA20A2572	L2438183	L2454036	L2464256	L2482349	L2493339	L2509865
Laboratory Identification Number					VA20A2572-001	L2438183-8		L2464256-10	L2482349-12	L2493339-9	L2509866-3

Appendix B2: SBIAR Surface Water Analytical Results

					RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	20-Oct-20	30-Nov-20	27-Feb-20	16-Apr-20	17-May-20	22-Jun-20	29-Jul-20	24-Aug-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	μg/L	50.0	NG	NG	3580	3120	7060	3570	3540	2850	3340	4250
Rubidium	μg/L	0.20	NG	NG	1.29	1.17	1.38	0.41	0.58	0.49	0.49	0.61
Selenium	μg/L	0.05	NG	2.0	1.03	1.12	0.448	0.161	0.723	0.616	1.86	1.67
Silicon	μg/L	50.0	NG	NG	3980	3600	3380	3270	4270	3940	4600	5080
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	32900	38700	65700	8890	8190	6410	22800	31400
Strontium	µg/L	0.20	NG	NG	500	456	509	754	346	467	251	268
Sulfur	µg/L	500	NG	NG	36500	40400	6150	6010	11000	8720	62000	81600
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.012	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	0.16	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.15	1.23	0.684	0.946	1.21	1.16	0.907	0.826
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	12.6	15.4	3.7	1.3	6.7	0.5	2.3	0.5
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					L2520229	L2535101	VA20A2572	L2438183	L2454036	L2464256	L2482349	L2493339
Laboratory Identification Number					L2520229-1	L2535101-1	VA20A2572-002	L2438183-6		L2464256-8	L2482349-10	L2493339-7

Appendix B2: SBIAR Surface Water Analytical Results

					RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSC-DS	RBSC-DS	RBSC-DS	RBSC-DS
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	28-Sep-20	20-Oct-20	30-Nov-20	21-Dec-20	23-Jan-20	27-Feb-20	25-Mar-20	16-Apr-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<250	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	3920	4070	3610	3110	1790	1910	1490	1490
Rubidium	µg/L	0.20	NG	NG	0.59	0.61	0.46	<1	1.26	1.62	1	0.94
Selenium	µg/L	0.05	NG	2.0	1.36	1.54	1.73	1.9	0.07	< 0.05	0.092	0.098
Silicon	µg/L	50.0	NG	NG	4990	4770	3920	3530	4030	4110	3800	3610
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	34600	15900	21900	22400	42200	53600	29700	27900
Strontium	µg/L	0.20	NG	NG	330	396	355	355	403	486	337	317
Sulfur	µg/L	500	NG	NG	93300	67300	76900	92400	79100	108000	55200	52100
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.05	<0.01	0.015	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<0.3	<1.5	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.15	1.31	1.29	1.46	1.56	1.53	1.12	0.993
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	0.5	0.5	0.5	<5	2.8	23.8	2.4	6.2
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					L2509865	L2520229	L2535101	L2542477	VA20A0816		VA20A4062	L2438183
Laboratory Identification Number					L2509865-1	L2520229-2	L2535101-2		VA20A0816-001		VA20A4062-001	L2438183-7

Appendix B2: SBIAR Surface Water Analytical Results

					RBSC-DS	RBSC-DS	RBSC-DS	RBSC-DS	RBSC-DS	RBSC-DS	RBSC-DS	RBSBIAR-EDS
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	27-May-20	22-Jun-20	29-Jul-20	24-Aug-20	28-Sep-20	30-Nov-20	21-Dec-20	16-Apr-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<50	<50	<50	<250	<50
Potassium	µg/L	50.0	NG	NG	2640	2460	3390	1880	2040	2410	1890	2480
Rubidium	µg/L	0.20	NG	NG	1.82	1.76	1.62	1.21	1.76	1.65	1.4	1.87
Selenium	µg/L	0.05	NG	2.0	0.129	0.149	0.436	0.056	0.109	0.103	<0.25	1.68
Silicon	µg/L	50.0	NG	NG	4500	4780	5200	4160	4380	4870	4060	2590
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01
Sodium	µg/L	50.0	NG	NG	90900	79500	67400	48600	63800	66000	47600	31800
Strontium	µg/L	0.20	NG	NG	673	614	423	442	631	507	483	790
Sulfur	µg/L	500	NG	NG	225000	172000	32100	103000	155000	91900	104000	72800
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	<0.2
Thallium	µg/L	0.01	NG	NG	0.023	0.019	<0.01	0.012	0.011	0.012	<0.05	0.015
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	< 0.3	<0.3	< 0.3	<0.3	<1.5	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1
Uranium	µg/L	0.01	NG	NG	3.16	2.72	1.02	1.5	2.15	2.19	1.98	1.72
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5	<0.5
Zinc	µg/L	1.00	NG	NG	23.4	23.7	17.8	9.7	9.4	5.7	6	37.1
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	<0.2
Laboratory Work Order Number					L2454036	L2464256	L2482349	L2493339	L2509865	L2535101	L2542477	L2438183
Laboratory Identification Number						L2464256-12	L2482349-14	L2493339-11	L2509865-5	L2535101-5		L2438183-9

Appendix B2: SBIAR Surface Water Analytical Results

					RBSBIAR-EDS						
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	27-May-20	22-Jun-20	29-Jul-20	24-Aug-20	28-Sep-20	20-Oct-20	30-Nov-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	3090	3190	4070	3120	2770	2650	2200
Rubidium	µg/L	0.20	NG	NG	1.64	1.78	0.59	1.7	1.21	1.17	1.06
Selenium	µg/L	0.05	NG	2.0	0.703	0.708	0.696	0.435	0.38	0.383	0.397
Silicon	µg/L	50.0	NG	NG	3910	4700	6070	4820	4800	4110	3560
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	101000	66400	5870	77500	68200	88900	101000
Strontium	µg/L	0.20	NG	NG	524	537	301	444	441	473	459
Sulfur	µg/L	500	NG	NG	42600	74700	11800	37600	29600	32700	30900
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.013	0.017	<0.01	0.013	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.23	2.9	1.32	0.897	0.764	0.739	0.72
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	16	82.7	1.3	17.5	10.6	12.2	13.2
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					L2454036	L2464256	L2482349	L2493339	L2509865	L2520229	L2535101
Laboratory Identification Number						L2464256-11	L2482349-13	L2493339-10	L2509865-4	L2520229-4	L2535101-4

Appendix B2: SBIAR Surface Water Analytical Results

					RBSBIAR-EUS						
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	27-May-20	22-Jun-20	29-Jul-20	24-Aug-20	28-Sep-20	20-Oct-20	30-Nov-20
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<250	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	3170	3520	2380	3900	3480	3660	3270
Rubidium	µg/L	0.20	NG	NG	0.41	0.47	1.4	0.58	0.55	0.45	0.39
Selenium	µg/L	0.05	NG	2.0	0.674	0.514	0.25	0.604	0.592	0.591	0.496
Silicon	µg/L	50.0	NG	NG	4420	4960	4600	5880	5850	5430	5020
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	5200	5330	48900	5030	5130	5400	5440
Strontium	µg/L	0.20	NG	NG	292	308	554	272	286	302	322
Sulfur	µg/L	500	NG	NG	10800	11700	107000	9660	10500	11500	10300
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	1	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	1.5	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.18	1.15	2	1.1	1	1.13	1.27
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	1.4	1.6	13.5	1.3	0.5	0.5	1.4
Zircronium	µg/L	0.06	NG	NG	<0.2	1.78	<1.0	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					L2454036	L2464256	L2482349	L2493339	L2509865	L2520229	L2535101
Laboratory Identification Number						L2464256-9	L2482349-11	L2493339-8	L2509865-2	L2520229-3	L2535101-3

 Notes:
 Screening completed on BC AWQG-FWAL FST 1 and FLT 2 guideline values.
 Lacoute of a construction a sustainability Branch (2019), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report 3 & pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines.
 Construction a Sustainability Branch (2019), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report 3 & pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines.

 * BC Ministry of Environment, Water Protection & Sustainability Branch (2018), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report 3 & pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Long Term Average (FT) guidelines.

 * Guideline S Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.
 * Guideline is for Chromium (V) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warrated.

 * Guideline is pri dependant.
 * Guideline Sisted Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

 NG - NG Guideline
 SCAWQG-FFST (Short-term Maximum) guideline.

 * Board dieline
 BCAWQG-FFST (Short-term Maximum) guideline.

 RDD - Measured value is below detection limit (DL); value shown is 50% of DL Blank - Not analyzed

LBL3C-0.02 LBL3C-0.02 LBL3C-0.02 LBL3C-0.02 LBL3C-0.02 LBL3C-0.02 LBL3C-0.02 Unit RDL BCAWQG-FLT² BCAWQG - FST Parameter 17-Apr-20 27-May-20 21-Jun-20 29-Jul-20 23-Aug-20 29-Sep-20 20-Oct-20 Physical Parameters Temperature °C 9.3 Flow Rate L/sec 2.00 Acidity (Total as CaCO₃) µg/L 1000 NG NG 2400 1200 Alkalinity (Total as CaCO₃) mg/L 1.0 NG NG 244 219 185 219 257 239 73.5 Electrical Conductivity (EC µS/cm 2.0 NG NG 224 1380 1090 1680 1770 1870 1590 NG NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F) Hardness as CaCO₃, dissolved 894000 1040000 500 (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F) 81800 733000 555000 969000 955000 µg/L calculating Hardness as CaCO3, from total Ca/Mg (New January 2020) µg/L 6.5 - 9.0 6.5-9.0 pH Units 0.10 7.77 8.39 8.41 8.26 8.22 8.17 8.18 Total Dissolved Solids (TDS) µg/L 10000 NG NG 276000 1140000 817000 1390000 1560000 1560000 1480000 Total Suspended Solids (TSS) µg/L 3000 NG NG 1250000 29100 26500 6800 5500 3400 4800 Alkalinity (Hydroxide) as CaCO µg/L 1000 NG NG <1000 <1000 <1000 <1000 <1000 <1000 <1000 Alkalinity (Carbonate as CaCO3) 1000 NG NG µg/L 11400 <1000 <1000 9400 <1000 <1000 <1000 Alkalinity (Bicarbonate as CaCO₃) µg/L 1000 NG NG 174000 73500 209000 219000 257000 239000 244000 Anions and Nutrients pH dependent (6.5-9.0) pH dependent (6.5-9.0) 5.0 Ammonia (NH₄ as N) µg/L 147 16.1 <50 <50 57 <50 <50 Ammonia FST Guideline pH dependent (at Temp 4 °C or in situ T) µg/L 8770 2520 2520 3150 3950 3950 3950 pH dependent (at Temp 4 C or in situ T) Ammonia FLT Guideline µg/L 1690 484 484 606 759 759 759 500 600000 150,000 Chloride (Cl⁻) μg/L 7870 48500 25400 24600 49300 36100 53100 5.0-100 NG Nitrate (NO3 as N) µg/L NG 496 3560 1860 4440 5790 7440 7970 lent (> 10,000 µg/L) Cl-dependent (> 10,000 µg/L) CI-dep 1.0-20.0 Nitrite (NO₂⁻ as N) µg/L Guideline: 600 ug/L Guideline: 200 ug/L 12.4 <5 <5 7.2 <5 7.5 <5 Sulphate (SO₄) µg/L 300 NG 309,000 - 429,000 30200 571000 413000 769000 886000 884000 89500 Hardness 0-30,000 = 128,000; ardness 31,000-75,000 = 218,000; SO4 LTA Guideline Calc (Based on Hardness as CaCO3) NG 309000 429000 429000 429000 429000 429000 429000 µg/L Hardness 76,000-180,000 = 309,000; Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific Total Dissolved Carbon (DOC) NG mg/L 23.1 6.15 13.4 4.2 4.7 5.1 NG 4.2 Metals, Total Aluminum 3.00 NG NG µg/L 3320 676 871 618 452 361 479 Antimony 0.1-1.0 NG NG µg/L 0.23 0.18 0.25 0.32 0.5 0.5 0.14 0.10 5.0 5.0 Arsenio µg/L 3.75 0.62 1.16 0.57 0.54 0.5 0.51 Barium 0.10 NG NG µg/L 234 68.5 78.3 67.5 64.5 50.2 47.4 Beryllium 0.1-1.0 NG NG µg/L 0.48 <0.1 <0.1 0.11 0.5 0.5 <0.1 Bismuth 0.05-0.10 NG NG µg/L < 0.05 < 0.05 < 0.05 < 0.05 0.25 0.25 < 0.05 10.0 1200 1200 oron µg/L 27 85 78 109 107 113 102 admium 0.005 NG NG µg/L 0.281 0.394 0.517 0.832 0.34 0.522 0.491 alcium NG NG 50 µg/L 40200 196000 148000 253000 310000 258000 28000 esium 0.01-0.02 NG NG µg/L 0.45 0.065 0.106 0.042 0.05 0.05 0.024 0.10 NG NG µg/L 0.7 0.27 Chromium 5.02 0.6 0.5 0.5 0.16 4.0 0.10 110.0 Cobalt µg/L 6.53 4.71 8.99 12.8 6.46 4.03 4.3 0.5-1.0 Calc. based on Hardnes µg/L 2 to 10 16.4 2.48 3.73 2.23 2.5 2.29 pper 2.1 Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of Cu STM Guideline Calc. (relevant prior to Aug. 2019) µg/L 9.69 39.60 400,000 39.6 39.6 39.6 39.6 39.6 Hardness 50,000 - 250,000: calc 3.27 10.0 10.0 10.0 Cu LTA Guideline Calc. (relevant prior to Aug. 2019) µg/L 10.0 10.0 10.0 Hardness > 250,000, Cu = 10 10 1000 NG µg/L 6530 807 1150 693 433 334 570 ron 0.05-0.1 Calc. based on Hardne Calc. based on Hardness Lead µg/L 0.52 0.124 0.25 0.25 0.06 Hardness ≤ 8000 Is 3; Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of b STM Guideline Calc. 63.22 416.97 416.97 416.97 416.97 416.97 416.97 µg/L Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000 Pb LTA Guideline Calc. 19.57 µg/L 5.78 19.57 19.57 19.57 19.57 19.57 Lithium 1.0 NG µg/L NG 44.4 8.8 38.2 29.3 43.7 48 40.1 5.0 NG Magnesium NG µg/L 10900 94800 66000 45500 75500 96700 87600 0.10 Calc. based on Hardness Calc. based on Hardness µg/L Manganese 460 1080 446 428 195 130 150 Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of In STM Guideline Calc 1441 3394 3394 3394 3394 3394 3394 µg/L 259,000 Hardness 37,000 - 450,000: calc.; ardness > 450,000 is Capped Value of 450,000 In LTA Guideline Calc 965 2585 2585 2585 2585 2585 2585 µg/L На Mercury (Based on methyl Hg & total mass Hg) 0.005 NG µg/L Cal <0.005 <0.005 0.0073 <0.005 <0.005 <0.005 <0.005 Molybdenum µg/L 0.05-0.10 2000 ≤ 1000 0.768 1.5 1.95 2.23 2.37 2.27 1.93 Nickel µg/L 0.5 NG NG 23.9 33.7 24.7 32.2 29.9 29 27.1 Phosphorus µg/L 50-500 NG NG 796 <50 78 <50 <250 <250 <50 Potassium μg/L 50.0 NG NG 10700 6550 8940 6320 6110 5690 4860 Rubidium µg/L 0.2 NG NG 6.4 1.78 2.58 2.02 1.9 1.3 1.4 Selenium 0.05 NG 2.0 2.67 3.92 µg/L 0.498 2.53 1.58 2.28 3.4 100.0 NG Silicon NG 4400 µg/L 6630 4410 4500 4520 4230 4070 0.10 - 3.0 0.05 - 1. lver 3 (Ba ed on Hardness < or > 100000) 0.01-0.02 µg/l 0.055 < 0.01 <0.013 <0.01 0.05 0.05 <0.01 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 g STM Guideline Cal µg/L 3.0 0.100 3.000 3.0 3.0 3.0 3.0 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 g LTA Guideline Calc µg/L 1.5 1.5 1.5 1.5 1.5 0.050 1.500 Sodium µg/L 50.0 NG NG 4480 48700 30200 44100 52300 50600 50500 Strontiur 0.2 NG NG µg/L 121 617 468 746 935 870 933 Sulfu 500.0 NG NG µg/L 9360 210000 143000 247000 311000 310000 303000 Tellurium 0.2-2.0 NG NG µg/L <0.2 <0.2 <0.2 <0.2 <0.2 Thallium 0.01-0.02 NG NG µg/L 0.094 0.021 0.033 0.031 0.05 0.05 0.021 Thorium µg/L 0.1-1.0 NG NG 0.71 <0.1 0.16 <0.1 0.5 0.5 <0.1 0.1-1.0 NG NG µg/L <0.1 <0.1 <0.1 0.5 0.5 <0.1 <0.1 Titaniur 0.3-6.3 NG NG µg/L 29.5 8.23 4.57 2.27 1.5 1.5 1.03 0.1-1.0 NG NG Tungster µg/L <0.1 <0.1 <0.1 0.5 0.5 <0.1 <0.1 Uranium 0.01 NG NG µg/L 0.915 3.99 3.25 5.19 6.6 7.01 5.94 Vanadiur µg/L 0.5-1.0 NG NG 13.1 1.37 1.75 0.59 2.5 2.5 <0.5 Calc. based on Hardn 3.0 Calc. based on Hardnes µg/l 75 34. 35.6 44 40 41.9 Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 n STM Guideline Calc. 33.00 340.50 340.50 340.50 340.50 340.50 340.50 µg/L Hardness 90,000 - 330.000. Calc

Appendix B3: L3 Creek Water Analytical Results

n LTA Guideline Calc

µg/L

Zircronium	µg/L	0.06-0.28	NG	NG	0.75	0.23	0.23	<0.2	1	1	<0.2
Metals, Dissolved											
Aluminum ⁵	µg/L	1.0	100.0	50.0	57.9	160	203	172	184	152	143
Al STM Guideline Calc.	µg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100.0	100.0	100.0	100.0	100.0	100.0	100.0
Al LTA Guideline Calc.	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Antimony	µg/L	0.1-2.0	NG	NG	<0.1	0.15	0.21	0.22	0.22	0.5	0.5
Arsenic	µg/L	0.1-2.0	NG	NG	0.75	0.24	0.52	0.25	0.28	0.5	0.5
Barium	µg/L	0.10	NG	NG	27.1	61.5	69.4	62.9	59.2	47.4	43.1
Beryllium	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	0.5
Bismuth	µg/L	0.05-1.0	NG	NG	<0.05	<0.05	<0.05	<0.05	<0.05	0.25	0.25
Boron	µg/L	10.0	NG	NG	23	80	79	95	101	102	87
Cadmium ³	µg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.0758	0.29	0.217	0.309	0.416	0.473	0.428
Cd STM Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000		0.478	2.801	2.801	2.801	2.801	2.801	2.801
Cd LTA Guideline Calc.	µg/L			Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.182	0.457	0.457	0.457	0.457	0.457	0.457
Calcium	µg/L	50.0	NG	NG	21900	192000	148000	244000	265000	255000	239000
Cesium	µg/L	0.01-0.2	NG	NG	<0.01	<0.01	0.012	0.015	0.013	0.05	0.05
Chromium	µg/L	0.1-2.0	NG	NG	0.24	<0.1	<0.1	<0.1	<0.1	0.5	0.5
Cobalt	µg/L	0.10	NG	NG	0.76	11.4	5.81	5.64	4.11	3.74	4.03
Copper ⁶	µg/L	0.2-4.0	Calc. based on BLM Model	Calc. based on BLM Model	2.4	1.56	2.61	1.51	1.75	2.2	1.5
Cu STM (Acute) Guideline Value	µg/L		BLM Ligand Model value		56.4	47	97	27.6	28.1	29.8	32.8
Cu LTA (Chronic) Guideline Value	µg/L			BLM Ligand Model value	9.7	9.6	19.3	5.4	5.2	5.3	5.8
Iron	µg/L	10.0	350	NG	229	12	43.00	12	5	25	58
Lead	µg/L	0.05-1.0	NG	NG	0.192	<0.05	<0.05	<0.05	<0.05	0.25	0.25
Lithium	µg/L	1.0	NG	NG	2.7	31.6	27.8	45.5	41.1	44.5	42.4

Hardness > 330,000, is Capped Value of

7.5

187.5

187.5

187.5

187.5

187.5

187.5

LBL3C-0.02 LBL3C-1.43 LBL3C-1.43 LBL3C-1.43 LBL3C-1.43 LBL3C-1.43 LBL3C-1.43 LBL3C-1.43 Unit RDL BCAWQG - FST BCAWQG-FLT² Paramete 30-Nov-20 27-Feb-20 25-Mar-20 17-Apr-20 27-May-20 21-Jun-20 29-Jul-20 23-Aug-20 Physical Parameters emperature °C 9.2 low Rate L/sec 2.00 cidity (Total as CaCO₃) µg/L 1000 NG NG 3600 7800 3500 2400 2000 5600 Alkalinity (Total as CaCO₃) mg/L 1.0 NG NG 162 275 226 254 72.2 210 239 269 lectrical Conductivity (EC µS/cm 2.0 NG NG 1920 1250 1470 212 1210 955 1620 1440 NG NG (Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F) ardness as CaCO₃, dissolved 500 967000 611000 721000 78300 639000 524000 899000 859000 µg/L Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F) lardness as CaCO3, from total Ca/Mg (New January 2020) µg/L 638000 824000 6.5 - 9.0 6.5-9.0 pH Units 0.10 8.2 7.92 8.09 7.81 8.35 8.33 8.05 8.20 239000 otal Dissolved Solids (TDS) µg/L 10000 NG NG 1730000 1010000 1100000 894000 679000 1370000 1230000 otal Suspended Solids (TSS) µg/L 3000 NG NG 3900 23200 25700 827000 113000 68100 33600 18700 Alkalinity (Hydroxide) as CaCO₃ µg/L 1000 NG NG <1000 <1000 <1000 <1000 <1000 162000 <1000 <1000 Alkalinity (Carbonate as CaCO3) 1000 NG NG µg/L 5600 <1000 <1000 <1000 <1000 <1000 <1000 <1000 Alkalinity (Bicarbonate as CaCO₃) 1000 NG NG µg/L 275000 226000 254000 72200 205000 <1000 239000 269000 Anions and Nutrients pH dependent (6.5-9.0) 5.0 pH dependent (6.5-9.0) mmonia (NH₄ as N) µg/L <50 18 17.5 134 44.2 62 <50 82 mmonia FST Guideline pH dependent (at Temp 4 °C or in situ T) µg/L 3950 7420 4950 8770 2520 3150 4950 3950 pH dependent (at Temp 4 C or in situ T) mmonia FLT Guideline µg/L 759 1430 952 1690 484 606 952 759 500 600000 150,000 hloride (Cl⁻) µg/L 42000 30100 60700 8100 54900 29300 33600 40400 5.0-100 litrate (NO₃⁻ as N) NG µg/L NG 10100 11600 14100 517 4830 1950 14800 14500 ent (> 10,000 µg/L) CI-dependent (> 10,000 µg/L) CI-depe 1.0-20.0 litrite (NO2 as N) µg/L Guideline: 600 ua/L Guideline: 200 ug/l <5 6.4 <10 11.7 <5 2.2 <5 <5 ulphate (SO₄) µg/L 300 NG 309,000 - 429,000 885000 400000 467000 25300 445000 318000 645000 593000 Hardness 0-30,000 = 128,000 Hardness 31,000-75,000 = 218,000 SO4 LTA Guideline Calc (Based on Hardness as CaCO3) NG 429000 429000 429000 309000 429000 429000 429000 429000 µg/L Hardness 76,000-180,000 = 309,000; Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific Total Dissolved Carbon (DOC) NG 4.3 mg/L 4.48 19.1 7.35 NG 3.59 11.6 3 3.9 letals, Total 3.00 NG NG uminum 454 µg/L 407 482 6990 1980 2850 674 320 0.1-1.0 NG NG ntimony µg/L 0.14 0.16 0.16 0.39 0.23 0.3 0.5 0.5 5.0 0.10 5.0 rsenic µg/L 0.46 0.6 0.67 6.28 1.1 1.66 0.5 0.67 0.10 NG NG rium µg/L 38 58 61 321 116 107 49 86.1 0.1-1.0 NG NG eryllium µg/L < 0.1 <0.1 <0.1 0.49 0.2 0.33 0.5 0.5 0.05-0.10 NG NG smuth µg/L < 0.05 < 0.05 < 0.05 0.13 < 0.05 < 0.05 0.25 0.25 1200 10.0 1200 oror µg/L 96 68 84 28 72 75 115 87 admium 0.005 NG NG µg/L 0.434 0.0758 0.507 0.0994 0.609 0.661 0.371 0.181 alcium 50 NG NG µg/L 270000 155000 200000 34600 151000 121000 231000 234000 0.01-0.02 NG NG esium µg/L 0.013 0.07 0.075 1.2 0.199 0.181 0.05 0.05 0.10 NG NG 13.1 hromium µg/L < 0.1 1.51 1.05 1.95 1.88 0.5 0.67 obalt 0.10 110.0 4.0 25.8 µg/L 3.85 0.78 1.13 7.83 31.9 17.9 29.8 0.5-1.0 Calc. based on Hardness 2 to 10 µg/L 2.34 2.09 1.88 21.4 3.78 5.84 2.5 2.5 Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of cu STM Guideline Calc. (relevant prior to Aug. 2019) µg/L 39.6 9.3602 39.6 400,000 39.6 39.6 39.6 39.6 Hardness 50,000 - 250,000: cal cu LTA Guideline Calc. (relevant prior to Aug. 2019) µg/L 10.0 10 3.132 10.0 Hardness > 250,000, Cu = 10 10 10 10 10 1000 NG µg/L 486 988 973 14800 2240 2710 421 779 0.05-0.1 Calc. based on Hardness Calc. based on Hardness ead µg/L < 0.05 0.479 0.569 8.96 0.734 0.967 0.2 0.31 Hardness \$ 8000 is 3; Hardness 8000-360,000: calc. dness>360,000 is Capped Value of b STM Guideline Calc. 417 417 59.80 416.97 416.97 416.97 416.97 µg/L 416.97 Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000 b LTA Guideline Calc 19.57 µg/L 19.57 19.6 19.6 5.64 19.57 19.57 19.57 .ithium 1.0 NG µg/L NG 34.6 40 29.7 36.4 12.5 30.5 46.9 42.7 5.0 /lagnesium NG NG µg/L 92000 60700 78600 11200 57600 42900 87400 89600 0.10 Calc. based on Hardness Calc. based on Hardness µg/L /langanese 114 38.1 41.2 326 2380 1580 1420 2470 Hardness 25,000 - 259,000 : calc.; ardness > 259,000 is Capped Value of 3394 3394 3394 1403 3394 3394 3394 3394 In STM Guideline Calc μg/L 259,000 Hardness 37,000 - 450,000: calc.; Hardness > 450,000 is Capped Value of 450,000 2585 2585 2585 949.5 2585.0 2585.0 2585.0 2585.0 In LTA Guideline Calc µg/L Vercury (Based on methyl Hg & total mass Hg) 0.005 NG µg/L <0.005 0.0127 <0.005 0.0058 0.0139 <0.005 < 0.005 <0.005 Molybdenum 0.05-0.10 2000 ≤ 1000 µg/L 1.88 1.66 1.29 1.1 1.61 2.22 0.78 1.39 lickel µg/L 0.5 NG NG 28.6 7.17 9.2 26.1 64 61.8 46.5 64.2 nosphorus µg/L 50-500 NG NG <50 <50 73 840 79 138 <250 <250 otassium µg/L 50.0 NG NG 4650 4320 4920 11600 6630 10600 5370 4850 Rubidium µg/L 0.2 NG NG 1.32 1.1 1.33 12.5 2.61 2.94 1.4 elenium 0.05 NG 2.0 4.61 4.09 µg/L 4.91 0.717 1.68 1.37 4.51 3.09 100.0 NG NG 12100 6100 5650 ilicor µg/L 3870 4960 5540 5600 5990 0.01-0.02 0.10 - 3.0 0.05 - 1.5 er ³ (Ba ed on Hardness < or > 100000) µg/L <0.01 0.01 0.011 0.15 <0.016 <0.017 0.05 0.05 Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0 g STM Guideline C µg/L 3.0 3.0 3.0 0.1 3.000 3.0 3.0 3.0 Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5 g LTA Guideline Calc µg/L 1.5 1.5 1.5 0.1 1.500 1.5 1.5 1.5 odium µg/L 50.0 NG NG 53200 20700 38900 4470 39000 30100 37300 28500 0.2 NG NG rontiu µg/L 902 552 660 119 520 404 709 787 ulfu 500.0 NG NG µg/L 302000 140000 158000 8420 147000 118000 213000 206000 elluriun 0.2-2.0 NG NG µg/L <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 hallium 0.01-0.02 NG NG µg/L 0.016 0.011 0.016 0.165 0.031 0.038 0.05 0.05 horiun µg/L 0.1-1.0 NG NG <0.1 0.13 0.17 1.38 0.3 0.34 0.5 0.5 0.1-1.0 NG NG µg/L <0.1 <0.1 <0.1 0.11 <0.1 <0.1 0.5 0.5 0.3-6.3 NG NG itaniur µg/L 0.49 9.17 11.3 67.2 25 14.9 1.5 5.8 0.1-1.0 NG NG ungster µg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.5 0.01 NG NG ranium µg/L 6.18 4.57 5.48 0.974 3.79 2.78 5.28 5.52 /anadium µg/L 0.5-1.0 NG NG <0.5 1.66 2.03 24 3.71 3.51 2.5 2.5 3.0 Calc. based on Hardnes µg/L Calc. based on Hardn 39.3 6.6 5.4 87 73.9 95.2 39 Hardness 90,000 - 500,000, Calc. ardness > 500,000, is Capped Value of 500,000 n STM Guideline Cal µg/L На 340.50 340.50 340.50 33.00 340.50 340.50 340.50 340.50 Hardness 90.000 - 330.000, Calc. n LTA Guideline Calc µg/L Hardness > 330,000, is Capped Value of 187.5 187.5 187.5 7.5 187.5 187.5 187.5 187.5

Appendix B3: L3 Creek Water Analytical Results

Zircronium	μg/L	0.06-0.28	NG	NG	<0.2	0.28	0.37	0.77	0.56	0.41	<1.0	1
Metals, Dissolved												
Aluminum ⁵	µg/L	1.0	100.0	50.0	134	3.8	1.7	47.6	72.5	132	31.5	6.7
Al STM Guideline Calc.	µg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Al LTA Guideline Calc.	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Antimony	μg/L	0.1-2.0	NG	NG	0.5	<0.1	0.12	<0.1	0.16	0.21	0.5	0.13
Arsenic	μg/L	0.1-2.0	NG	NG	0.5	0.17	0.17	0.68	0.23	0.46	0.5	0.3
Barium	μg/L	0.10	NG	NG	40.2	44.7	41.8	29.7	79.4	74.6	44.4	68.1
Beryllium	μg/L	0.1-2.0	NG	NG	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1
Bismuth	μg/L	0.05-1.0	NG	NG	0.25	<0.05	<0.05	<0.05	<0.05	<0.05	0.25	<0.05
Boron	μg/L	10.0	NG	NG	114	72	81	22	70	79	99	83
Cadmium ³	µg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.457	0.0521	0.0608	0.0718	0.444	0.401	0.281	0.137
Cd STM Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000		2.801	2.801	2.801	0.457	2.801	2.801	2.801	2.801
Cd LTA Guideline Calc.	µg/L			Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.457	0.457	0.457	0.177	0.457	0.457	0.457	0.457
Calcium	μg/L	50.0	NG	NG	238000	144000	176000	20200	160000	133000	224000	199000
Cesium	μg/L	0.01-0.2	NG	NG	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	<0.01
Chromium	µg/L	0.1-2.0	NG	NG	0.5	0.22	0.21	0.2	0.22	0.14	0.5	0.12
Cobalt	µg/L	0.10	NG	NG	3.95	0.3	0.64	0.85	32.1	20.7	15.5	23.1
Copper ⁶	µg/L	0.2-4.0	Calc. based on BLM Model	Calc. based on BLM Model	1.6	0.88	0.9	2.05	1.62	2.77	0.5	0.71
Cu STM (Acute) Guideline Value	μg/L		BLM Ligand Model value		29.2	17	26	55.6	54	80.8	16.1	23.4
Cu LTA (Chronic) Guideline Value	μg/L			BLM Ligand Model value	5.1	2.8	4.8	9.5	10.9	15.8	2.7	4.4
Iron	μg/L	10.0	350	NG	70	11	5	178	218	172.00	50	5
Lead	μg/L	0.05-1.0	NG	NG	0.25	<0.05	<0.05	0.156	<0.05	<0.05	0.25	<0.05
Lithium	μg/L	1.0	NG	NG	45.2	32.5	35.6	2.2	29.6	29.5	49.1	38.8

330,000

Appendix B3: L3 Creek Water Analytical R	Results				LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.65	LBL3C-1.65	LBL3C-1.65
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	29-Sep-20	21-Oct-20	30-Nov-20	20-Dec-20	17-Apr-20	27-May-20	21-Jun-20
Physical Parameters	°C										
Temperature Flow Rate	L/sec									6.0 1.50	
Acidity (Total as CaCO ₃)	µg/L	1000 1.0	NG NG	NG	2300	9000	9900	4900	2100	500	500
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L μS/cm	2.0	NG	NG	249 1650	296 1580	313 1880	283 1650	64.9 192	191 898	158 772
Hardness as CaCO ₃ , dissolved		500	NG	NG	860000	1030000	986000		72200	417000	366000
naruness as CaCO ₃ , uissoiveu	µg/L	500	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F)	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F)	860000	1030000	986000	934000	72200	417000	300000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L										
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9.0 NG	6.5-9.0 NG	8.01 1370000	8.12 1510000	8.03 1640000	8.04 1390000	7.78 252000	8.43 640000	8.4 558000
Total Suspended Solids (TSS)	µg/L	3000	NG	NG	2900	11400	3900	8600	440000	5700	29900
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG	NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 8400	158000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	1000	NG	NG	249000	296000	313000	283000	64900	182000	<1000
Anions and Nutrients Ammonia (NH₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	<50	<50	<50	<50	157	8.1	<50
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)		6220	4950	6220	6220	8770	2520	2520
Ammonia FLT Guideline Chloride (Cl')	μg/L μg/L	500	600000	pH dependent (at Temp 4 C or in situ T) 150,000	1200 40400	952 47600	1220 50100	1220 52500	1690 5730	484 67300	484 28300
Nitrate (NO ₃ ⁻ as N)	μg/L	5.0-100	NG	NG	18400	20800	22200	22900	495	342	1380
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-20.0	CI-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	<5	<5	<5	<5	13.4	<1	3.1
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000	670000	734000	765000	627000	22200	216000	217000
SO LTA Cuideline Cole (Record on Hardnood on CoCO2)				Hardness 0-30,000 = 128,000; Hardness 31,000-75,000 = 218,000;	420000	420000	420000	420000	218000	420000	420000
SO ₄ LTA Guideline Calc (Based on Hardness as CaCO3)	µg/L		NG	Hardness 76,000-180,000 = 309,000; Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific	429000	429000	429000	429000	218000	429000	429000
Total Dissolved Carbon (DOC)	mg/L		NG	NG	3.5	3.8	3.9	2.4	<1.0	12.2	15.7
Metals, Total											
Aluminum Antimony	μg/L μg/L	3.00 0.1-1.0	NG NG	NG	47 0.5	185 0.12	29.2 <0.1	122 <0.5	9050 0.4	73.7 0.29	359 0.34
Arsenic	µg/L	0.10	5.0	5.0	0.5	0.46	0.19	0.25	7.23	0.55	1.13
Barium Beryllium	μg/L μg/L	0.10 0.1-1.0	NG	NG	51.1 0.5	42.5 <0.1	32.2 <0.1	42.4 <0.5	398 0.57	91.7 <0.1	119 <0.1
Bismuth	µg/L	0.05-0.10	NG	NG	0.25	<0.05	<0.05	<0.25	0.171	<0.05	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	101 0.106	115 0.134	104 0.242	113 0.076	32 0.639	67 0.0359	81 0.07
Calcium	µg/L	50	NG	NG	214000	237000	248000	219000	34100	106000	91700
Cesium Chromium ⁴	μg/L μg/L	0.01-0.02	NG	NG	0.05	0.036	<0.01	<0.05 <0.05	1.65 17.3	<0.01 0.33	0.058
Cobalt	µg/L	0.10	110.0	4.0	0.5 18.7	0.45	0.2 34	<0.05	17.3 8.36	0.33	0.91 0.44
Copper ³	µg/L	0.5-1.0	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	2.5	0.93	0.62	<2.5	26.2	2.94	4.63
Cu STM Guideline Calc. (relevant prior to Aug. 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000		39.6	39.6	39.6	39.6	8.79	39.60	36.404
Cu LTA Guideline Calc. (relevant prior to Aug. 2019)	µg/L			Hardness 50,000 - 250,000: calc.;					2.89	10.0	
Iron	µg/L	10	1000	Hardness > 250,000, Cu = 10 NG	10 96	10 407	10 127	10 269	19600	103	10 746
Lead ³	µg/L	0.05-0.1	Calc. based on Hardness Haroness ≤ 8000 is 3;	Calc. based on Hardness	0.25	0.155	<0.05	<0.25	11.0	0.071	0.42
Pb STM Guideline Calc.	µg/L		Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of		416.97	416.97	416.97	416.968	53.93	416.97	416.97
			360.000	Hardness 8000-360,000: calc.	10.55			416.968		10.57	
Pb LTA Guideline Calc.	µg/L			Hardness > 360,000 is Capped Value of 360,000	19.57	19.57	19.57	19.57	5.41	19.57	19.57
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG	NG	50.6 97300	50.7 99800	50.3 104000	52.4 106000	16 11000	7.4 39900	8.9 32800
Manganese ³	μg/L	0.10	Calc. based on Hardness	Calc. based on Hardness	1390	924	2700	24.5	332	1.83	13.6
Mn STM Guideline Calc.	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of		3394	3394	3394		1336	3394	3394
			259,000	Hardness 37,000 - 450,000: calc.;				3394			
Mn LTA Guideline Calc.	µg/L			Hardness > 450,000 is Capped Value of 450,000	2585.0	2585.0	2585.0	2585	922.7	2439.8	2215.4
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	<0.005 0.98	< 0.005	< 0.005	<0.005 0.99	0.0404	0.0106	0.016
Nickel	μg/L μg/L	0.03-0.10	NG	NG	0.98 47.5	0.95 31.8	0.875	0.99	3.36 33	2.5 3.17	2.69 5.57
Phosphorus Potassium	μg/L μg/L	50-500 50.0	NG	NG	<250 4840	<50 5130	<50 4210	<250 3920	965 13100	<50 9870	101 12500
Rubidium	μg/L	0.2	NG	NG	1	0.82	0.66	<1	15.1	0.44	1.49
Selenium Silicon	μg/L μg/L	0.05	NG	2.0 NG	4.34 5420	5.64 5970	5.19 5490	5.4 5700	0.722	0.624 3040	0.658
Silver ³ (Based on Hardness < or > 100000)	μg/L	0.01-0.02	0.10 - 3.0	0.05 - 1.5	0.05	<0.01	<0.01	<0.05	0.223	<0.01	<0.011
Ag STM Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0	3.0	0.1	3.000	3.0
Ag LTA Guideline Calc	µg/L			Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	0.1	1.500	1.5
Sodium	µg/L	50.0	NG	NG	31700	39300	35800	27600	3180	37000	23000
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG NG	NG	753 222000	787 180000	828 257000	771 204000	125 7500	383 80800	357 76500
Tellurium	µg/L	0.2-2.0	NG	NG	1	0.21	<0.2	<1	<0.2	<0.2	<0.2
Thallium Thorium	μg/L μg/L	0.01-0.02	NG	NG NG	0.05	0.015 <0.1	<0.01 <0.1	<0.05 <0.5	0.201	<0.01 <0.1	0.011
Tin	µg/L	0.1-1.0	NG	NG	0.5	0.35	<0.1	<0.5	0.29	<0.1	<0.1
Titanium Tungsten	μg/L μg/L	0.3-6.3 0.1-1.0	NG	NG	1.5 0.5	4.29 <0.1	0.53 <0.1	2.9 <0.5	60.7 <0.1	2.1 <0.1	7.41 <0.1
Uranium								7.57	1.09	4.36	2.57
	µg/L	0.01	NG	NG	6.55	6.26	6.43		28.5		1.98
Vanadium Zinc ³		0.01 0.5-1.0 3.0	NG NG Calc. based on Hardness	NG NG Calc. based on Hardness	6.55 2.5	0.95	6.43 <0.5 41.5	<2.5	95.2	0.56 1.5	6.4
Vanadium Zinc ³	μg/L μg/L μg/L	0.5-1.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc.	NG	6.55 2.5 7.5	0.95 7.5	<0.5 41.5		95.2	1.5	6.4
Vanadium	μg/L μg/L	0.5-1.0	NG Calc. based on Hardness	NG Calc. based on Hardness	6.55 2.5	0.95	<0.5	<2.5			
Vanadium Zinc ³	μg/L μg/L μg/L	0.5-1.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of	6.55 2.5 7.5	0.95 7.5	<0.5 41.5	<2.5 7.5 340.5	95.2	1.5	6.4
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium	μg/L μg/L μg/L μg/L	0.5-1.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc.	6.55 2.5 7.5 340.50	0.95 7.5 340.50	<0.5 41.5 340.50	<2.5 7.5	95.2 33.00	1.5 278.25	6.4 240.00
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved	μg/L μg/L μg/L μg/L μg/L μg/L	0.5-1.0 3.0 0.06-0.28	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG	6.55 2.5 7.5 340.50 187.5	0.95 7.5 340.50 187.5 <0.23	<0.5 41.5 340.50 187.5 <0.2	<2.5 7.5 340.5 187.5 <1	95.2 33.00 7.5 0.73	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium	μg/L μg/L μg/L μg/L μg/L	0.5-1.0 3.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	6.55 2.5 7.5 340.50 187.5	0.95 7.5 340.50 187.5	<0.5 41.5 340.50 187.5	<2.5 7.5 340.5 187.5 <1 5	95.2 33.00 7.5	1.5 278.25 187.5	6.4 240.00 187.5
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc.	нд/L нд/L нд/L нд/L нд/L нд/L нд/L	0.5-1.0 3.0 0.06-0.28	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0	0.95 7.5 340.50 187.5 <0.23 5.8 100.0	<0.5 41.5 340.50 187.5 <0.2 5 100.0	<2.5 7.5 340.5 187.5 <1 5 100	95.2 33.00 7.5 0.73 18.4 100.0	1.5 278.25 187.5 <0.2 2.5 100.0	6.4 240.00 187.5 <0.39 13.6 100.0
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵	μg/L μg/L μg/L μg/L μg/L μg/L	0.5-1.0 3.0 0.06-0.28	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0	6.55 2.5 7.5 340.50 187.5 1 19.6	0.95 7.5 340.50 187.5 <0.23 5.8	<0.5 41.5 340.50 187.5 <0.2 5	<2.5 7.5 340.5 187.5 <1 5	95.2 33.00 7.5 0.73 18.4	1.5 278.25 187.5 <0.2 2.5	6.4 240.00 187.5 <0.39 13.6
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1 0.59	1.5 278.25 187.5 <0.2 2.5 100.0 50.0 0.28 0.45	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH ≥ 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 35.4	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2 2.5 100.0 50.0 0.28 0.45 80.7	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 0.25	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6 0.5 0.25	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 35.4 0.5 0.25	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2 2.5 100.0 50.0 0.28 0.45 80.7 <0.1 <0.05	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Barium Barium Boryllium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 0.25 97	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 37.6 0.5 0.25 99	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Bismuth Boron Cadmium ³	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0 10.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 97 0.104	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 0.5 0.5 0.5 99 0.217	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135 0.262	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0 10.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG NG Calc. based on hardness	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 0.25 97	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 37.6 0.5 0.25 99	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Bismuth Boron Cadmium ³	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0 10.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness > 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6,5 : calc. Al median pH ≥ 6,5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 97 0.104	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 0.5 0.5 0.5 99 0.217	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135 0.262	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119 0.059 2.8008	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd STM Guideline Calc.	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0 10.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 45 0.5 97 0.104 2.801	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 37.6 0.5 0.5 99 0.217 2.801	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135 0.262 2.801	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 0.25 0.25 (0.5) <0.25 119 0.059	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ AI STM Guideline Calc. AI LTA Guideline Calc. AI LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd STM Guideline Calc. Cd LTA Guideline Calc. Calcium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.005 50.0 0.01-0.2	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG Hardness 3,400 - 285,000, Calc. Hardness > 245,000, is Capped Value of 285,000 NG NG NG NG	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 0.5 97 0.104 2.801 0.457 213000 0.05	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6 0.5 0.5 37.6 0.5 99 0.217 2.801 0.457 237000 0.05	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.25 135 0.262 2.801 0.457 223000 0.05	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 0.25 119 0.059 2.8008 0.4571 221000 <0.05	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238 0.457 92500 <0.01
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Barium Barium Barium Boron Cadmium ³ Cd STM Guideline Calc. Cd LTA Guideline Calc. Calcium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.05-1.0 10.0 0.005 50.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG Hardness 3,400 - 285,000, calc. Hardness > 285,000, is Capped Value of 285,000 NG	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 0.5 0.5 97 0.104 2.801 0.457 213000	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 0.5 0.5 0.5 0.25 99 0.217 2.801 0.457 237000	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 35.4 0.5 0.25 135 0.262 2.801 0.457 223000	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 0.25 0.25 119 0.059 2.8008 0.4571 221000	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238 0.457 92500
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd STM Guideline Calc. Calcium Calcium Cesium Cesium	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.10 0.1-2.0 0.05-1.0 10.0 0.005 50.0 0.01-0.2 0.1-2.0	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 97 0.104 2.801 0.457 213000 0.5 15.6 0.5	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6 0.5 0.25 99 0.217 2.801 0.457 2.37000 0.05 0.5 12.6 0.5	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 135 0.262 2.801 0.457 223000 0.05 0.5 35.3 0.5	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119 0.059 2.8008 0.4571 221000 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238 0.457 92500 <0.01 0.23 0.15 3.74
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd STM Guideline Calc. Calcium Cadmium ³ Cd STM Guideline Calc.	н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L н9/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.05-1.0 10.0 50.0 0.01-0.2 0.1-2.0 0.01-0.2 0.1-2.0 0.1-2.0 0.005	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 97 0.104 2.801 0.457 213000 0.5 15.6	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6 0.5 0.25 99 0.217 2.801 0.457 237000 0.05 0.5 12.6	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 0.5 0.25 135 0.262 2.801 0.457 223000 0.05 0.5 0.5 35.3	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119 0.059 2.8008 0.4571 221000 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238 0.457 92500 <0.11 0.23 0.15
Vanadium Zinc ³ Zn STM Guideline Calc. Zn LTA Guideline Calc. Zircronium Metals, Dissolved Atuminum ⁵ Al STM Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Al LTA Guideline Calc. Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ Cd STM Guideline Calc. Cd LTA Guideline Calc. Calclum Cesium Chromium Cobalt Copper ⁶ Cu STM (Acute) Guideline Value	µg/L µg/L	0.5-1.0 3.0 0.06-0.28 1.0 0.1-2.0 0.1-2.0 0.1-2.0 0.10 0.05-1.0 10.0 50.0 0.01-0.2 0.1-2.0 0.01-0.2 0.1-2.0 0.1-2.0 0.005	NG Calc. based on Hardness Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000 NG 100.0 pH < 6.5 : calc. Al	NG Calc. based on Hardness Calc. based on Hardness Hardness > 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG 50.0 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG Calc. based on BLM Model	6.55 2.5 7.5 340.50 187.5 1 19.6 100.0 50.0 0.5 0.5 0.5 0.5 0.104 2.801 0.457 213000 0.5 15.6 0.5 17.6	0.95 7.5 340.50 187.5 <0.23 5.8 100.0 50.0 0.5 0.5 37.6 0.5 0.25 99 0.217 2.801 0.457 237000 0.05 0.5 12.6 0.5 21.7	<0.5 41.5 340.50 187.5 <0.2 5 100.0 50.0 0.5 0.5 0.5 0.25 135 0.262 2.801 0.457 223000 0.05 0.5 35.3 0.5 35.3 0.5 20.6	<2.5 7.5 340.5 187.5 <1 5 100 50 <0.5 0.25 30.7 <0.5 <0.25 119 0.059 2.8008 0.4571 221000 <0.5 <0.5 <0.5 0.25 12.4	95.2 33.00 7.5 0.73 18.4 100.0 50.0 <0.1	1.5 278.25 187.5 <0.2	6.4 240.00 187.5 <0.39 13.6 100.0 50.0 0.3 0.79 112 <0.1 <0.05 83 0.0363 2.238 0.457 92500 <0.01 0.23 0.15 3.74 111.8

Appendix B3: L3 Creek Water Analytical F	Results									H 2021 IS
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL4C-0.18
Physical Parameters					17-Apr-20	27-May-20	21-Jun-20	29-Jul-20	23-Aug-20	17-Apr-20
Temperature	°C					11.4				
Flow Rate Acidity (Total as CaCO ₃)	L/sec µg/L	1000	NG	NG	2100	1.00 500	500	500	500	2000
Alkalinity (Total as CaCO ₃)	mg/L µS/cm	1.0 2.0	NG NG	NG NG	65.4	210	165	324	344	108
Electrical Conductivity (EC)	µ5/cm	2.0	NG	NG	174	891	1200	1580	1540	238
Hardness as CaCO ₃ , dissolved	µg/L	500	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F)		78400	413000	589000	774000	854000	109000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L									
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9.0 NG	6.5-9.0 NG	7.86	8.42	8.26	8.39	8.19	7.92
Total Suspended Solids (TSS)	μg/L	3000	NG	NG	239000 919000	649000 7100	905000 44800	1230000 1600	1290000 500	277000 2940000
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000	NG	NG NG	<1000	<1000	<1000	324000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	1000	NG	NG	<1000 65400	9000 201000	<1000 165000	<1000 <1000	<1000 344000	<1000 108000
Anions and Nutrients Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	202	21.8	2930	264	92	65
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)		7420	2520	3150	2520	3950	7420
Ammonia FLT Guideline Chloride (Cl [°])	μg/L μg/L	500	600000	pH dependent (at Temp 4 C or in situ T) 150,000	1430 6330	484 66100	606 42400	484 61500	759 60900	1430 13000
Nitrate (NO ₃ ⁻ as N)	μg/L	5.0-100	NG	NG	532	62.2	636	1760	1430	124
Nitrite (NO ₂ [*] as N)	µg/L	1.0-20.0	CI-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	13.6	<1	109	50.6	13.4	3.5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 0-30,000 = 128,000;	14100	201000	479000	535000	616000	28700
SO ₄ LTA Guideline Calc (Based on Hardness as CaCO3)	µg/L		NG	Hardness 31,000-75,000 = 218,000; Hardness 31,000-75,000 = 218,000; Hardness 76,000-180,000 = 309,000;	309000	429000	429000	429000	429000	309000
	µg/∟		No	Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific	000000	423000	423000	423000	423000	000000
Total Dissolved Carbon (DOC)	mg/L		NG	NG	12.2	16.6	19.7	16.4	15.6	27.9
Metals, Total Aluminum	μg/L	3.00	NG	NG	7800	182	2980	91.7	36	20200
Antimony	µg/L	0.1-1.0	NG	NG	0.28	0.21	0.27	0.4	0.5	0.52
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	5.48 353	0.82 95.2	2.08 116	0.65 151	0.66 153	12.5 824
Beryllium	µg/L	0.1-1.0	NG	NG	0.63	<0.1	0.22	<0.1	0.5	1.51
Bismuth Boron	μg/L μg/L	0.05-0.10	NG 1200	NG 1200	0.159 31	<0.05 58	<0.05 131	<0.05 124	0.25 84	0.356 35
Cadmium	µg/L	0.005	NG	NG	0.745	0.0355	0.266	0.0966	0.073	2.25
Calcium Cesium	μg/L μg/L	50 0.01-0.02	NG NG	NG NG	34200 1.33	105000 0.029	147000 0.107	210000 <0.01	223000 0.05	84900 2.85
Chromium ⁴	µg/L	0.10	NG	NG	13.9	0.45	2.89	0.42	0.5	35.1
Cobalt Copper ³	μg/L μg/L	0.10 0.5-1.0	110.0 Calc. based on Hardness	4.0 2 to 10	8.19 23.2	0.28	5.06 5.61	0.56 2.18	0.61 2.5	22.2 61.5
Cu STM Guideline Calc. (relevant prior to Aug. 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of		9.37	39.60				12.25
			400,000	Hardness 50,000 - 250,000: calc.;			39.6	39.6	39.6	
Cu LTA Guideline Calc. (relevant prior to Aug. 2019) Iron	µg/L	10	1000	Hardness > 250,000, Cu = 10 NG	3.14	10.0	10	10	10	4.36
Lead ³	μg/L μg/L	0.05-0.1	Calc. based on Hardness	Calc. based on Hardness	15800 11.2	282 0.139	1620 0.786	121 <0.05	116 0.25	41600 26.5
Pb STM Guideline Calc.	µg/L		Hardness ≤ 8000 ts 3; Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of		59.90	416.97	416.97	416.97	416.97	91.11
			360.000	Hardness 8000-360,000: calc.						
Pb LTA Guideline Calc.	µg/L			Hardness > 360,000 is Capped Value of 360,000	5.65	19.57	19.57	19.57	19.57	6.86
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	15 10800	10.6 38300	19.1 57400	20.1	13.8 80800	33.9 24900
Maganese ³	μg/L	0.10	Calc. based on Hardness	Calc. based on Hardness	308	25.2	851	68000 231	211	928
Mn STM Guideline Calc.	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of		1404	3394	3394	3394	3394	1741
			259,000	Hardness 37,000 - 450,000: calc.;						
Mn LTA Guideline Calc.	µg/L			Hardness > 450,000 is Capped Value of 450,000	950	2422	2585	2585	2585	1085
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	<0.005 0.614	<0.005 1.17	<0.005 1.37	<0.005 1.72	<0.005 1.48	<0.005 2.47
Nickel	µg/L	0.5	NG	NG NG	28.6	5.04	19.1	10.3	8.7	70.6
Phosphorus Potassium	μg/L μg/L	50-500 50.0	NG NG	NG	1070 13200	<50 12100	136 18000	<50 15900	<250 14900	1940 11000
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	13.7 0.536	1.67 0.553	7.18 0.598	2.72 0.523	1.8 0.34	28.3 1.54
Silicon	µg/L	100.0	NG	NG	13100	2300	5340	4320	3970	27700
Silver ³ (Based on Hardness < or > 100000) Ag STM Guideline Calc	μg/L μg/L	0.01-0.02	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	0.172	<0.01	<0.014	<0.01	0.05	0.488
			Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	0.1	3.000	3.0	3.0	3.0	3.0
Ag LTA Guideline Calc Sodium	μg/L μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	0.1 3210	1.500 36900	1.5 37800	1.5 54600	1.5 65800	1.5 8930
Strontium	µg/L	0.2	NG	NG	110	410	510	760	771	263
Sulfur Tellurium	μg/L μg/L	500.0 0.2-2.0	NG NG	NG NG	4410 <0.2	76600 <0.2	163000 <0.2	179000 <0.2	206000	11400 <0.2
Thallium	µg/L	0.01-0.02	NG	NG	0.173	<0.01	0.046	0.016	0.05	0.462
Thorium Tin	μg/L μg/L	0.1-1.0	NG	NG NG	1.09 <0.1	<0.1 <0.1	0.25 <0.1	<0.1 <0.1	0.5	3.29 <0.1
Titanium	µg/L	0.3-6.3	NG	NG	39.4	5.66	7.48	0.51	1.5	92.7
Tungsten Uranium	μg/L μg/L	0.1-1.0 0.01	NG NG	NG NG	<0.1 1.02	<0.1 2.23	<0.1 2.38	<0.1 6.29	0.5 6.52	<0.1 2.48
Vanadium Zinc ³	µg/L	0.5-1.0 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	26.3	1.1	2.87	<0.5	2.5	56.8
	µg/L	3.0	Hardness 90,000 - 500,000, Calc.	Jaio. Daseu UII Maruness	102	4.7	128	11.7 340.50	7.5	214
Zn STM Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of 500,000		33.00	275.25	340.50	340.50	340.50	47.25
Zn LTA Guideline Calc.	µg/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	7.5	187.5	187.5	187.5	187.5	21.8
Zircronium	µg/L	0.06-0.28	NG	NG	0.66	0.44	0.71	0.39	1	0.58
Metals, Dissolved Aluminum ⁵	µg/L	1.0	100.0	50.0	32.8	6.9	359	34.7	14.2	76.1
Al STM Guideline Calc.	μg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		32.8 100.0	100.0	100.0	34.7 100.0	14.2	100.0
Al LTA Guideline Calc.	μg/L	<u> </u>	pri ≥ 0.0 . 100.0 Al	median pH < 6.5 : calc. Al	50.0	50.0	50.0	50.0	50.0	50.0
Antimony	μg/L	0.1-2.0	NG	median pH ≥ 6.5:50.0 Al NG	<0.1	0.19	0.23	0.33	0.23	0.12
Arsenic Barium	µg/L	0.1-2.0	NG NG	NG NG	0.93	0.67	1.08	0.73	0.66	0.96
Beryllium	μg/L μg/L	0.1-2.0	NG	NG	46.3 <0.1	82.8 <0.1	112 <0.1	157 <0.1	153 <0.1	44.9 <0.1
Bismuth Boron	μg/L μg/L	0.05-1.0	NG NG	NG NG	<0.05 22	<0.05 53	<0.05 135	<0.05 134	<0.05 89	<0.05 20
Cadmium ³	μg/L μg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.0298	0.0256	0.167	134 0.0985	89 0.0487	20 0.0535
Cd STM Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		0.458	2.535	2.801	2.801	2.801	0.643
			455,000	Hardness 3,400 - 285,000, Calc.						
Cd LTA Guideline Calc.	µg/L	<u> </u>		Hardness > 285,000, is Capped Value of 285,000	0.177	0.457	0.457	0.457	0.457	0.225
Calcium Cesium	μg/L μg/L	50.0 0.01-0.2	NG NG	NG NG	21000 <0.01	106000 <0.01	144000 0.032	185000 <0.01	208000 <0.01	30800 <0.01
Chromium	µg/L	0.1-2.0	NG	NG	0.22	0.12	0.49	0.35	0.19	0.24
		0.10	NG	NG	0.12	0.17	4.12	0.6	0.52	0.16
Cobalt Copper ⁶	μg/L μg/L	0.2-4.0	Calc. based on BLM Model	Calc. based on BLM Model	2.55	1.99	3.56	2.19	1.64	2.42
Cobalt Copper ^e Cu STM (Acute) Guideline Value	μg/L μg/L				2.55 35.9	1.99 128.6	3.56 131	2.19 137.7	1.64 115.3	2.42 74.2
Cobalt Copper ⁶	µg/L		Calc. based on BLM Model	Calc. based on BLM Model BLM Ligand Model value NG						
Cobalt Copper ^e Cu STM (Acute) Guideline Value Cu LTA (Chronic) Guideline Value	μg/L μg/L μg/L	0.2-4.0	Calc. based on BLM Model BLM Ligand Model value	BLM Ligand Model value	35.9 6.1	128.6 25.9	131 25.8	137.7 29.5	115.3 21.5	74.2 12.9

Appendix B3: L3 Creek Water Analytical F	Results										ISSUED F
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	LBL4C-0.18	LBL4C-0.18	LBL4C-0.18	LBL4C-0.18	LBL4C-0.18	LBL4C-0.18	LBL4C-0.18
Physical Parameters				20/1120121	27-May-20	21-Jun-20	29-Jul-20	23-Aug-20	29-Sep-20	21-Oct-20	30-Nov-20
Temperature	°C				8.4						
Flow Rate Acidity (Total as CaCO ₃)	L/sec µg/L	1000	NG	NG	1.00 4000	500	156000	219000	351000	340000	346000
Alkalinity (Total as CaCO ₃)	mg/L	1.0	NG	NG	141	123	0.5	0.5	0.5	0.5	0.5
Electrical Conductivity (EC)	µS/cm	2.0	NG	NG	1130	1030	2160	2410	2970	2770	3190
Hardness as CaCO ₃ , dissolved	µg/L	500	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F)	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn, F)	478000	453000	964000	1110000	1150000	1240000	1290000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L										
	pH Units	0.10	6.5 - 9.0	6.5-9.0	8.18	8.15	4.29	3.90	3.57	3.57	3.77
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG	NG NG	818000 90600	738000 174000	1880000 13000	2420000 6900	2550000 500	2910000 500	2960000 4800
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG	NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	1000	NG	NG	<1000 141000	<1000 123000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Anions and Nutrients Ammonia (NH₄ as N)	μg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	68.1	73	229	362	176	146	106
Ammonia FST Guideline	µg/L	0.0	pH dependent (at Temp 4 °C or in situ T)	pri dopondolik (0.0 0.0)	3950	3950	-	-	-	-	-
Ammonia FLT Guideline Chloride (Cl')	μg/L μg/L	500	600000	pH dependent (at Temp 4 C or in situ T) 150,000	759 74700	759 36600	- 31700	- 42800	- 44300	- 50600	- 109000
Nitrate (NO ₃ ⁻ as N)	μg/L	5.0-100	NG	NG	36.5	34	56	87	166	279	88
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-20.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	<1	<5	<5	<5	<5	<5	<5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 0-30,000 = 128,000;	382000	414000	1290000	1680000	1910000	2050000	2000000
SO₄ LTA Guideline Calc (Based on Hardness as CaCO3)	µg/L		NG	Hardness 31,000-75,000 = 218,000; Hardness 76,000-180,000 = 309,000;	429000	429000	429000	429000	429000	429000	429000
	15			Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific							
Total Dissolved Carbon (DOC)	mg/L		NG	NG	9.3	10.3	6.1	5.8	5.7	5.5	5.0
Metals, Total Aluminum	µg/L	3.00	NG	NG	3400	6820	24700	37200	52100	51200	49600
Antimony Arsenic	µg/L	0.1-1.0	NG	NG	0.18	0.33	0.5	0.5	1	0.5	1
Arsenic Barium	μg/L μg/L	0.10 0.10	5.0 NG	5.0 NG	0.83 67.8	2.98 128	1.68 25.7	2.9 18.2	4.1 8.5	2.66 5.62	4.3 8.4
Beryllium	µg/L	0.1-1.0	NG	NG	0.49	0.85	4.49	5.06	6.3	5.82	5.3
Bismuth Boron	μg/L μg/L	0.05-0.10 10.0	NG 1200	NG 1200	<0.05 61	<0.05 68	0.25 168	0.25 181	0.5	0.25 200	0.5
Cadmium	µg/L	0.005	NG	NG	0.811	1.43	5.51	6.81	8.83	8.07	9.97
Calcium Cesium	μg/L μg/L	50 0.01-0.02	NG	NG NG	122000 0.071	120000 0.474	256000 0.087	300000 0.073	291000 0.1	310000 0.069	343000 0.1
Chromium ⁴	µg/L	0.10	NG	NG	1.08	4.68	1.91	2.94	4.2	4.2	3.9
Cobalt Copper ³	μg/L μg/L	0.10 0.5-1.0	110.0 Calc. based on Hardness	4.0 2 to 10	17.5 4.93	24.5 12	111 23.7	159 29.7	192 36.1	175 30.9	176 27
Cu STM Guideline Calc. (relevant prior to Aug. 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of		39.60						
			400,000	Hardness 50,000 - 250,000: calc.;		39.6	39.6	39.6	39.6	39.6	39.6
Cu LTA Guideline Calc. (relevant prior to Aug. 2019)	µg/L	10	1000	Hardness > 250,000, Cu = 10 NG	10.0	10	10	10	10	10	10
Iron Lead ³	μg/L μg/L	0.05-0.1	Calc. based on Hardness	Calc. based on Hardness	1490 0.297	5810 2.4	4070 0.25	5430 0.25	6980 0.5	4020 0.25	2650 <0.5
Pb STM Guideline Calc.	µg/L		Hardness ≤ 8000 is 3; Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of		416.97	416.97		416.97	416.97	416.97	416.97
			360.000	Hardness 8000-360,000: calc.			416.968				
Pb LTA Guideline Calc.	µg/L			Hardness > 360,000 is Capped Value of 360,000	19.57	19.57	19.57	19.57	19.57	19.57	19.57
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG	37.7 47200	54.1 41700	185 90200	165 128000	217 148000	181 138000	159 145000
Manganese ³	μg/L	0.10	Calc. based on Hardness	Calc. based on Hardness	941	946	4070	5440	6410	5870	6260
Mn STM Guideline Calc.	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394	3394		3394	3394	3394	3394
			239,000	Hardness 37,000 - 450,000: calc.;	2505	2595	3394	2585	2595	2505	2595
Mn LTA Guideline Calc.	µg/L			Hardness > 450,000 is Capped Value of 450,000	2585	2585	2585		2585	2585	2585
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	0.0062	0.0107	<0.005 0.25	<0.005 0.25	<0.005	<0.005	<0.005
Nickel Phosphorus	μg/L μg/L	0.5 50-500	NG NG	NG NG	57.6 52	88.5 154	403 <250	531 <250	668 500	596 <250	666 500
Potassium	µg/L	50.0	NG	NG	7700	7910	<230 5270	<250 5200	5070	3910	3930
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	2.19 0.768	6.15 1.28	4.9 0.75	6.6 1.29	6.8 1.7	5.5 1.06	5.1 0.95
Silicon	µg/L	100.0 0.01-0.02	NG 0.10 - 3.0	NG 0.05 - 1.5	4600	8200	8720	10400	11400	9960	9600
Silver ³ (Based on Hardness < or > 100000) Ag STM Guideline Calc	μg/L μg/L	0.01-0.02	Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	<0.01	0.04	0.05	0.05	0.1	0.05	<0.1
Ag LTA Guideline Calc	μg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	3.0	3.0	3	3.0	3.0	3.0	3.0
Sodium	μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	1.5 70000	1.5 0.1	1.5	1.5 143000	1.5 167000	1.5 169000	1.5 205000
Strontium	µg/L	0.2	NG	NG	443	0.1	761	800	806	831	963
Sulfur Tellurium	μg/L μg/L	500.0 0.2-2.0	NG NG	NG NG	147000 <0.2	3.0 1.5	401000 1	590000 1	692000 2	702000 1	719000 2
Thallium	µg/L	0.01-0.02	NG	NG	0.024	#VALUE!	0.084	0.104	0.1	0.085	0.1
Thorium Tin	μg/L μg/L	0.1-1.0 0.1-1.0	NG NG	NG	0.18 <0.1	#VALUE! 0.1	0.53 0.5	0.58 0.5	1.5 1	1.4 0.5	1
Titanium Tungsten	μg/L μg/L	0.3-6.3	NG NG	NG	6	0.1	1.5 0.5	1.5 0.5	3	1.5	3
Tungsten Uranium	µg/L	0.01	NG	NG	<0.1 1.92	0.1	0.5 4.19	0.5 5.12	1 6.97	0.5 5.75	1 4.84
Vanadium Zinc ³	μg/L μg/L	0.5-1.0 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	1.3 91.9	0.1	2.5 809	2.5 1080	5 1490	2.5 1290	5 1430
Zinc Zinc Zin STM Guideline Calc.		0.0	Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of	Sale, Saled on Flatdics5	91.9 324.00	0.1	340.5	1080 340.50	1490 340.50	340.50	340.50
	µg/L		Hardness > 500,000, is Capped Value of 500,000	Hardross 00 000 - 200 000 - 2 1	J24.UU	505.20	J4U.D	J+U.3U	J40.0U	540.00	J-+U.JU
Zn LTA Guideline Calc.	µg/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	187.5	187.5	187.5	187.5	187.5	187.5	187.5
Zircronium	µg/L	0.06-0.28	NG	330,000 NG	<0.34	3.0	<1.0	1	2	1	2
Metals, Dissolved Aluminum ⁵	µg/L	1.0	100.0	50.0	246	291	24400	35200	49100	46800	46200
Al STM Guideline Calc.	μg/L	-	pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100.0	100.0		20.4	22.4	22.4	21.1
AI LTA Guideline Calc.	μg/L		pri 20.0 . 100.0 M	median pH < 6.5 : calc. Al	50.0	50.0	0.019836252	5.2	5.8	5.8	5.4
Antimony	μg/L	0.1-2.0	NG	median pH ≥ 6.5:50.0 Al NG	0.14	0.19	0.005121122	<0.1	0.5	0.5	0.5
Arsenic	µg/L	0.1-2.0	NG	NG	0.25	0.37	2.02	2.65	2.82	2.34	2.83
Barium Beryllium	μg/L μg/L	0.10 0.1-2.0	NG NG	NG NG	58.2 <0.1	62.3 <0.1	27.6 4.21	16.9 4.44	7.21 6.09	5.41 5.58	6.92 5.56
Bismuth Boron	μg/L μg/L	0.05-1.0	NG NG	NG NG	<0.05	< 0.05	0.25	<0.05	0.25	0.25	0.25
Boron Cadmium ³	μg/L μg/L	10.0 0.005	Calc. based on Hardness	NG Calc. based on hardness	57 0.637	65 0.752	164 6.03	165 6.11	198 8.01	172 7.95	188 9.93
Cd STM Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		2.801	2.788	2.801	2.801	2.801	2.801	2.801
			455,000	Hardness 3,400 - 285,000, Calc.							
Cd LTA Guideline Calc.	µg/L			Hardness > 285,000, is Capped Value of 285,000	0.457	0.457	0.457	0.457	0.457	0.457	0.457
Calcium	µg/L	50.0	NG	NG	120000	113000	229000	261000	275000	279000	290000
Cesium Chromium	μg/L μg/L	0.01-0.2 0.1-2.0	NG NG	NG	0.012 <0.1	0.013 <0.1	0.072	0.057 2.39	0.07 4.07	0.06	0.05 3.45
Cobalt	µg/L	0.10	NG	NG	15.4	18	124	146	174	174	175
Copper ⁶ Cu STM (Acute) Guideline Value	μg/L μg/L	0.2-4.0	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	2.77 68.3	4.09 68.7	24.8 0.2	25.7 0.2	32.6 0.2	30.6 0.2	26.5 0.2
Cu LTA (Chronic) Guideline Value	µg/L	10.5	_	BLM Ligand Model value	14	13.6	0.2	0.2	0.2	0.2	0.2
Iron Lead	μg/L μg/L	10.0 0.05-1.0	350 NG	NG	195 <0.05	42.00 <0.05	3220 0.25	4830 0.115	6320 0.25	4160 0.25	2250 0.25
Lithium	µg/L	1.0	NG	NG	31.4	46.4	179	148	185	198	175

Appendix B3: L3 Creek Water Analytical Results

					LBL3C-0.02						
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	17-Apr-20	27-May-20	21-Jun-20	29-Jul-20	23-Aug-20	29-Sep-20	20-Oct-20
Magnesium	µg/L	5.0	NG	NG	6610	62000	45000	68900	91100	80300	87200
Manganese	µg/L	0.10	NG	NG	52.6	993	410	399	189	119	141
Mercury	µg/L	0.005-0.1	NG	NG	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Molybdenum	µg/L	0.05-1.0	NG	NG	0.786	1.35	1.63	2.23	2.31	2.25	1.83
Nickel	µg/L	0.50	NG	NG	3.53	30.6	21.7	27.7	26.4	27.1	26.7
Phosphorus	µg/L	50-1000	NG	NG	233	<50	<50	<50	<50	<250	<250
Potassium	µg/L	50.0	NG	NG	9610	6660	8260	5670	6170	5140	4940
Rubidium	µg/L	0.20	NG	NG	1.54	1.08	1.71	1.92	1.93	1.5	1.2
Selenium	µg/L	0.05-1.0	NG	2.0	0.359	2.3	2.05	2.3	2.98	3.18	3.49
Silicon	µg/L	50.0	NG	NG	2070	3400	4020	3950	4490	3600	3730
Silver	µg/L	0.01-0.2	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.05
Sodium	µg/L	50.0	NG	NG	4550	43900	29500	39200	50100	48500	49700
Strontium	µg/L	0.20	NG	NG	77.9	567	514	737	898	838	883
Sulfur	µg/L	500	NG	NG	10100	200000	151000	240000	313000	269000	274000
Tellurium	µg/L	0.2-4.0	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	1	1
Thallium	µg/L	0.01-0.2	NG	NG	<0.01	0.016	0.014	0.026	0.027	0.05	0.05
Thorium	µg/L	0.1-2.0	NG	NG	0.13	<0.1	<0.1	<0.1	<0.1	0.5	0.5
Tin	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	0.5
Titanium	µg/L	0.3-6.0	NG	NG	8.42	<0.3	<0.3	<0.3	<0.3	1.5	1.5
Tungsten	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	0.5
Uranium	µg/L	0.01	NG	NG	0.322	3.95	3.06	4.9	6.53	6.68	5.78
Vanadium	µg/L	0.5-10	NG	NG	0.61	<0.5	<0.5	<0.5	<0.5	2.5	2.5
Zinc	µg/L	1.00	NG	NG	6.5	20.4	13.6	24.5	26.7	30.7	34.1
Zirconium	µg/L	0.06-1.2	NG	NG	0.59	<0.2	<0.2	<0.2	<0.2	1	1
Laboratory Work Order Number	1				L2438183	L2454036	L2464256	L2482349	L2493339	L2510600	L2520229
Laboratory Identification Number					L2438183-1		L2464256-3	L2482349-2	L2493339-1	L2510600-1	L2520229-6

Appendix B3: L3 Creek Water Analytical Results

Appendix BS: LS Creek Water Analy					LBL3C-0.02	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG-FLT ²	30-Nov-20	27-Feb-20	25-Mar-20	17-Apr-20	27-May-20	21-Jun-20	29-Jul-20	23-Aug-20
Magnesium	µg/L	5.0	NG	NG	90700	60800	68200	6770	58100	46900	82800	88100
Manganese	µg/L	0.10	NG	NG	107	9.13	18.7	68.5	2430	1380	1310	2130
Mercury	µg/L	0.005-0.1	NG	NG	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005
Molybdenum	µg/L	0.05-1.0	NG	NG	1.88	1.48	1.25	0.752	1.42	1.27	0.87	1.26
Nickel	µg/L	0.50	NG	NG	29.1	5.34	7.78	3.22	64.3	47.6	40.5	50.6
Phosphorus	µg/L	50-1000	NG	NG	<250	<50	<50	290	<50	<50	<250	<50
Potassium	µg/L	50.0	NG	NG	5110	4420	4760	9830	7180	9100	5000	5050
Rubidium	µg/L	0.20	NG	NG	1.3	0.53	0.48	1.53	1.04	1.39	1	0.94
Selenium	µg/L	0.05-1.0	NG	2.0	4.72	4.68	5.07	0.347	1.68	2.0	4.27	4.01
Silicon	µg/L	50.0	NG	NG	4100	4360	4750	2000	3890	4520	5030	5800
Silver	µg/L	0.01-0.2	NG	NG	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	<0.01
Sodium	µg/L	50.0	NG	NG	55300	20400	36000	4380	39700	29700	33500	29500
Strontium	µg/L	0.20	NG	NG	913	537	620	75.1	495	459	662	735
Sulfur	µg/L	500	NG	NG	277000	136000	155000	8390	162000	134000	207000	208000
Tellurium	µg/L	0.2-4.0	NG	NG	1	<0.2	<0.2	<0.2	<0.2	<0.2	1	<0.2
Thallium	µg/L	0.01-0.2	NG	NG	0.05	<0.01	<0.01	<0.01	0.015	0.013	0.05	0.011
Thorium	µg/L	0.1-2.0	NG	NG	0.5	<0.1	<0.1	0.11	<0.1	<0.1	0.5	<0.1
Tin	µg/L	0.1-2.0	NG	NG	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1
Titanium	µg/L	0.3-6.0	NG	NG	1.5	0.34	<0.3	5.76	<0.3	<0.3	1.5	<0.3
Tungsten	µg/L	0.1-2.0	NG	NG	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1
Uranium	µg/L	0.01	NG	NG	7.27	4.87	5.55	0.3	3.76	2.68	4.82	5.26
Vanadium	µg/L	0.5-10	NG	NG	2.5	<0.5	<0.5	0.57	<0.5	<0.5	2.5	<0.5
Zinc	µg/L	1.00	NG	NG	37	1.9	1.1	6.9	48.7	27.9	20.6	11.3
Zirconium	µg/L	0.06-1.2	NG	NG	1	<0.2	<0.2	0.53	<0.2	<0.2	<1.0	<0.2
Laboratory Work Order Number					L2535101	VA20A2572	VA20A4062	L2438183	L2454036	L2464256	L2482349	L2493339
Laboratory Identification Number					L2535101-9	VA20A2572-004		L2438183-2		L2464256-4	L2482349-3	L2493339-2

Appendix B3: L3 Creek Water Analytical Results

,					LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.43	LBL3C-1.65	LBL3C-1.65	LBL3C-1.65
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG-FLT ²	29-Sep-20	21-Oct-20	30-Nov-20	20-Dec-20	17-Apr-20	27-May-20	21-Jun-20
Magnesium	µg/L	5.0	NG	NG	80000	105000	104000	93000	6400	37100	32800
Manganese	µg/L	0.10	NG	NG	1140	2850	2450	7.28	25.8	0.11	0.54
Mercury	µg/L	0.005-0.1	NG	NG	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.009	0.0083
Molybdenum	µg/L	0.05-1.0	NG	NG	0.92	0.98	0.93	0.78	1.73	2.17	1.63
Nickel	µg/L	0.50	NG	NG	40.4	73.2	71.8	14.1	1.49	2.92	4.37
Phosphorus	µg/L	50-1000	NG	NG	<250	<250	<250	<250	280	<50	54
Potassium	µg/L	50.0	NG	NG	4400	4470	4690	4160	11500	10300	11600
Rubidium	µg/L	0.20	NG	NG	1	1	1	<1	1.68	0.3	1.1
Selenium	µg/L	0.05-1.0	NG	2.0	4.37	5.19	4.83	5.44	0.3	0.636	0.78
Silicon	µg/L	50.0	NG	NG	4950	5640	5890	5090	2040	2670	3870
Silver	µg/L	0.01-0.2	NG	NG	0.05	0.05	0.05	<0.05	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	30900	36300	37600	29400	2950	33300	22500
Strontium	µg/L	0.20	NG	NG	715	826	872	704	73.4	355	388
Sulfur	µg/L	500	NG	NG	203000	261000	235000	196000	7240	78300	80400
Tellurium	µg/L	0.2-4.0	NG	NG	1	1	1	<1	<0.2	<0.2	<0.2
Thallium	µg/L	0.01-0.2	NG	NG	0.05	0.05	0.05	<0.05	<0.01	<0.01	<0.01
Thorium	µg/L	0.1-2.0	NG	NG	0.5	0.5	0.5	<0.5	<0.1	<0.1	<0.1
Tin	µg/L	0.1-2.0	NG	NG	0.5	0.5	0.5	<0.5	<0.1	<0.1	<0.1
Titanium	µg/L	0.3-6.0	NG	NG	1.5	1.5	1.5	<1.5	0.94	<0.3	1.15
Tungsten	µg/L	0.1-2.0	NG	NG	0.5	0.5	0.5	<0.5	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	6.16	6.6	7.66	6.64	0.243	4.29	2.45
Vanadium	µg/L	0.5-10	NG	NG	2.5	2.5	2.5	<2.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	8.7	34.8	48.3	<5	5.1	1.9	1.5
Zirconium	µg/L	0.06-1.2	NG	NG	1	1	1	<1	<0.22	<0.2	<0.34
Laboratory Work Order Number					L2510600	L2520235	L2535101	L2542477	L2438183	L2454036	L2464256
Laboratory Identification Number					L2510600-3	L2520235-1	L2535101-7		L2438183-3		L2464256-5

Appendix B3: L3 Creek Water Analytica	I Results									
Parameter			BCAWQG - FST 1	2	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL3C-3.32	LBL4C-0.18
	Unit	RDL		BCAWQG-FLT ²	17-Apr-20	27-May-20	21-Jun-20	29-Jul-20	23-Aug-20	17-Apr-20
Magnesium	µg/L	5.0	NG	NG	6320	35900	55700	75800	81500	7680
Manganese	µg/L	0.10	NG	NG	0.75	17.3	810	235	201	2.35
Mercury	µg/L	0.005-0.1	NG	NG	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005
Molybdenum	µg/L	0.05-1.0	NG	NG	0.742	0.851	1	1.57	1.5	1.48
Nickel	µg/L	0.50	NG	NG	2.14	4.49	15.6	10.6	8.22	2.82
Phosphorus	µg/L	50-1000	NG	NG	279	<50	<50	<50	<50	75
Potassium	µg/L	50.0	NG	NG	12200	12600	16500	16500	15900	7310
Rubidium	µg/L	0.20	NG	NG	1.62	1.25	6.78	3.15	2.1	0.95
Selenium	µg/L	0.05-1.0	NG	2.0	0.143	0.509	0.655	0.673	0.482	0.499
Silicon	µg/L	50.0	NG	NG	2120	1710	4350	4470	4430	1890
Silver	µg/L	0.01-0.2	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	3200	33400	35600	60400	67600	8390
Strontium	µg/L	0.20	NG	NG	66	376	558	688	784	99.1
Sulfur	µg/L	500	NG	NG	4010	72100	172000	185000	235000	9540
Tellurium	µg/L	0.2-4.0	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01-0.2	NG	NG	<0.01	<0.01	0.033	0.013	<0.01	<0.01
Thorium	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	0.17
Tin	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.3-6.0	NG	NG	5.46	1.26	1.53	<0.3	<0.3	13.5
Tungsten	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	0.144	2.25	2.04	6.39	6.53	0.466
Vanadium	µg/L	0.5-10	NG	NG	0.79	<0.5	<0.5	<0.5	<0.5	0.99
Zinc	µg/L	1.00	NG	NG	1.8	3.3	35.1	9.3	4.1	2.4
Zirconium	µg/L	0.06-1.2	NG	NG	0.61	<0.31	0.42	0.34	<0.34	0.58
Laboratory Work Order Number					L2438183	L2454036	L2464256	L2482349	L2493339	L2438183
Laboratory Identification Number					L2438183-5		L2464256-6	L2482349-4	L2493339-3	L2438183-4

Appendix B3: L3 Creek Water Analytical Results

				BCAWQG-FLT ²	LBL4C-0.18						
Parameter	Unit	RDL	BCAWQG - FST ¹		27-May-20	21-Jun-20	29-Jul-20	23-Aug-20	29-Sep-20	21-Oct-20	30-Nov-20
Magnesium	µg/L	5.0	NG	NG	43600	41700	95000	111000	113000	132000	138000
Manganese	µg/L	0.10	NG	NG	867	837	4330	5170	5880	5710	5470
Mercury	µg/L	0.005-0.1	NG	NG	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Molybdenum	µg/L	0.05-1.0	NG	NG	0.783	1.04	0.25	0.124	0.25	0.25	0.25
Nickel	µg/L	0.50	NG	NG	52.2	63.9	411	469	603	601	639
Phosphorus	µg/L	50-1000	NG	NG	<50	<50	<250	<50	<250	<250	<250
Potassium	µg/L	50.0	NG	NG	7980	7420	5140	5060	4250	4110	4370
Rubidium	µg/L	0.20	NG	NG	1.75	2.23	5.4	6	6.4	5.1	4.7
Selenium	µg/L	0.05-1.0	NG	2.0	0.651	1.28	0.84	1.41	0.76	1.01	1.02
Silicon	µg/L	50.0	NG	NG	3560	4400	9370	11100	10100	10100	9770
Silver	µg/L	0.01-0.2	NG	NG	<0.01	<0.01	0.05	<0.01	0.05	0.05	0.05
Sodium	µg/L	50.0	NG	NG	62900	49000	107000	135000	152000	171000	211000
Strontium	µg/L	0.20	NG	NG	412	432	636	765	766	819	924
Sulfur	µg/L	500	NG	NG	143000	137000	444000	629000	596000	577000	474000
Tellurium	µg/L	0.2-4.0	NG	NG	<0.2	<0.2	1	<0.2	1	1	1
Thallium	µg/L	0.01-0.2	NG	NG	0.018	0.017	0.068	0.083	0.086	0.079	0.064
Thorium	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	0.5	0.83	1.27	1.34	0.92
Tin	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	0.5	<0.1	0.5	0.5	0.5
Titanium	µg/L	0.3-6.0	NG	NG	<0.3	<0.3	1.5	<0.3	1.5	1.5	1.5
Tungsten	µg/L	0.1-2.0	NG	NG	<0.1	<0.1	0.5	<0.1	0.5	0.5	0.5
Uranium	µg/L	0.01	NG	NG	1.8	2.25	3.88	4.97	6.35	5.8	5.06
Vanadium	µg/L	0.5-10	NG	NG	<0.5	<0.5	2.5	<0.5	2.5	2.5	2.5
Zinc	µg/L	1.00	NG	NG	42.7	30.7	863	971	1370	1340	1470
Zirconium	µg/L	0.06-1.2	NG	NG	<0.2	<0.2	<1.0	<0.2	1	1	1
Laboratory Work Order Number					L2454036	L2464256	L2482349	L2493339	L2510600	L2520235	L2535101
Laboratory Identification Number						L2464256-7	L2482349-7	L2493339-4	L2510600-2	L2520235-2	L2535101-8

 L2464256-7
 L2482349-7
 L2493339-4
 L2510600-2
 L2520235-2
 L2535101-8

 Notes:
 Screening completed on BC AWQG-FWAL STM ¹ and LTA ² guideline values.
 *
 Schmistry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Nilhiffe & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Short Term Maximum (STM) guidelines.
 *

 ² BC Ministry of Environment, Water Protection & Sustainability Branch. 2018. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, IVML) water use and Short Term Maximum (STM) guidelines.
 *

 ² BC Ministry of Environment, Water Protection & Sustainability Branch. 2018. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, IVML) water use and Long Term Average (LTA) guidelines.
 *

 ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.
 *

 ⁴ Guideline is bridgendant.
 *
 *
 *
 Guideline is Disolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.
 *

 ⁶ Guideline is Disolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.
 *

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LB SIDE CHANNEL E	LBP POND	LBP POI
Physical Parameters					08/10/2020	08/10/2020	20/11/
remperature	°C						
Flow Rate Acidity (Total as CaCO ₃)	L/sec µg/L	1000	NG	NG	1630000	6100	3400
Ikalinity (Total as CaCO ₃)	mg/L	1.0	NG	NG	<1	295	377
Ilectrical Conductivity (EC) Iardness as CaCO3, dissolved	μS/cm μg/L	2.0 500	NG NG	NG	8750 2820000	3530 1970000	4040 227000
lardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L						
H otal Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	3.01 9120000	8.23 3380000	8.13 391000
Total Suspended Solids (TSS)	µg/L	3000	NG	NG	126000	13900	55200
Alkalinity (Hydroxide) as CaCO ₃	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	<1000	295000	37700
Anions and Nutrients Ammonia (NH ₄ as N)	μg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	7100	118	670
Ammonia FST Guideline	μg/L	0.0	pH dependent (at Temp 4 °C or in situ T)	pri appondoni (oto oto)	-	3950	4950
Ammonia FLT Guideline Chloride (Cl')	μg/L	500	600000	pH dependent (at Temp 4 °C or in situ T) 150,000	- 22100	759 6400	952 8200
Vitrate (NO ₃ ⁻ as N)	μg/L μg/L	5.0-25.0	NG	NG	141	<25	354
vitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	<10	<5	41
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000	6280000	2130000	267000
O4 FLT Guideline Calc	µg/L		NG	Hardness 76,000-180,000 = 309,000 Hardness 181,000-250,000 = 429,000	429000	429000	42900
issolved Organic Carbon (DOC)	mg/L		NG	Hardness > 250,000 site-specific NG	7.3	23.7	3.2
Metals, Total							
Numinum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG NG	116000 0.5	169 0.5	1450 0.5
rsenic	μg/L	0.10	5.0	5.0	11.9	0.75	1.29
sarium Seryllium	μg/L μg/L	0.10	NG NG	NG NG	60.5 19.1	81.7 0.5	66.1 0.5
lismuth	μg/L	0.05	NG	NG	0.25	0.5	0.5
oron admium	µg/L	10.0 0.005	1200 NG	1200 NG	1280	208	216
admium ialcium	μg/L μg/L	0.005 50	NG	NG	3.67 329000	0.037 419000	0.28 50500
esium	µg/L	0.01	NG	NG	0.507	0.05	0.05
hromium ⁴ obalt	μg/L μg/L	0.1-1.0 0.10	NG 110	NG 4.0	8.4 472	0.5 13.5	0.81
copper ³	μg/L	0.50	Calc. based on Hardness	2 to 10	46.4	2.5	2.5
u FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of		39.6	39.6	-
			400,000	Hardness 50,000 - 250,000: calc.;	40.0	40.0	39.6
u FLT Guideline Calc. (relevant prior to August 2019)	μg/L μg/L	10	1000	Hardness > 250,000 - 230,000 - Calc., Hardness > 250,000, Cu = 10 NG	10.0	10.0	10
on ead ³	μg/L μg/L	0.05	1000	NG Calc. based on Hardness	293000 2.52	1260 0.25	8750 0.37
b FST Guideline Calc (Based on Hardness as CaCO3), applies	μg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3				
o water hardness 8000-360,000 μg/L	15		Hardness > 8000 : calc.	Applies to Hardness 8000-360,000	417.0	417.0	417.0
b FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG Hardness > 8000, calc.	19.6	19.6	19.6
ithium	µg/L	1.0	NG	NG	320	81.8	19.0
lagnesium	µg/L	5.0 0.10	NG Calc. based on Hardness	NG Calc. based on Hardness	411000	220000	26500
langanese ³ In FST Guideline Calc (Based on Hardness as CaCO3)	μg/L μg/L	0.10	Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	17300	6550	1350
			Mn : calc.	Applies to Hardness 37000-450000 µg/L	3394.2	3394.2	3394.
In FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L	0.005	NO	Mn : calc.	2585	2585	2585
lercury (Based on methyl Hg & total mass Hg) lolybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	<0.005	<0.005 1.84	<0.00
lickel	µg/L	0.50	NG		1570	38	91.2
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG	290 7950	<250 15300	<250 1520
Rubidium	μg/L	0.2	NG	NG	16.1	3.4	4.6
ielenium illicon	μg/L μg/L	0.05	NG NG	2.0 NG	0.65	0.43	0.49
ilver ³ (Based on Hardness < or > 100000)	μg/L	0.01	0.10 - 3.0	0.05 - 1.5	6860 0.102	970 0.05	5210 0.05
g FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0
g FLT Guideline Calc	µg/L			Hardness ≤ 100,000 Ag = 0.05	1.5	1.5	1.5
odium	µg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	1170000	250000	26900
trontium	µg/L	0.2	NG	NG	3070	1030	1090
ulfur ellerium	μg/L μg/L	500.0 0.2	NG NG	NG NG	2200000 1	749000	83100 1
hallium	μg/L	0.01	NG	NG	0.181	0.05	0.05
horium	μg/L μg/L	0.10	NG NG	NG NG	4.66 0.5	0.5	0.5
itanium	μg/L	0.3-4.5	NG	NG	14.2	0.5 1.5	3.3
ungsten	µg/L	0.10	NG NG	NG NG	0.5	0.5	0.5
ranium anadium	μg/L μg/L	0.01	NG	NG	5.62 4.5	5.85 2.5	9.71 2.5
inc ³ (Based on Hardness < or > 90,000)	µg/L	3.0	Calc. based on Hardness	Calc. based on Hardness	10600	20	396
n FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of		340.5	340.5	340.
			500,000	Hardness 90,000 - 330,000, Calc.			
n FLT Guideline Calc.	L			Hardness > 330,000, is Capped Value of 330,000	187.5	187.5	187.
rcronium etals, Dissolved	µg/L	0.06	NG	NG	1.2	<1	<1
etals, Dissolved Iuminum ⁵	µg/L	1.0	100	50	134000	25.9	294
FST Guideline Calc (based on pH)	µg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		30.4	100.0	100.
FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al			
ntimony	μg/L	0.10	NG	median pH ≥ 6.5 : 50.0 Al NG	8.5 0.5	50.0 0.5	50.0 0.15
rsenic	μg/L μg/L	0.10	NG NG	NG NG	10.7	0.6	0.75
arium eryllium	μg/L μg/L	0.10	NG	NG	11.1 22.7	77.5 0.5	54.7 <0.1
ismuth pron	100/1	0.05	NG NG	NG NG	0.25	0.25	<0.0
admium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	1500 3.85	202 0.025	220 0.018
I FST Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		2.80	2.80	2.80
	1.9.		455,000	Hardnoon 2,400 - 005,000 - 0 -			2.00
d FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.46	0.46	0.46
alcium	µg/L	50.0	NG	285,000 NG	362000	419000	48300
esium		0.01	NG	NG	0.278	0.05	<0.0
hromium obalt	μg/L μg/L	0.10	NG NG	NG NG	7.16 568	0.5 13.1	0.29
opper ⁶	µg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	49.3	<1	0.32
u FST Guideline Value (Acute) u FLT Guideline Value (Chronic)	μg/L μg/L		BLM Ligand Model value	BLM Ligand Model value	0.2	147.7	21.5
on	μg/L μg/L	10.0	350	NG	0.2 314000	26.2 416	3.00 7180
ead	µg/L	0.05	NG	NG	1.0	0.25	<0.0
Iagnesium	μg/L μg/L	1.0 5.0	NG	NG	381 464000	85.9 225000	100 25700
langanese	µg/L	0.10	NG	NG	20100	6700	1350
ercury	µg/L	0.005	NG	NG	<0.005	<0.005	<0.00
olybdenum	µg/L	0.05	NG	NG	0.45	1.94	

Parameter		RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LB SIDE CHANNEL E	LBP POND	LBP POND
					08/10/2020	08/10/2020	20/11/2020
Potassium	µg/L	50.0	NG	NG	7730	13600	15000
Rubidium	µg/L	0.20	NG	NG	15	3.2	3.95
Selenium	µg/L	0.05	NG	2.0	0.69	0.34	0.324
Silicon	µg/L	50.0	NG	NG	6040	800	4730
Silver	µg/L	0.01	NG	NG	0.05	0.05	<0.01
Sodium	µg/L	50.0	NG	NG	1270000	238000	259000
Strontium	µg/L	0.20	NG	NG	3430	1020	1030
Sulfur	µg/L	500	NG	NG	2470000	774000	832000
Tellurium	µg/L	0.20	NG	NG	<1	<1	<0.2
Thallium	µg/L	0.01	NG	NG	0.134	0.05	<0.01
Thorium	µg/L	0.10	NG	NG	3.91	0.5	<0.1
Tin	µg/L	0.10	NG	NG	0.5	0.5	<0.1
Titanium	µg/L	0.30	NG	NG	1.5	1.5	<0.3
Tungsten	µg/L	0.10	NG	NG	0.5	0.5	<0.1
Uranium	µg/L	0.01	NG	NG	5.49	5.07	9.29
Vanadium	µg/L	0.50	NG	NG	2.5	2.5	<0.5
Zinc	µg/L	1.00	NG	NG	12900	16.3	227
Zircronium	µg/L	0.06	NG	NG	<1	<1	0.28
Laboratory Work Order Number					L2515191	L2515191	L2532220
Laboratory Identification Number					L2515191-3	L2515191-4	L2532220-1

Notes: Screening completed on BC AWQG-FWAL FST 1 and FLT 2 guideline values.

Screening completed on BC AWQG-FWAL FST 1 and FLT 2 guideline values.
¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 35 pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines.
² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 35 pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Long Term Average (FLT) guidelines.
³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.
⁴ Guideline is pH dependant.
⁵ Guideline is pH dependant.
⁶ Guideline is pH dependant.

⁶ Guideline is Dissolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

NG - No Guideline

Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is requited due to high Dissolved Solids/Electrical Conductivity (DLDS), Detection limit can vary as described in the COAL DECEMBENT and the Coal DECEMBENT and the coal of the

Appendix B5 L2 Powerhouse Water Analytical Results

Appendix B5 L2 Powerhouse Water Analytical Parameter	Results Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2 DS	L2 DS	L2 DS	L2 DS	L2 DS (0.01um filter)	L2 US	L2 US
Physical Parameters Temperature	°C				08/10/2020	20/11/2020	04/12/2020	14-12-2020	14-12-2020	08/10/2020	04/12/2020
Flow Rate Acidity (Total as CaCO ₃)	L/sec µg/L	1000	NG	NG	<1000	<1000	<1000	<1000		<1000	1400
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	NG NG	NG NG	171 577	262 1050	166 707	343 1550		180 761	153 459
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	92200	210000	134000	291000		256000	153000
рн Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	pH Units μg/L μg/L	0.10 10000 3000	6.5 - 9 NG NG	6.5-9.0 NG NG	8.36 388000 136000	8.31 672000 7900	8.52 545000 76100	8.26 1000000 144000		8.34 507000 23000	8.22 302000 19900
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000	NG	NG NG	<1000 4000	<1000 5000	<1000 9800	<1000 <1000		<1000 4400	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	167000	257000	156000	343000		176000	153000
Ammonia (NH ₄ as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0) pH dependent (at Temp 4 [°] C or in situ T)	pH dependent (6.5-9.0)	111 2520	218 3150	252 2010	334 3150		53 3150	<50 3950
Ammonia FLT Guideline Chloride (Cl')	μg/L	500	600000	pH dependent (at Temp 4 °C or in situ T) 150,000	484 23000	606 65600	387 44000	606 110000		606 46200	759 6570
Nitrate (NO ₃ ⁻ as N) Nitrite (NO ₂ ⁻ as N)	μg/L μg/L	5.0-25.0 1.0-5.0	NG Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	NG Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	218 13.1	237 19.3	145 19.5	316 41		430 17.9	316 <1
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000;	105000	204000	120000	348000		132000	86200
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific	309000	429000	309000	429000		429000	309000
Dissolved Organic Carbon (DOC) Metals, Total Aluminum	mg/L μg/L	3.00	NG NG	NG	4.8 690	22.2 367	4.2 781	2.86		4.1 755	1.6 399
Artimony Arsenic	μg/L μg/L	0.10	NG 5.0	NG 5.0	2.36	1.23	1.62	1.89		1.62	0.45
Barium Beryllium	μg/L μg/L	0.10 0.10	NG NG	NG NG	87.7 <0.1	56.7 <0.1	71.4 <0.1	56.4 <0.1		144 <0.1	78.7 <0.1
Bismuth Boron Cademium	μg/L μg/L	0.05	NG 1200 NG	NG 1200 NG	<0.05 193 0.0294	<0.05 177 0.0238	<0.05 139 0.0362	<0.25 308 <0.025		<0.05 200 0.0529	<0.05 80 0.052
Cadmium Calcium Cesium	μg/L μg/L μg/L	0.005 50 0.01	NG NG NG	NG NG NG	75900 0.105	61800 0.037	0.0382 37500 0.081	<0.025 97200 0.058		71100 0.128	42400 0.062
Chromium ⁴ Cobalt	μg/L μg/L	0.1-1.0	NG 110	NG 4.0	2.9 0.55	1.14	2.18	1.59		5.61 1.03	1.09 0.38
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	3.81	2.19	3.57	<2.5		3.64	1.95
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000	Hardness 50,000 - 250,000: calc.;	10.7	21.74	14.596	29.354		26.1	16.382
Cu FLT Guideline Calc. (relevant prior to August 2019) Iron	μg/L μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	3.7 702	8.4 222	5.36 483	10 290		10.0 1110	6.12 963
Lead ³ Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to	µg/L	0.05	101 - 348 Based on Hardness 8000-360,000	Calc. based on Hardness	0.56	0.29	0.424	0.27		0.69	0.493
water hardness 8000-360,000 µg/L	μg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.	Applies to Hardness 8000-360,000	73.6	209.9	118.5	318.0		270.2	140.295
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG Hardness > 8000 : calc.	6.2	11.5	7.9	15.7		13.8	8.782
Lithium Magnesium Manganese ³	μg/L μg/L μg/L	1.0 5.0 0.10	NG NG Calc. based on Hardness	NG NG Calc. based on Hardness	31.8 22700 17	33.5 18100 6.99	26.7 12000 12.4	57.3 27300 8.45		27.1 15900 38.3	18.4 10600 43.4
Manganese * Mn FST Guideline Calc (Based on Hardness as CaCO3)	μg/L	0.10	Applies to Hardness 25000-259000 µg/L Mn : calc.	Calc. based on hardness	1556.0	2854.2	2016.7	3394.2		3361	2226
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 μg/L Mn : calc.	1010.7	1529.0	1194.6	1885.4		1731	1278
Mercury (Based on methyl Hg & total mass Hg) Molybdenum Nickel	μg/L μg/L μg/L	0.005 0.05 0.50	NG 2000 NG	<u>Calc.</u> ≤ 1000	<0.005 11.4 2	<0.005 16.5 1.5	<0.005 19.2 1.85	<0.005 33.7 <2.5		<0.005 8.37 3.68	<0.005 2.18 3.7
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG	NG	<50 6140	<50 5390	<50 6260	<250 8250		<59 5170	53 1490
Rubidium Selenium	μg/L μg/L	0.2 0.05	NG NG	NG 2.0	6.56 2.65	6.09 1.8	8.05 1.72	8.9 3.43		3.84 1.86	1.18 2.32
Silicon Silver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	6140 0.016	4480 <0.01	5420 <0.01	5840 <0.05		6400 0.023	3540 <0.01
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	0.1	3.0	3.0	3.0		3.0	3
Ag FLT Guideline Calc Sodium	μg/L μg/L	50.0	NG	Hardness > 100,000 Ag = 0.03 Hardness > 100,000 Ag = 1.5 NG	0.05 151000	1.5 158000	1.5 136000	1.5 260000		1.5 74100	1.5 36400
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG NG	NG NG	286 82300	253 67700	205 53500	363 120000		491 49700	289 30700
Tellerium Thallium Thorium	μg/L μg/L μg/L	0.2 0.01 0.10	NG NG NG	NG NG NG	<0.2 0.018 0.14	<0.2 <0.01 <0.1	<0.2 0.011 <0.1	<1 <0.05 <0.5		<0.2 0.025 0.16	<0.2 0.014 0.11
Tin Tin Titanium	μg/L μg/L	0.10	NG NG NG	NG NG NG	1.53 19.6	0.4	1.25	0.56		1.24	0.24
Tungsten Uranium	μg/L μg/L	0.10	NG NG	NG NG	1.01 2.53	0.53 1.8	1.03 1.35	1.03 2.98		0.63 1.63	<0.1 1.23
Vanadium Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	5.32 21.6	3.45 18.1	5.19 13.4	6.6 <15		3.95 21.9	1.79 10.2
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000		34.7	123.0	66.0	183.8		157.5	80.25
Zn FLT Guideline Calc. Zircronium	µg/L	0.06	NG	Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000 NG	9.15 0.75	97.5 0.27	40.5	158.25		132 0.46	54.75 <0.23
Metals, Dissolved Aluminum ⁵	µg/L	1.0	100	50	48.3	258	552	340	235	20.4	9.8
AI FST Guideline Calc (based on pH)	µg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100	100	100	100	100	100	100
Al FLT Guideline Calc (based on median pH) Antimony	μg/L μg/L	0.10	NG	median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG	50 0.39	50 1.2	50 1.75	50 1.68	50 1.71	50 1.47	50 0.38
Arsenic Barium	μg/L μg/L	0.10	NG NG	NG NG	0.79 47	1.75 52.9	2.57 58.4	2.69 43.8	2.43 32	0.97 137	0.37 63.5
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.25	<0.02 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	NG Calc. based on hardness	46 0.0058	187 0.0077	168 0.0098	280 <0.025	301 <0.01	188 0.014	91 0.016
Cd FST Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	Hardness 3,400 - 285,000, Calc.	0.54	1.26	0.80	1.77		1.55	0.9115
Cd FLT Guideline Calc. Calcium	μg/L μg/L	50.0	NG	Hardness > 285,000, is Capped Value of 285,000 NG	0.20 26000	0.37 56300	0.26	0.46	68400	0.42	0.2892
Cesium Chromium	μg/L	0.01 0.10	NG NG	NG NG	<0.01 0.56	0.026	0.029	<0.05 1.28	0.039	<0.01 3.59	<0.01 0.35
Cobalt Copper ⁶	μg/L μg/L	0.10	NG Calc. based on BLM Model	NG Calc. based on BLM Model	<0.1 1.36	0.11 0.84	0.11 1.33	<0.5 <1	0.12	0.47 1.03	<0.1 0.67
Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron	μg/L μg/L μg/l	10.0	BLM Ligand Model value 350	BLM Ligand Model value	28.6 5.4 23	172.1 37.2 25	41.1 9.2 27	23.5 4.4 <50	23.5 4.4 <10	36.6 7.7 <10	10.6 2.0 <10
Iron Lead Lithium	μg/L μg/L μg/L	10.0 0.05 1.0	350 NG NG	NG NG NG	23 <0.05 6.4	25 <0.05 34.7	27 <0.05 28.5	<50 <0.25 49.6	<10 <0.05 64.3	<10 <0.05 29.7	<10 <0.05 19.4
Magnesium Manganese	μg/L μg/L	5.0 0.10	NG NG	NG NG	6620 1.25	16900 3.49	10000 2.46	26400 2.55	27800 0.22	17300 22.1	10000 19.4
Mercury Molybdenum	μg/L μg/L	0.005 0.05	NG NG	NG NG	<0.005 3.47	<0.005 16.8	<0.005 23.1	<0.005 30.8	- 33	<0.005 8.74	<0.005 2.47
Nickel Phosphorus Potassium	μg/L μg/L	0.50 50.0 50.0	NG NG NG	NG NG NG	0.81 <50 1550	1.21 <50 5730	1.17 <50 6930	<2.5 <250 8300	1.73 <50 9340	2.7 <50 5250	2.73 <50 1320
Potassium Rubidium Selenium	μg/L μg/L μg/L	0.20 0.05	NG NG NG	NG NG 2.0	1550 1.07 0.517	6.5 1.79	6930 7.58 1.7	8300 8.5 3.36	9340 8.38 3.58	2.67 2.04	1320 0.57 2.69
Silicon Silver	μg/L μg/L	50.0 0.01	NG NG	NG NG	2770 <0.01	4360 <0.01	4980 <0.01	5440 <0.05	5480 <0.02	4440 <0.01	2860 <0.01
Sodium Strontium	μg/L μg/L	50.0 0.20	NG NG	NG NG	21900 115	155000 234	124000 189	257000 319	288000 337	73300 649	34700 291
Sulfur Tellurium Thallium	μg/L μg/L μg/L	500 0.20 0.01	NG NG NG	NG NG NG	9480 <0.2 <0.01	67300 <0.2 <0.01	45400 <0.2 <0.01	113000 <1 <0.05	134000 <0.2 <0.01	51100 <0.2 <0.01	29600 <0.2 <0.01
i nailium Thorium Tin	μg/L μg/L μg/L	0.01 0.10 0.10	NG NG NG	NG NG NG	<0.01 <0.1 0.36	<0.01 <0.1 0.33	<0.01 <0.1 1.38	<0.05 <0.5 <0.5	<0.01 <0.1 0.42	<0.01 <0.1 0.77	<0.01 <0.1 0.12
Titanium Tungsten	μg/L μg/L	0.30	NG NG	NG NG	0.73 0.2	0.85 0.64	0.98 1.25	<1.5 0.98	<0.3 0.98	0.32 0.56	<0.3 <0.1
Uranium Vanadium	μg/L μg/L	0.01	NG NG	NG NG	0.536	1.75 2.91	1.14 4.8	2.76 5.9	2.53 5.56	1.36 1.47	1.14 <0.5
Zinc Zircronium Laboratory Work Order Number	μg/L μg/L	1.00 0.06	NG NG	NG NG	2.4 <0.2 L2515191	4.9 <0.2 L2532220	2.2 <0.2 L2537214	<5 <1 L2540107	<1.0 <0.3 VA20C3500	5.1 <0.2 L2515191	2.8 <0.2 L2537214
Laboratory Work Order Number Laboratory Identification Number <u>Notes:</u>					L2515191 L2515191-2	L2532220 L2532220-2	L2537214 L2537214-2	L2540107 L2540107-1	VA20C3500 VA20C3500-001	L2515191 L2515191-1	L2537214 L2537214-1
Screening completed on BCAWQG-FST ¹ and FLT ² guideline values. ¹ BC Ministry of Environment, Water Protection & Sustainability Branch											
² BC Ministry of Environment, Water Protection & Sustainability Branch ³ Guideline is hardness dependant. Where results are above laboratory	(2018). British reportable de	n Columbia Ap tection limits, g	proved Water Quality Guidelines (BCAWQG): Aquatic Lif guideline limits have been evaluated based on individual s	e, Wildlife & Agriculture Summary Report. 36 pp. ample hardness. Sample-specific guideline values are							
Guideline is for Chromium (IV) cation. Analytical results are for unspe- Guideline is pH dependant.	ciated Chromit	um. Where and	alytical results exceed the guideline, speciated analysis mathematical second	ay be warranted.							
NG - No Guideline Detection limit can vary as described in the COA. Detection limit can be 3OLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater			quired due to high Dissolved Solids/Electrical Conductivity	(DLDS), e.g. nitrite.							
and shaded dark gray: Exceeds BCAWQG-FST (Freshwater	Guun rerm) ai	w returne									

NG - No Guideline Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline. Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline. RED - Measured value is below detection limit (DL); value shown is 50% of DL Blank - Not analyzed

