Appendix C

Site C ARD/ML Management Plan – 2023 Water Quality Annual Report

Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, BC Hydro Left Bank Debris Boom and L2 Powerhouse 2023 Annual Report

PRESENTED TO **BC Hydro**

MARCH 27, 2024 ISSUED FOR USE FILE: 704-ENG.VMIN03021-06

> Tetra Tech Canada Inc. 150, 1715 Dickson Avenue Kelowna, BC V1Y 9G6 CANADA Tel 250.862.4832 Fax 250.862.2941

This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at midstream and discharge locations along River Road ditch near Blind Corner and below Howe Pit, in proximity to the South Bank Initial Access Road (SBIAR), and along the L3 Creek catchment. The River Road and SBIAR locations have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area and BC Hydro Left Bank Debris Boom (LBDB), to help evaluate the effectiveness of mitigation measures which have shown, by monitoring results, to have effectively mitigated for non-PAG slopes. Sampling at L3 Creek was terminated in April 2021 after a sufficient dataset of trends over time had been collected. Details of the 2023 sampling locations, objectives, and requirements for testing at each location are presented in Section 5 of this report.

This water quality sampling program is conducted in accordance with BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP), Rev. 12, Appendix E (Rev. 6.1) Acid Rock Drainage and Metal Leachate Management Plan - Section 5.2.1.7 (BC Hydro, 2023), which specifies requirements for road cut monitoring. This water quality program is one component of numerous water quality monitoring programs, including regular monitoring in the Peace River receiving environment, reported under separate cover (Ecofish, 2024a).

The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources. Throughout the report the "RB" and "LB" nomenclature refers to right and left riverbanks (when facing downstream), respectively.

In accordance with the CEMP, results for the monitoring program locations are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG).

Water quality measurements collected at discharge locations along River Road and downstream locations at SBIAR that exceed the BCAWQG-FST values are reported to BC Hydro within 24-hours of receiving the results, and subsequently to the provincial Emergency Management BC hotline, the Independent Environmental Monitor, and the office of the Comptroller of Water Rights. The complete results of sampling at all locations are presented in a monthly routine memo to BC Hydro.

The results of monthly monitoring are compiled and tracked for changes over time with special interest in metals associated with ARD/ML drainage, e.g., iron, aluminum, arsenic, cadmium, cobalt, copper, manganese, silver, and zinc. The trend charts are updated approximately on a quarterly basis, depending on sampling frequency, that are included with the routine memo for that month's sampling event. The results of time series trend analysis are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater long-term (FLT) chronic values for sulphate since no short-term (FST) exceedance value is applicable.

River Road

Access road construction in 2016-2017, on the north/left bank, between Howe Pit and the Peace River along River Road cut through bedrock. Current mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage. The limestone in the ditch was replaced in July 2021 to provide fresh surfaces for acid buffering.

A total of ten (10) monitoring locations were monitored in the River Road catchment near Blind Corner to monitor the effectiveness of the limestone rip-rap in the ditch line and on the rock slope, and to observe longer term influences from the Potentially Acid Generating (PAG) outcrop at Blind Corner and potential run-off/seepage from Howe Pit (non-Site C impacted area) on the water collected in the River Road ditch. In 2023, water quality sampling was attempted on a routine monthly basis from six of the River Road catchment locations, 1) the upper chimney drain (LBRR-UC), 2) lower chimney drain (LBRR-LC), 3) at the discharge of culvert RR-11 (LBRR-DD), 4) end of ditch diversion pipe (LBRR-EDP), 5) RR-9 culvert (LBRR-RR9), and 6) RR-8 culvert (LBRR-RR8). The LBRR-12+500 location was no longer sampled in 2023. In situ testing, without lab sampling, is conducted at four additional locations within the River Road ditch at LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920. Occasionally, discharge from the outlet of culverts LBRR-DD, LBRR-RR9 and/or LBRR-RR8 is observed, which potentially reaches the Peace River and is documented in field notes and each of the routine monthly memos.

In the months of January, February, October, November and December 2023, frozen and/or dry conditions prevailed at RR. Lab samples were collected from River Road during three (3) sampling events in 2023 (March, April, September) resulting in a sum of seven (7) total samples. One (1) sample was collected from LBRR-DD (March), three (3) samples from LBRR-EDP (March, April, September), one (1) sample from LBRR-LC (March), and two (2) samples from LBRR-RR9 (March, September). No in situ or lab samples were collected from LBRR-UC or RR8 in 2023 due to dry or frozen conditions.

Of the total three (3) water quality sample events outside frozen and/or dry conditions at River Road locations in 2023, exceedances to the BCAWQG-FST were measured for total iron (6), total arsenic (3), total zinc (1), dissolved aluminum (2) and chloride (2). Of the three discharge locations, at LBRR-DD one exceedance was measured for total iron, at RR9 two exceedances were measured for total iron and one exceedance for chloride during the months of March and September 2023. The RR8 culvert was not sampled in 2023, or previously in 2021 or 2022, due to water not reaching this point in the ditch.

Water quality measurements along River Road have indicated that run-off water quality is influenced by active acid rock drainage and metal leaching (ARD/ML) processes within the River Road ditch catchment, however neutral drainage conditions prevail, and the elevated metals concentrations are generally attributed to sediment loading from the roadway or from sediment in the ditchline. Elevated metal levels at River Road have also been correlated in the past with periods of naturally elevated metals concentrations in the Peace River during freshet and after high precipitation events. As per CEMP Appendix E Section 5.2.1.7, it is recommended that water quality monitoring is continued on a monthly basis at the established locations within the River Road catchment.

SBIAR

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between Relocated Surplus Excavation Material (RSEM) R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes. Management and mitigation measures include reduction of surface contact water through capture of up-gradient flow and diversion through a pipe to limit flow along the exposed shale slope, and collection of any remaining PAG contact water in ditches. It is noted that the water flowing in the ditches does not have a direct downstream receptor; the water from the east ditch passes under the road via culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch which conveys to the PRHP RSEM R6 pond (permitted for PAG contact water and subject to monitoring before discharge). The effectiveness of the mitigation is evaluated through monthly monitoring of water quality stations along the road.

In 2023, four (4) monitoring locations were sampled at SBIAR, which included two stations in each of the east and west ditches at the toe of the PAG slope exposure. The west upstream and downstream SBIAR ditches (RBSBIAR-DS, RBSBIAR-US) and east upstream and downstream SBIAR ditches (RBSBIAR-EDS and RBSBIAR-EUS). The sample stations are to monitor for potential long-term influence on water quality from construction of the SBIAR facility. Sampling at the SBIAR monitoring locations was conducted monthly in 2017, 2019, 2020, 2021, 2022 and 2023, and quarterly in 2018.

During 2023, outside of dry or frozen conditions, lab samples were collected from SBIAR during six (6) sampling events (March, April, June, July to September) resulting in a sum of twelve (10) samples. One (1) sample was collected from RBSBIAR-US (September), six (6) samples from RBSBIAR-DS (March, April, June to September), two (2) samples from RBSBIAR-EUS (June, July) and one (1) sample from RBSBIAR-EDS (March).

In situ testing was attempted on a monthly basis with sufficient water available at some, but not all, SBIAR locations for eight (8) months between March to October 2023. Frozen conditions in January, February, November and December 2023 prevented any situ measurements, and no lab samples were collected in January, February and October to December 2023 due to frozen conditions.

During 2023, BCAWQG-FST exceedances were measured in the west ditch at RBSBIAR-US for total iron (1), and at RBSBIAR-DS for total (2) and dissolved (1) iron, dissolved aluminum (2), total arsenic (2), total zinc (1), total cobalt (1) and dissolved cadmium (1). In the east ditch, BCAWQG-FST exceedances were measured at RBSBIAR-EUS for dissolved aluminum (1), and at RBSBIAR-EDS for total iron (1), total arsenic (1) and total zinc (1).

L2 Powerhouse Area

Two sample locations were established at the L2 Powerhouse area adjacent to the powerhouse on the Right Bank in October 2020. The L2 area was identified for sampling due to the exposure of a shale slope during excavation for the Powerhouse and continues to evaluate the water quality for potential impact from shale exposures in the area.

The lower L2 Area PAG slope is mitigated by covering of the slope that effectively makes it a non-PAG contact surface. The water quality monitoring program has been put in place to verify that the mitigation applied is working and that non-PAG contact water is observed in this area. The L2 Powerhouse is an area of active construction which may influence the sampling stations. The water management at this area is difficult to follow as there is active construction throughout the area and multiple sources of water input and discharges. Water is tested and pumped to treatment as needed.

In 2023, the L2-US location was sampled three (3) times from January to March, resulting in one BCAWQG-FST exceedance measured for total iron (1).

The L2-DS location was not sampled in 2023.

BC Hydro Left Bank Debris Boom

Shale was exposed during construction of the BC Hydro Left Bank Debris Boom (LBDB) anchor area in approximately March 2020. The LBDB PAG slope exposures will eventually be completely inundated with the reservoir formation. Water quality sampling at LBDB provides data to apply to understanding of water discharge and flooding in subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels. Sample locations were established and first sampled on October 8, 2020, to characterize water quality in the LBDB area for ARD/ML monitoring.

The Left Bank Pond (LB Pond or occasionally referred to as LBP Pond) is the only location within the area that has been consistently available for sampling. In 2023, no samples were collected from LBDB ditches due to dry and/or frozen conditions. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LB Pond location, is immediately following a significant rainfall event.

During 2023, the LB Pond was sampled five (5) times including April and June to September.

At LB Pond, four BCAWQG-FST exceedances were measured above the guidelines in September 2023 for total and dissolved iron, dissolved aluminum and total manganese. Water is not commonly observed to discharge from the LB Pond, but if it does it passes through a limestone lined water management ditch system to the downstream monitoring station.

TABLE OF CONTENTS

1.0	INTR	NTRODUCTION				
2.0	MON	IITORIN	IG PROGRAM SET-UP AND PURPOSE	1		
	2.1 Monitoring Program Requirements and Comparison Criteria					
	2.2	Analvti	cal Program Parameters	2		
	2.3	Summa	ary of Parameters of Interest	3		
3.0	SAMPLE LOCATIONS					
	3.1	Descrip	otion of River Road Sample Locations	5		
		3.1.1	Limestone Ditch Status and Maintenance	6		
	3.2	Description of South Bank Initial Access Road Locations				
	3.3	Description of L2 Powerhouse Area Sampling Locations				
	3.4	3.4 Description of BC Hydro Left Bank Debris Boom Sampling Locations				
10						
4.0	LUU	Weath	er Conditions - Temperature and Precipitation	. J		
	4.1	Classif	ication of Seasonal Flows in Ditches	10		
	4.3	Peace	River Turbidity and TSS	11		
	1.0	1 0000				
5.0	WAT	ER QU	ALITY MONITORING PROGRAM RESULTS	12		
	5.1	Sample	e Events in 2023	.12		
	5.2	Quality	Control and Quality Assurance Program	.13		
		5.2.1	Overview of QA/QC Program	.13		
		5.2.2	Laboratory QA/QC	.13		
		5.2.3	Tetra Tech QA/QC	.13		
			5.2.3.1 Blank Samples	.13		
			5.2.3.2 Replicate Samples	.14		
			5.2.3.3 Total vs Dissolved Concentrations	.14		
	5.3 River		Road Water Quality Monitoring	.14		
		5.3.1	In Situ Measurements and Field Observations	.15		
		5.3.2	Freshwater Short-Term Maximum Exceedances	.15		
		5.3.3	Trend Monitoring and Details of 2023 Sample Results	.16		
	5.4	SBIAR	Water Quality Monitoring	.16		
		5.4.1	In Situ Measurements and Field Observations	.17		
		5.4.2	Freshwater Short-Term Maximum Exceedances	.17		
		5.4.3	Trend Monitoring and Details of 2023 Sample Results	.18		
	5.5	L2 Pov	verhouse	.19		
		5.5.1	Field Observations and In Situ Measurements	.19		
		5.5.2	Freshwater Short-Term Maximum Exceedance	.19		
		5.5.3	Trend Monitoring and Details of 2023 Sample Results	.20		
	5.6	BC Hy	dro Left Bank Debris Boom	.20		
		5.6.1	Field Observations and In Situ Measurements	.20		
		5.6.2	Freshwater Short-Term Maximum Exceedances	.21		
		5.6.3	Trend Monitoring and Details of 2023 Sample Results	.21		

6.0	CON	CLUSIONS AND RECOMMENDATIONS	21			
	6.1	River Road Water Quality Monitoring	22			
	6.2	SBIAR Water Quality Monitoring	25			
	6.3	L2 Powerhouse Water Quality Monitoring	26			
	6.4	BC Hydro Left Bank Debris Boom Monitoring	26			
7.0	CLO	SURE	27			
REFE	REFERENCES					

APPENDIX SECTIONS

TABLES

- Table 1
 Water Sampling Locations and In Situ and Lab Events
- Table 2 Temperature and Precipitation Daily and 7-Day Average
- Table 3 Classification of Flows in Ditch
- Table 4 Turbidity and TSS of the Peace River for Water Sampling Events
- Table 5a QAQC Travel and Field Blanks
- Table 5b QAQC Field Replicate Samples
- Table 6 River Road In Situ Water Quality Sampling
- Table 7
 River Road Water Quality Exceedances Summary (BCAWQG-FST)
- Table 8 RBSBIAR In Situ Water Quality Measurements
- Table 9
 RBSBIAR Water Quality Exceedances Summary (BCAWQG-FST)
- Table 10 L2 Powerhouse In Situ Water Quality Sampling
- Table 11 L2 Powerhouse Water Quality Exceedances Summary (BCAWQG-FST)
- Table 12 LBDB In Situ Water Measurements
- Table 13 LBDB Water Quality Exceedances Summary (BCAWQG-FST)
- Table 14 Discharge and Downstream Locations Minimum, Maximum and Mean Values

FIGURES

- Figure 1 River Road Monitoring Locations (LB)
- Figure 2 SBIAR and L2 Powerhouse Monitoring Locations (RB)
- Figure 3 LBDB Monitoring Locations (LB)
- Figure 4 BC Hydro Site C Meteorological and Air Quality Stations
- Figure 5 Turbidity and TSS Measured in the Peace River

RIVER ROAD (Fig 6-17)

- Figure 6 pH at RR Locations
- Figure 7 Total Alkalinity at RR Locations
- Figure 8 Acidity at RR Locations
- Figure 9 Sulphate at RR Locations
- Figure 10 a) TDS and b) TSS at RR Locations
- Figure 11 a) Total and b) Dissolved Aluminum at RR Locations
- Figure 12 b) Total and b) Dissolved Iron at RR Locations
- Figure 13 Total Arsenic at RR Locations
- Figure 14 Dissolved Cadmium at RR Locations
- Figure 15 Total Cobalt at RR Locations
- Figure 16 Dissolved Copper at RR Locations
- Figure 17 a) Total and b) Dissolved Zinc at RR Locations

RBSBIAR (Fig 18-30)

- Figure 18 pH at RBSBIAR Locations
- Figure 19 Total Alkalinity at RBSBIAR Locations
- Figure 20 Acidity at RBSBIAR Locations
- Figure 21 Sulphate at RBSBIAR Locations
- Figure 22 a) TDS and b) TSS at RBSBIAR Locations
- Figure 23 a) Total and b) Dissolved Aluminum at RBSBIAR Locations
- Figure 24 a) Total and b) Dissolved Iron at RBSBIAR Locations
- Figure 25 Total Arsenic at RBSBIAR Locations
- Figure 26 Dissolved Cadmium at RBSBIAR Locations
- Figure 27 Total Cobalt at RBSBIAR Locations
- Figure 28 Dissolved Copper at RBSBIAR Locations
- Figure 29 a) Total and b) Dissolved Zinc at RBSBIAR Locations
- Figure 30 a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc
- Figure 31 Ammonia at RBSBIAR Locations

L2 Powerhouse (Fig 32-45)

- Figure 32 pH at L2 Powerhouse Locations
- Figure 33 Total Alkalinity at L2 Powerhouse Locations
- Figure 34 Acidity at L2 Powerhouse Locations
- Figure 35 Sulphate at L2 Powerhouse Locations
- Figure 36 a) TDS and b) TSS at L2 Powerhouse Locations
- Figure 37 a) Total and b) Dissolved Aluminum at L2 Powerhouse Locations
- Figure 38 a) Total and b) Dissolved Iron at L2 Powerhouse Locations
- Figure 39 Total Arsenic at L2 Powerhouse Locations
- Figure 40 Dissolved Cadmium at L2 Powerhouse Locations

- Figure 41 Total Cobalt at L2 Powerhouse Locations
- Figure 42 Dissolved Copper at L2 Powerhouse Locations
- Figure 43 a) Total and b) Dissolved Zinc at L2 Powerhouse Locations
- Figure 44 a) Total and b) Dissolved Selenium at L2 Powerhouse Locations
- Figure 45 Ammonia at L2 Powerhouse Locations
- BC Hydro Left Bank Debris Boom (Fig 46-57)
- Figure 46 pH at LBDB Locations
- Figure 47 Total Alkalinity at LBDB Locations
- Figure 48 Acidity at LBDB Locations
- Figure 49 Sulphate at LBDB Locations
- Figure 50 a) TDS and b) TSS at LBDB Locations
- Figure 51 a) Total and b) Dissolved Aluminum at LBDB Locations
- Figure 52 a) Total and b) Dissolved Iron at LBDB Locations
- Figure 53 Total Arsenic at LBDB Locations
- Figure 54 Dissolved Cadmium at LBDB Locations
- Figure 55 Total Cobalt at LBDB Locations
- Figure 56 Dissolved Copper at LBDB Locations
- Figure 57 a) Total and b) Dissolved Zinc at LBDB Locations

PHOTOGRAPHS

- Photo 1 River Road LBRR-UC location, September 28, 2023.
- Photo 2 River Road LBRR-LC location, May 19, 2023.
- Photo 3 River Road LBRR-920 location, May 19, 2023.
- Photo 4 River Road LBRR-DD location, discharge area, May 19, 2023.
- Photo 5 River Road LBRR-EDP location looking upstream, May 19, 2023.
- Photo 6 River Road LBRR-EDP location looking downstream, May 19, 2023.
- Photo 7 River Road RR8 inlet location, May 19, 2023.
- Photo 8 River Road RR8 outlet location, May 19, 2023.
- Photo 9 RBSBIAR-US upstream west ditch, looking upstream, September 28, 2023.
- Photo 10 RBSBIAR-US upstream west ditch, looking downstream, September 28, 2023.
- Photo 11 RBSBIAR-DS downstream west ditch looking upstream, September 28, 2023.
- Photo 12 RBSBIAR-DS downstream west ditch looking downstream, September 28, 2023.
- Photo 13 RBSBIAR-EUS upstream east ditch, looking upstream, September 28, 2023.
- Photo 14 RBSBIAR-EUS upstream east ditch, looking downstream, September 28, 2023.
- Photo 15 RBSBIAR-EDS downstream east ditch, September 28, 2023.
- Photo 16 RBSBIAR-EDS downstream east ditch, looking upstream, September 28, 2023.
- Photo 17 L2-US location, March 29, 2023.
- Photo 18 L2-DS location, March 29, 2023.
- Photo 19 L2-US and L2-DS location, March 29, 2023.
- Photo 20 LB Pond location, September 28, 2023.
- Photo 21 LBDB-EUS location, looking upstream, September 28, 2023.
- Photo 22 LBDB-EUS location, looking downstream, September 28, 2023.
- Photo 23 LBDB-EDS location, looking upstream, September 28, 2023.
- Photo 24 LBDB-EDS location, looking downstream, September 28, 2023.

- Photo 25 LBDB-LD-US location, May 19, 2023.
- Photo 26 LBDB-LD-MS location, May 19, 2023.
- Photo 27 LBDB-LD-DS location, September 28, 2023.
- Photo 28 LBDB-WDS and LBDB-EDS location, looking downstream, May 19, 2023.
- Photo 29 LBDB-WUS location, looking downstream, September 28, 2023.
- Photo 30 LBDB-WDS location, looking upstream, September 28, 2023.

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Surface Water Analytical Laboratory Result Tables

ACRONYMS & ABBREVIATIONS

Acronyms/Abbreviations	Definition
ARD	Acid Rock Drainage
ARD/ML	Acid Rock Drainage and Metal Leaching
BC MoE	BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch
BCAWQG	British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture
°C	Degrees Celsius
CEMP	Construction Environmental Management Plan
DOC	Dissolved Organic Carbon
FB	Field Blank
FST	Freshwater Short-Term Maximum
FLT	Long-term Maximum
L/s	Litres per second
LBDB	Left Bank Debris Boom
LBRR	Left Bank River Road (referring to Sample ID)
Lorax	Lorax Environmental Services Ltd.
mg/L	milligrams per litre
ML	Metal Leaching
PAG	Potentially Acid Generating
PRHP	Peace River Hydro Partners
ppm	parts per million
RBSIBAR	Right bank South Bank Initial Access Road (referring to Sample ID)
RPD	Relative Percent Difference
RSEM	Relocated Surplus Excavation Material
SBIAR	South Bank Initial Access Road
ТВ	Travel Blank
μg/L	micrograms per litre
WQG	Water Quality Guideline

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of BC Hydro and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than BC Hydro, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at locations around the Site C project site where bedrock shale exposures, classified as potentially acid generating (PAG), may have the potential to contribute to water quality changes due to acid rock drainage and metal leaching (ARD/ML) potential of the shale bedrock.

We acknowledge this work is being conducted on the traditional territory of Treaty 8 First Nations of Dunne Zaa, Cree and Tse'khene cultural descent.

Monitoring locations were established by Tetra Tech in conjunction with BC Hydro personnel. Where possible (and applicable), they are coincident with the locations and station names used in 2016 by Lorax Environmental Services Ltd. (Lorax) for water quality monitoring on behalf of Peace River Hydro Partners (PRHP) prior to BC Hydro taking over sampling of these stations. Water sampling locations with UTM coordinates are shown in the attached maps in Figures 1 through 3. Photos of the water sampling locations during 2023 are included in the Photographs (Photos 1 to 28) section of the Appendix.

Locations along River Road ditch near Blind Corner and below Howe Pit, and in proximity to the South Bank Initial Access Road (SBIAR) have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area and the BC Hydro Left Bank Debris Boom (LBDB). These locations are also sampled monthly, outside of frozen or dry conditions. The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources.

This report documents the sampling events conducted monthly between January and December of 2023 and the results of water quality monitoring. Results are discussed in the context of ARD/ML management and mitigation.

The water conveyance facilities at River Road ditch near Blind Corner and SBIAR are identified as having potential for direct ARD/ML impacts due to exposure of shale bedrock during construction related activities. River Road and SBIAR are downstream of the dam.

The LBDB area has an exposed PAG slope in the central part of the area. Water quality sampling at LBDB provides information on the water quality at locations upstream and downstream of the PAG slope exposure. Ultimately, this area will be flooded by reservoir filling.

The L2 Powerhouse area is sampled to establish upstream and downstream water quality characterization and for ARD/ML PAG slope monitoring in the L2 Powerhouse area and adjacent to the powerhouse on the Right Bank.

2.0 MONITORING PROGRAM SET-UP AND PURPOSE

Water quality sampling has been scheduled during approximately the third week of each month from 2017 to 2023 to support a continuous monitoring record for reportable water quality compliance. The monitoring locations are visited monthly, and samples are collected except under frozen or dry conditions. The 2023 monitoring period commenced with the first sample event on January 30, 2023 and the twelfth and final sample event of the year on December 21, 2023. Each sampling event was completed by BC Hydro personnel and was documented by field notes and photographs, including during dry and frozen conditions.

2.1 Monitoring Program Requirements and Comparison Criteria

Requirements for the development and implementation of the water quality monitoring programs are mandated under the Environmental Assessment Certificate – Condition 3, and the Federal Decision Statement – Condition 7. Reporting of the program results are required on an annual basis. These requirements were carried forward and presented in the BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP), Revision 12 (October 23, 2023), Appendix E (Rev 6.1) Acid Rock Drainage and Metal Leachate Management Plan.

In accordance with the CEMP Appendix E Section 5.2.1.7, analytical results for all monitoring locations are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater short-term maximum (FST) values¹ (BC MOE, 2021). In August 2023, the BC Ministry of Environment introduced amendments to the BCAWQG that included specific changes for aluminum, arsenic and zinc (BC MOE, 2023), summarized as follows:

Aluminum: changed from short-term (FST) to long-term (FLT) guideline; from dissolved to total concentration; and, is now hardness, pH and DOC-dependent.

Arsenic: changed from short-term (FST) to long-term (FLT) guideline.

Zinc: changed from total to dissolved concentration; and is now hardness, pH and DOC-dependent.

Water quality measurements recorded at the sampling stations are reported to BC Hydro within 24-hours of receiving lab results, and a routine memo is prepared on a monthly basis to summarize field in situ and analytical lab results. The monthly results are compiled for long-term trend analysis in trend charts. The long-term trends data is evaluated against the BCAWQG freshwater long-term (BCAWQG-FLT) chronic values in Appendix B, Table B1 to B4 and trend charts in Figures 6 to 56.

Water quality measurements collected at discharge locations along River Road and downstream locations at SBIAR that exceed the BCAWQG-FST values are reported to BC Hydro within 24-hours of receiving the results, and subsequently to the provincial Emergency Management BC hotline, the Independent Environmental Monitor, and the office of the Comptroller of Water Rights. The complete results of sampling at all locations are presented in a monthly routine memo to BC Hydro.

Under BCAWQG, the intention of freshwater long-term (FLT; "chronic") WQG's are for the protection of the most sensitive species and life stage against sub-lethal and lethal effects for indefinite exposure, and uses an averaging period, whereas the freshwater short-term (FST; "acute") WQG's are intended to protect against severe effects, e.g., lethality, to the most sensitive species and life stage over a defined short-term exposure period approach (BC MOE, 2021, 2023).

2.2 Analytical Program Parameters

An off-site laboratory analytical program was designed to measure a suite of parameters suitable for screening the water quality against the BCAWQG-FST for surface water. The sampling and analytical procedures implemented during 2023 were commensurate with Tetra Tech's monitoring programs from 2017 to 2022, and the program

¹ The British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture document has been updated frequently during the course of the monitoring program, and has undergone revisions in March 2016, January 2017, March 2018, August 2019, 2021, and 2023 Screening of the monthly water quality results are performed against the contemporary guideline values. During the 2023 monitoring program, water quality results were evaluated against the 2021 guidelines. Most recently, the BC MoE introduced new WQG's in August 2023 with changes to aluminum, arsenic and zinc guideline/calculations, which were also introduced into the BC Hydro master datasheet. This change affects the latter 2023 reporting.

previously implemented in 2016 by Lorax for parameters, analytical methods, and detection limits. Samples were collected in a set of clean bottles provided by the lab and were submitted for analysis.

Analysis was conducted for the following parameters:

- Total Metals, Low Level (including Hg);
- Dissolved Metals, Low Level (including Hg);
- Hardness;
- pH;
- Alkalinity: Total/Species (CO₃²⁻, HCO₃⁻, OH⁻);
- Acidity;
- Solids: Total Suspended (TSS) and Total Dissolved (TDS);
- Anions: Nitrogen species (nitrite, nitrate, ammonia), Sulphate, Chloride; and
- Dissolved Organic Carbon (DOC).

2.3 Summary of Parameters of Interest

Some of the key parameters that were monitored during this program are described below. Although some of these parameters do not have BCAWQG-FST guidelines, they can be useful indicators to potential changes in water chemistry related to ARD/ML processes.

Alkalinity and pH are important water quality parameters to indicate the ratio between residual alkalinity and acidity in solution and are key indicators for onset of acidic conditions within neutral to alkaline waters when monitored over time. Neutralization of acidity by carbonate, and to a lesser degree silicate, minerals can temporarily increase alkalinity through release of the bicarbonate ion into solution, thereby buffering pH at a near constant value. Bicarbonate will continue to react with, and deplete, any residual acidity. Once all carbonate and bicarbonate sources are depleted, alkalinity no longer is available to neutralize acidity and pH will drop. An indicator for accelerating acid generating processes is when increasing alkalinity is observed without proportional change to pH. The BCAWQG-FST guideline for pH ranges from 6.5-9.0. There is no BCAWQG-FST guideline for alkalinity or acidity.

Water clarity is measured as turbidity (nephelometric turbidity units, NTU) or as total suspended solids (TSS), which is an indicator of the amount of sediment (generally accepted as silt sized particles and coarser, or >0.45 µm in diameter), contained within the water column. TSS can increase if sediment loading occurs due to erosion, or due to rapid precipitation of secondary minerals from chemical reactions such as neutralization of acidic water. The bulk chemistry of water with high TSS tends to mimic the chemical composition of the source sediment being eroded, or in the case of mineral precipitation tends to be high in iron as iron-oxide minerals are the most common secondary mineral to form. Rapid temporal changes to TSS measurements within a catchment due to formation of secondary minerals can indicate presence of active ARD/ML reactions. The BCAWQG-FST guideline is based on deviations relative to background TSS.

Measurements such as total dissolved solids (TDS), electrical conductivity (EC) and salinity are indicators for the concentration of dissolved components and/or ions in solution. Sudden or gradual increases in these parameters can indicate changes in water chemistry such as an increase in reactive ions or dissolved metals as a result of

potential metal leaching processes. Changes to these parameters in association with changes to pH or alkalinity may also indicate active metal leaching processes. BCAWQG-FST guidelines are not defined for these parameters.

Dissolved sulphate can originate from anthropogenic sources, microbial processes and through chemical processes related to degradation of rock forming minerals in environments with potential for acid generation through the oxidation of primary sulphide (e.g., pyrite) or dissolution of sulphate minerals (e.g., gypsum). Elevated sulphate concentrations may indicate oxidation, or weathering, of PAG materials in proximity to sample collection locations, however, it may also indicate influence from regional groundwater sources. Water quality with elevated sulphate and pH > 7.0 may indicate ARD/ML processes with sufficient acid neutralizing materials, whereas sulphate with decreasing pH may indicate a shortage of acid neutralizing materials. Sulphate is commonly reactive with several cations and metal ions under ambient environmental conditions forming both soluble and non-soluble mineral precipitates.

Marine shales such as the local Shaftsbury Formation commonly contain sulphide minerals (mainly pyrite, FeS₂) and may also have primary sulphate minerals such as anhydrite (CaSO₄), gypsum (CaSO₄·2H₂O), or barite (BaSO₄), and/or other sulphate minerals. Preliminary characterization determined that the primary sulfur species in the shale was sulphide with some detectable sulphate (Klohn Crippen Berger, 2015). Based on this mineral association and site observations, it is possible that groundwater contacting fractured bedrock could contain naturally elevated sulphate concentrations. Only one well from the Main Civil Works (MCW) Site was reported in the baseline groundwater sampling conducted as part of the project's Environmental Impact Statement (Hemmera Envirochem Inc. and BGC Engineering Inc., 2012) which did indicate groundwater contained elevated sulphate.

Groundwater monitoring from 2016-2020 up-gradient and down-gradient of RSEM R5a and R5b measured elevated sulphate concentrations below the BCAWQG-FLT guideline, as reported in the Site C Clean Energy Project, 2020 Q4 Groundwater Quality, Monitoring Report for RSEM R5a and R5b (Lorax, 2020). These results indicate the presence of sulphate in the groundwater systems. It is noted that the down-gradient monitoring wells at RSEM R5b were screened in overburden materials above the bedrock contact. The guideline value for sulphate is not stated in the short-term BCAWQG-FST guideline, however, a long-term average guideline value is stated (variable with hardness) and is referenced in this report.

Water hardness is derived from the total concentration of calcium and magnesium ions in solution, and often reported as mg/L of dissolved CaCO₃) is known to mitigate the effect of certain metals on aquatic organisms, and the guidelines are presented with equations derived from experimental data for sulphate and numerous metals (cadmium, copper, fluoride, lead, manganese, silver and zinc that tests a range of hardness specific to each metal or sulphate). Water hardness classification on-site is Hard to Very Hard (180 to >250mg/L, and up to 1,000 mg/L, dependent on location) and is often measured above the guideline threshold used to calculate BCAWQG-FST guideline values. Where the ambient hardness values exceed the guideline limit listed for BCAWQG, the exceedance criteria have been calculated using the upper limit "capped" hardness value instead of the measured ambient hardness.

Water quality screening efforts have focused on elements with BCAWQG-FST guidelines, which include pH, ammonia, chloride, nitrite, total concentrations of arsenic, boron, cobalt, iron, lead, manganese, molybdenum, silver, and zinc, and dissolved concentrations of aluminum, cadmium, and iron. Changes in concentrations of some elements or metals, reported as both total and dissolved, can have various implications for water quality under ARD/ML conditions. The solubility of individual elements can vary with pH. Geochemical modelling completed by Klohn Crippen Berger (2015) identified copper, cobalt, cadmium, and zinc as having high probability of leaching into solution of site water during oxidation of the local shale bedrock under oxic acid rock generating and metal leaching conditions.

Formation of iron-oxide precipitate is a widely recognized indicator of active ARD/ML processes. Total iron concentrations are associated with ARD/ML due to liberation of ferric iron from the oxidation of primary iron bearing sulphides. Subsequent formation of iron-oxide or iron hydroxide minerals can precipitate when acidic waters are neutralized and may be present as suspended solids or can form scaling on reactive surfaces such as limestone.

Aluminum is abundant in rock forming minerals and can be released as part of oxidation and degradation of rocks during ARD/ML processes. Aluminum is soluble in acidic water and is typically not soluble in neutral and alkaline waters. Aluminum, as Al³⁺, can also contribute to the acidity along with H⁺. When concentrations of aluminum are measured in detectible concentrations in neutral or alkaline water, it is possible that the formation of very fine aluminum hydroxide clays may occur in previously acidic waters that have been neutralized. Aluminum hydroxide mineral species (e.g., polymorphs of gibbsite or hydrargillite) can form on rock surfaces and are indicators of acid generating conditions. Precipitation of aluminum and iron hydroxide produced by weathering may occur on and reduce the exposure of acid generating and acid neutralizing minerals. (Price, 2009).

Concentrations of aluminum, iron and copper are typically low in neutral pH drainage, however, elements such as antimony, arsenic, cadmium, molybdenum, selenium, and zinc can be present in neutral pH drainage (BC MEM, 1998). Neutral pH metal leaching is an important mechanism to be observed on the Site C project as several of these neutral pH soluble elements are prevalent in the shale bedrock. These elements can be concentrated within secondary mineral formation on shale bedrock during prolonged period of low moisture, then released into run-off water in elevated concentration during high precipitation events.

3.0 SAMPLE LOCATIONS

A list of sample locations is provided in the attached Table 1 and the locations are shown on Figures 1 through 3. A summary of the rock cut locations that are subject to monthly monitoring are presented in the following sections, along with a description of the monthly sampling and in situ testing locations.

3.1 Description of River Road Sample Locations

Access road construction in 2016-2017, on the north/left bank, between Howe Pit and the Peace River along River Road cut through bedrock. ARD/ML management and mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage. The limestone in the ditch was replaced in July 2021 to provide fresh surfaces for acid buffering.

Sample locations are established along the River Road ditch for in situ testing, primarily as a means of monitoring the effectiveness of the limestone rip-rap and to observe longer term trends related to the PAG outcrop at Blind Corner and run-off/seepage from Howe Pit. A total of ten (10) monitoring locations are established in the River Road catchment near Blind Corner, shown in Figure 1. The River Road ditch was refreshed with new limestone in July of 2021. See Section 5.3 for additional discussion of management and mitigation of ARD/ML in this area.

The six sample stations include 1) upper chimney (LBRR-UC), 2) lower chimney drain (LBRR-LC), 3) discharge of culvert RR-11 (LBRR-DD), 4) LBRR-EDP, and downstream drainage culvert outlets at 5) RR8 and 6) RR9. The four stations with only in situ monitoring include LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920.

The River Road Ditch Diversion pipe installed in March 2018 is to address erosion and sediment control by transport of run-off water into an elongated ditchline to reduce flow velocities and to promote settlement of suspended sediment. Inlets to culverts RR9 and RR8 are slightly elevated from the ditch base which will allow water to pond within the ditch and infiltrate or discharge via the culverts only if water levels reach sufficient height. Both culverts are made of HDPE materials. The monitoring program includes sampling of discharge from these LBRR-RR8 and LBRR-RR9 culverts.

The established River Road monitoring locations are shown in Figure 1 and photos of the locations are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B1 and discussed in Section 5.3.

3.1.1 Limestone Ditch Status and Maintenance

Current mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage.

The placed limestone rip-rap is effective at mitigating the pH of the drainage when there are fresh surfaces of limestone available for chemical reactions. Potentially acidic leachate generated from the rock cut-slopes reacts with the alkaline limestone to help neutralize water as it passes through the rip-rap lined ditch. Mineral precipitates can accumulate on rip-rap over time which reduces the effectiveness of the limestone. Periodic refreshing or replacement of limestone has been completed over the life of the project. No maintenance activities were completed in 2022 as the limestone continued to work effectively with minor precipitate coatings noted as well as road sediment encroachment.

With increased use of River Road, sediment and erosion control measures are needed to be addressed to manage the sediment load coming off of the road and into the ditch. The limestone is monitored for accumulation of precipitates and sediment and refreshed either by cleaning or replacement as needed.

Maintenance 2017-2020

In 2017, the collection ditch on the cut-bank (north) side of River Road between approximately 12+340 and 12+960 (Blind Corner) was lined with limestone rip-rap to assist with mitigating the potential effects of ARD/ML from PAG bedrock that was exposed during the initial road construction in 2015 and early 2016. Limestone was also placed between stations LBRR+920 and LBRR-DD to manage the pH of baseline drainage water at the outflow location. Limestone rip-rap within the ditch between road stations 12+600 and 12+900 continued to be maintained in 2018, including completion of a hydroseeding program and a limestone buttress as the tow of the shale slope at blind corner to support long-term erosion control and slope stability in March 2018. The hydroseed appeared to remain in place on the slope, however, germination was not successful at year's end. No maintenance activities were completed in 2020.

Maintenance in 2021

In early July 2021, rip-rap was replaced with fresh limestone from the start of Blind Corner ditch up to but not including under the diversion pipe. During replacement of limestone the contractor removed the previously installed bentonite liner. Placement of new bentonite liner and replacement of limestone was subsequently completed in 2021.

Maintenance in 2022 and 2023

No maintenance requirements for limestone in 2022 and 2023.

3.2 Description of South Bank Initial Access Road Locations

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between Relocated Surplus Excavation Material (RSEM) R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes. Management and mitigation measures included reduction of surface contact water through capture of up-gradient flow and diversion through a pipe to limit flow along the exposed shale slope, and collection of any remaining PAG contact water in ditches which is captured and conveyed to PRHP RSEM R6 Settlement Ponds (permitted for PAG contact water). In May 2023 this capture system was removed and surface water from the top of the slope flowed over the western slope and was conveyed to R6 via the ditch.

A total of four (4) monitoring locations are established in the SBIAR catchment to monitor water quality flowing in the SBIAR ditches at the toe of the SBIAR road cut. The four sample locations allow for data collection from the east and west SBIAR ditches. This provides long-term characterization of SBIAR water management from the upstream location in the west ditch (RBSBIAR-US) and the downstream location in the west ditch (RBSBIAR-DS), as well as upstream and downstream sampling locations in the east ditch, (RBSBIAR-EUS and RBSBIAR-EDS, respectively).

It is noted that the water flowing from the downstream locations does not have a direct downstream receptor; the water from the east ditch passes under the road via a culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch, which conveys to the PRHP RSEM R6 pond. There is an intensive water quality monitoring program in the pond (continuous in situ measurements of pH, conductivity; daily lab analysis for all parameters) conducted prior to discharge by Lorax (Lorax, 2024), Ecofish Research Ltd. (Ecofish 2024a) and others, as well as Peace River receiving environment monitoring conducted by Ecofish (Ecofish, 2024a) and others.

The established RBSBIAR monitoring locations are shown in Figure 2 and photos of the locations are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B2 and discussed in Section 5.4.

3.3 Description of L2 Powerhouse Area Sampling Locations

The L2 Powerhouse area is sampled to establish upstream and downstream water quality characterization and for ARD/ML PAG slope monitoring in the L2 Powerhouse area and adjacent to the powerhouse on the Right Bank. The two sample locations were established in October 2020. The L2 area was identified at that time for sampling due to the exposure of a shale slope during excavation for the Powerhouse. The RB Foundation Enhancement work (January 2022) included additional shale excavation. Mitigation and monitoring are addressed as per the site's EPPs. The L2 Powerhouse is an area of active construction which may influence the results of sampling month to month. The water management at this area is complex and there may be multiple sources of water input and discharges. At the L2-US and L2-DS locations, sampling continued until March 2023, then were discontinued since construction of the powerhouse expanded and extended overtop of the sample locations.

The water quality monitoring program was put in place to evaluate if shale excavations are contributing to water quality impacts in the area. Due to the complex construction activities in this area and presence of both AFDE and PRHP construction teams, the water quality monitoring program discussed in this report is only one component of the overall program.

The lower L2 Area PAG slope exposed in 2020 was mitigated by covering of the slope that effectively makes it a non-PAG contact surface. The lower slope was bolted and covered in mesh and shotcrete. The slope treatment was subsequently removed, and the slope was shotcrete to support stability. The L2-DS is established at the base of this slope adjacent to the Powerhouse. Water from the intermediate slope flows in a ditch and down to the L2-DS station area. The water that collects at this location is tested and collected via vac truck for water treatment as needed.

The L2-DS sample location is adjacent to the L2 Powerhouse, specifically collected from the pump tubing on the west side of the culvert and approximately 1-2 m from the south rock ditch wall and 1-2 m from the culvert. Sandbags in the ditching adjacent to the Powerhouse are used to separate AFDE and PRHP water in this area. Water management and quality, and conveyance in the L2-DS area was frequently changing due to construction activities. In 2023, the L2-DS location was not sampled.

The L2-US station is located upstream from the L2 Powerhouse in a ditch line. Water at this station is pumped to the AFDE treatment plant, as required. Samples from L2-US were collected from January to March 2023 then discontinued due to potential influence of construction from multiple sources in the area.

Representative photos of the L2 Powerhouse Area are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B3 and discussed in Section 5.5. A map showing the locations is in Figure 2.

3.4 Description of BC Hydro Left Bank Debris Boom Sampling Locations

Shale was exposed during construction of the BC Hydro Left Bank Debris Boom (LBDB) anchor area in approximately March 2020. In September 2020, the river at Phase 1 elevation (~410 m) followed by a partial block and diversion of the Peace River to allow construction of the main Site C dam in October 2020, causing the river/reservoir to flood up to stage 2 levels (~417-420 m). The final river/reservoir planned elevation is ~ 460 m.

The ditches above the 420 m elevation are lined with 3 to 10-inch size fraction limestone as a management measure to provide additional buffering capacity to leachate entering the ditches. The area below 420 m elevation was flooded by the head pond after construction in early Fall 2020, and therefore that area did not require rip-rap. The area above 420 m elevation will be exposed prior to flooding to the final river/reservoir elevation of around 460 m elevation planned for 2024. Seeding with ESC mix was completed on exposed soil areas after they were track packed and loosened.

Water quality sampling at LBDB provides data to apply to understanding of water discharge and flooding in subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels. Sample locations were established and first sampled on October 8, 2020, to characterize water quality in the LBDB area for ARD/ML monitoring. The purpose of sampling is to monitor PAG contact water from shale exposed during construction in March 2020, and that drains to the Peace River.

The initial sampling locations included the LB Pond location and LB Side Channel. The LB Pond sample location has been sampled regularly since initiation. The LB Side Channel was only sampled in 2020 prior to inundation of the Peace River and this station is now back flooded and no longer considered.

Additional sample locations were added in July 2021 following a review of the area during the Tetra Tech ARD/ML site audits. Water management structures and ditch linings were also amended. The water management structures were improved to manage flow and prevent erosion and ditches were lined with limestone to provide acid buffering capacity. These were proactive measures to manage signs of erosion and initial signs of ARD/ML generation on the exposed shale slopes.

Monitoring locations were added to the west and east armor ditch, which captures water from the shale slopes at upstream and downstream locations. These four stations are named as LBDB-WUS (west ditch upstream), LBDB-WDS, LBDB-EUS, and LBDB-EDS. Three stations were also added along the LB Pond flow path. Station LBDB-LD-US captures water upstream of and draining into the LB Pond. Station LBLD-LD-MS is downstream of LB Pond, and station LDBD-LD-DS is further downstream prior to discharge to the Peace River.

Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LB Pond location, is immediately following a significant rainfall event. Sample staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

A representative photo of the LBDB locations is included in Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B4 and discussed in Section 5.6. A map showing the locations is in Figure 3.

4.0 LOCAL CONDITIONS

4.1 Weather Conditions - Temperature and Precipitation

The minimum, maximum, and average daily temperature and the 7-day temperature range preceding each sampling event are summarized in the attached Table 2. The total precipitation measured for the 7-days preceding each sample event and the precipitation on the day prior to and the day of the sample event are also summarized in Table 2. The temperature and precipitation data were sourced from BC Hydro's Site C Meteorological and Air Quality Station (Figure 4; BC Hydro, 2022), Station 7C Site C North Camp. A summary of mean daily temperature recorded on sampling events, and precipitation recorded prior to and during the sampling event is provided in Table 4-1.

In 2023, the temperature recorded during each sampling event results in five sample events with sub-zero temperatures, including January 30, February 20, October 29, November 29 and December 21. The remaining sample events record a range of temperature from 1.10 °C (March 29th) to 21.2 °C (June 28th).

In 2023, the precipitation recorded during each sampling event shows two events with minimal precipitation (throughout the day on March 29 (1.03 mm) and on September 28 (8.67 mm)) and four events including January 30, February 20, June 28 and August 30, with very minimal precipitation totaling 0.10 to 0.91 mm is <1mm during the sample event. The remaining events on April 28, May 19, July 17, October 29, November 29 and December 21 coincided with dry or frozen conditions and no precipitation. During the prior 7-days to the sampling event, the highest amount of precipitation was recorded before the June 28 sample event.

Routine Memo No.	Sample Event No.	Sample Event Date	Mean Daily Temperature (°C)	Precipitation on day of Sample Event (mm)	Precipitation for 7-Days Prior to Sample Event (mm)
-	1	30-Jan-23	-11.3	0.91	1.08
1	2	20-Feb-23	-10.2	0.21	2.36
I	3	29-Mar-23	1.10	1.03	0.44
2	4	28-Apr-23	12.0	0.00	3.38
2	5	19-May-23	14.1	0.00	0.00
2	6	28-Jun-23	21.1	0.10	9.31
3	7	17-Jul-23	16.8	0.00	3.20
4	8	30-Aug-23	18.0	0.28	0.37
4	9	28-Sep-23	8.70	8.67	12.3
-	10	29-Oct-23	-3.80	0.00	4.63
-	11	29-Nov-23	-1.70	0.00	0.57
-	12	21-Dec-23	-1.00	0.00	3.55

 Table 4-1:
 Sample Event Temperature and Precipitation

¹ No sampling or in situ measurements due to frozen or no flow conditions.

4.2 Classification of Seasonal Flows in Ditches

Residence time for water is low in the investigated area ditches due to their small catchment size. The climate data was used to evaluate water availability and potential water source for flows that were observed in the ditches.

The flows in ditches are susceptible to seasonal change and flow rate is highly influenced by local precipitation events, thus the classification of flow in ditches can assist to interpret the source and subsequent chemical fluctuations in water sampled (attached Table 3). For example, flows in ditches can be attributed to shallow or regional groundwater, spring freshet or surface run-off, dependant on the season and amount of precipitation recorded in the previous 24-hours and 7-days to the sampling event.

When significant or moderate precipitation has occurred in the previous 7-days, but minimal precipitation within the prior 24-hour period to the sampling event, the flows in ditches can result from shallow groundwater flow, mainly through unconsolidated overburden. The highest amount of precipitation in the preceding 7-days (12.31 mm) and during the sampling event (8.67 mm) was documented to occur for the September 28, 2023, sampling event. The second highest precipitation occurred for the June 28, 2023, sampling event, with 9.31 mm during the previous 7-days and 0.10 mm on the sample day. Precipitation data shows limited influence from precipitation and a much stronger correlation with freshet (Table 4). These values in the river are heavily influenced by the freshet and snowmelt during April, May, June as discussed below.

During spring freshet and snow melt, sampling events (e.g., March, April, May, and June) can be classified as having a 'dilution' effect to the water chemistry, although increased TSS from turbid high flows can counteract this effect. To the contrary, during more arid seasons with little to no precipitation occurring in the previous 7-days and 24-hours, flows in ditches can be attributed to regional groundwater baseline seepage. In this event, when precipitation and sampling occur following dry periods, the surface chemistry of the rocks will be washed into the ditches and be concentrated.

There was moderate rainfall prior to the September 28, 2023, event and June 28, 2023, sample event. The rainfall, along with potential freshet snowmelt in June, increased turbidity and flow in the ditches resulting in short-term effects on measurements such as TDS, TSS and potentially total metal concentrations from flushing of exposed slopes and ditch fill material. The highest turbidity and TSS values measured in the Peace River by Ecofish during the May 19, 2023, sampling event do not coincide with a rainfall event but likely freshet melt conditions.

As outlined in Section 2.3, regional bedrock groundwater in locations sampled are suspected to have elevated concentrations of dissolved sulphates due to groundwater interaction with local pyritic-shale bedrock and local bacteria, In previous sampling years from 2017 to 2022, it was observed that elevated sulphate may, to some degree, be related to dry periods following minimal precipitation during the previous 7-day and 24-hours to the sampling event. In 2023, outside of the moderate rainfall prior to the June and September sampling events, there did not appear to be elevated sulphate related to dry periods in the trend analysis. Sulphate and TDS commonly follow similar trends.

The classification of seasonal flows in ditches, therefore, are important to consider when interpreting fluctuations and exceedances in parameters measured in water quality guidelines over the period of one year.

4.3 Peace River Turbidity and TSS

Turbidity of the Peace River is monitored by BC Hydro through a series of continuous data loggers situated both upstream and downstream of the dam construction area. Time series data is collected from the left and right banks of the Peace River up-gradient of the Moberly River (stations PAM-LB and PAM-RB, respectively) were provided to Tetra Tech by Ecofish to provide a general understanding of influence by precipitation on natural sediment within the Peace River upstream from the construction area surrounding sampling events. TSS estimates are calculated from turbidity. A TSS-Turbidity relationship of 0.71 was applied for the entirety of 2023 based on in situ TSS measurements taken throughout 2023 (Ecofish, 2024).

The turbidity data, measured in NTU, is converted to a value representing TSS, in mg/L, using a conversion factor developed by Ecofish using calibration of field measurements with laboratory data (Ecofish, 2024b). The data considered by Tetra Tech include turbidity measurements for the 7-days prior to the sampling event, the day of, during, and the day following the sampling event (Appendix Table 4). Turbidity and TSS spiked during the height of spring freshet in the month of May, then decrease towards baseline conditions for the remainder of 2023. The turbidity and TSS measurements outside of May report below 35 NTU and 24 mg/L TSS, as summarized in Appendix Table 4. In May 2023, the values are generally higher on the Left bank compared to the Right Bank, similar to turbidity values in previous years, as summarized in Table 4-2.

Someling Data	Turbidi	ity (NTU)	TSS (mg/L)		
Sampling Date	LB	RB	LB	RB	
28-Apr-23	28.9	20.6	33.2	23.6	
19-May-23	146.4	103.9	104.0	73.9	
28-Jun-23	17.3	12.3	19.2	13.6	
17-Jul-23	14.4	10.2	8.1	5.7	

Table 4-2:Elevated Turbidity and TSS during Water Quality Sample Events in 2023

NTU: Nephelometric Turbidity Units

The daily mean turbidity and TSS measurements reach the highest values in May 2023 (average NTU 125 and TSS 89 mg/L) during freshet and snowmelt, with a gradual increase towards May and decrease following May, shown in Figure 4-1.

Figure 4-1: Turbidity and TSS during Water Quality Sample Events in 2023

The highest reported 7-day precipitation to occur prior to a sampling event, recorded on September 21-27, 2023 (12.31 mm), coincides with a minor increase in turbidity in TSS and turbidity values. The highest turbidity and TSS values in 2023 were measured leading up to and including the May 19 sampling event, which records no precipitation. Therefore, the relatively high turbidity and TSS on May 19, does not coincide with a precipitation event. Figure 4-1 illustrates the variability and trends in turbidity and TSS during 2023 (Ecofish, 2024b) and can be reviewed in conjunction with the precipitation events listed in Appendix Table 2.

5.0 WATER QUALITY MONITORING PROGRAM RESULTS

5.1 Sample Events in 2023

A summary of each water quality sampling event and corresponding analytical results in four (4) routine memos summarized twelve (12) sampling events at the RR, SBIAR, and LBDB catchments. Three (3) sampling events occurred at the L2 Powerhouse in January, February and March 2023 before the sample location was discontinued. In 2023, monthly results were reported in the first (January, February, March), second (April and May), third (June and July) and fourth (August, September) routine memos to BC Hydro between January to December 2023. No samples were collected in October, November, and December 2023 due to frozen and no flow conditions.

The attached Table 1 presents a summary of the dates of the sampling events and which locations had in situ or lab testing completed.

Field notes document field observations at each monitoring location including estimated flow rate and water clarity, site conditions and construction activities, if applicable to monitoring. In situ tests are completed with record of measurements for water temperature, hardness, alkalinity, pH, and electrical conductivity collected using a handheld meter. The in situ test data is presented in the Appendix Tables 6, 8, 10 and 12.

Laboratory results for all locations are provided in Appendix B (Tables B1 to B4). A summary of BCAWQG-FST water quality exceedances listed by monitoring location and month are listed in Tables 7, 9, 11 and 13.

Appendix Table 14 presents a summary of minimum, maximum and mean values for measurements at discharge and downstream locations in 2023.

5.2 Quality Control and Quality Assurance Program

5.2.1 Overview of QA/QC Program

The Quality Control and Quality Assurance (QA/QC) program is based first and foremost on experienced field staff familiar with the water quality monitoring program adhering to the British Columbia Field Sampling Manual, Part A and Part E (BC MoE, 2013) for sample collection procedures and QA/QC practises. New sample containers were acquired from the laboratory prior to the sampling event and all handling of the containers, sampling devices and equipment during sample collection was completed wearing new nitrile gloves to minimize potential for contamination of the samples. A new disposable syringe and 0.45 µm filter are used for each sample being submitted for dissolved metals, as per field sampling procedures (BC MoE, 2013). A peristaltic pump and 0.45 µm high capacity inline filter is used when the water is too turbid for the manual syringe filtering, All samples were stored in a cooler filled with ice packs at a temperature between approximately 4°C and 8°C.

The program incorporates the use of a Travel Blank (TB), Field Blank (FB) and replicate sample to test for potential contamination during sample collection, handling, or laboratory preparation, and to evaluate the precision of laboratory analysis. Travel Blanks were prepared by the laboratory and Field Blanks were prepared in the field at sample collection sites by field staff using the same source water as was used for the Travel Blank.

5.2.2 Laboratory QA/QC

Analytical results were received from ALS Laboratories (ALS). The lab implements a detailed QC program into the sample analysis which includes a series of checks and evaluations for consistency in the sample analysis. The QC program includes method blanks, certified reference materials, laboratory control samples and duplicates. The QC Lot reported on Assay Certificates consistently met internal ALS Data Quality Objectives throughout the year.

5.2.3 Tetra Tech QA/QC

The analytical results of the QA samples (TB, FB, and replicate samples) were reviewed by Tetra Tech, and if potential contamination or concerns with analytical results were identified, they were discussed with the laboratory and/or the field sampler representatives, with reanalysis of samples completed for verification if necessary. Appendix Table 5 provides the results of the field and travel blanks (Table 5a) and replicate samples (Table 5b) in the QA program.

5.2.3.1 Blank Samples

Travel Blanks were prepared by the laboratory and Field Blanks were prepared in the field at sample collection sites by field staff using the same sourced water. If the source distilled water was contaminated, similar elemental anomalies would be expected in both the TB and the FB. Blank samples were considered to 'fail' where any measured value was in concentrations above the reported detection limits for that parameter. Elemental concentrations measured above detection limit can be attributed to field contamination or calibration of analytical instrumentation. During 2023, TB and FB data showed minimal occurrences of any significant concentrations of values above the detection limit. As a result, no reruns were required by the lab during 2023.

Elemental concentrations measuring above the analytical detection limits in TB and FB samples occurred once (1) during the 2023 monitoring period, as detailed in the attached Table 5a. The above detection limit value occurred for ammonia in the February 20, 2023 sample event.

The pH for the TB and FB samples ranged from 5.15 to 5.42, with an average pH value of 5.23 from the 2023 sampling events. This pH range is typical for distilled water used for the TB and FB samples.

5.2.3.2 Replicate Samples

Replicate samples were evaluated using Relative Percent Difference (RPD). When an RPD value is less than 30% it is considered an acceptable threshold for variation of surface waters.

Field replicate samples with differences of elemental concentrations above the acceptable threshold of RPD > 30% had occurrences for a variable number of parameters measured during all nine sampling events in 2023, including: January 30 (7 occurrences), February 20 (1), March 29 (3), April 28 (2), May 19 (8), June 28 (43), July 17 (1), August 30 (2) and September 28 (2). Discrepancies are attributed to sediment disturbance during the collection of the first sample. The field staff were informed of these issues and were reminded of the importance of QC procedures during replicate sampling.

5.2.3.3 Total vs Dissolved Concentrations

Tetra Tech also reviewed the data for more general anomalies and inconsistencies. The total and dissolved concentrations for the full suite of elements were continued to be compared since there are frequent occurrences of dissolved concentrations exceeding total concentrations. The results were screened for analytical error, then assessed for expected natural variability of surface waters. Most instances were due to measurements at or near the analytical detection limit and could be explained by being within an acceptable range of error up to five times the lower detection limit for the respective element. In this case of reporting within five times of detection limit, the total concentrations are considered equal to the dissolved concentrations.

Dissolved concentrations exceeding total concentrations in samples were calculated within the acceptable threshold of an RPD < 30%, with exception of the following occurrences in the May 19, 2023 (cadmium, cobalt, copper, nickel, zinc) and June 28, 2023 (barium, copper) sample events.

5.3 River Road Water Quality Monitoring

Dry, freezing and/or low or no flow conditions prevented consistent sampling at the River Road monitoring locations in 2023. In situ measurements were not collected from each station consistently every month due to dry or frozen conditions. Field observations were documented each month and results for each monthly sampling event were plotted on time series charts for trend and qualitative correlation analysis.

Sufficient flowing water permitted samples to be collected during 2023 from the following stations, with the sampled months listed in parentheses:

- LBRR-DD (March);
- RR8 (no samples);
- RR9 (March, September);
- LBRR-EDP (March, April, September);

- LBRR-UC (no samples); and
- LBRR-LC (March).

A summary of water quality exceedances at River Road relative to BCAWQG-FST listed by monitoring location and month are listed in Table 7, and the screening results based on the laboratory data are tabulated in Appendix B, Table B1.

5.3.1 In Situ Measurements and Field Observations

Values for pH, conductivity, hardness, alkalinity, water temperature, estimated flow and turbidity measured at the River Road monitoring locations are included in Table 6. At River Road during 2023, the range in water temperatures was -0.20 °C to 17.3 °C. Measurements of pH ranged between 7.76 to 8.34, alkalinity ranged between 40 to 800 ppm, hardness ranged between 240 to 800 ppm and conductivity between 21.3 to 3890 µS/cm.

Flows within the River Road ditch are ephemeral. During 2023, flow at RR was most commonly observed at LBRR-12+920 during the March through September 2023 sampling events, then only at the following downstream locations in March and September. Flow was noted at LBRR-DD, LBRR-LC, LBRR-12+920, RR9 and LBRR-EDP on March 29, 2023 and at LBRR-12+920, RR9 and LBRR-EDP on September 28, 2023. No flow was noted at RR8, LBRR-UC, LBRR-12+600, LBRR-12+700 and LBRR-12+810 throughout the year. Dry or frozen conditions prevailed for the remainder of 2023.

In the River Road catchment, considering all sampling conditions, TSS measurement ranged from a low of 9.1 mg/L (March; LBRR-LC) to a high of 1,680 mg/L (March; LBRR-EDP). For all stations, the combined average TSS was 560 mg/L, and each sample location showed variable TSS that too minimal of sampling events to recognize seasonal trends. The March, April and September TSS values measured from the LBRR-EDP location are elevated relative to the other locations sampled through the year. The source of TSS is primarily attributed to River Road run-off, scouring of sediment deposited within the River Road ditch and washing from the cut-slopes.

5.3.2 Freshwater Short-Term Maximum Exceedances

The summary of exceedances is presented in Table 7 and summarized below. The complete data results from the samples are summarized in Appendix B, Table B1.

Of the total seven (7) samples collected from River Road during 2023, fourteen (14) occurrences of elevated total metal concentrations above the BCAWQG-FST were measured, for total iron (6), total arsenic (3), total zinc (1), dissolved aluminum (2) and chlorite (2). Neutral to alkaline laboratory pH values were measured with pH ranging between 7.88 to 8.19.

At the three RR discharge locations, there was one exceedance measured at LBRR-DD (total iron, March) and three exceedances measured at RR9 (total iron, March, September; chloride, September). No sampling occurred at the RR8 discharge location. Non-discharge locations along River Road measured BCAWQG-FST exceedances at LBRR-EDP in total iron (3), total arsenic (3), total zinc (1), dissolved aluminum (2) and chloride (1) (March, April, September). No exceedance was measured at LBRR-LC in the one sampling event in March 2023. The exceedances are attributed to washing, or flushing, of sediment and secondary mineral precipitate during freshet (or precipitation following a dry period), as water contacted accumulated sediment within the ditch in addition to the exposed shale, colluvium, and overburden cut-banks.

5.3.3 Trend Monitoring and Details of 2023 Sample Results

Data results from 2017 to 2023 at River Road monitoring stations have been compiled and plotted for trend analysis. Please refer to Figures 6 to 17 for time series charts. Time series charts include pH and alkalinity, acidity, TSS and TDS, sulphate, total and dissolved aluminum, total and dissolved iron, total arsenic, dissolved cadmium, total cobalt, dissolved copper, and total zinc.

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and as discussed in Section 3.1 the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water within the River Road ditch. Event data characterizes the influences of seasonal conditions at the site.

Water quality sampling has been inconsistent at the River Road locations since 2017 due to frequent low flow or frozen conditions. There is minimal data available from mid-2018 to the end of 2019, and variable amounts of data in 2017, 2020 to 2023 from different stations and times. The available data makes it challenging to discern seasonal trends at River Road. Additional data collection and ongoing time series trend analysis is needed to support interpretation of trends.

The measured pH values collected at River Road have remained within an acceptable BCAWQG-FST range (pH 6.5 to 9.0) during 2023 sampling events that show more consistency in 2020-23 relative to more variability in pH during 2017 and 2018 when pH values varied below and above the acceptable BCAWQG-FST. During 2023, alkalinity and pH remain relatively consistent whereas acidity is more variable and shows an overall increase between March and September although no data was collected in-between to determine a seasonal trend. The collection of acidity data is limited to primarily 2020-23 and will continue to be monitored.

During 2023, TDS and TSS values at River Road sample locations generally remain within range of measurements in 2017 through 2022. During 2023, sulphate concentrations measured within range of values collected from 2017 to 2022, which continue to straddle the BCAWQG-FLT guideline value of 429 mg/L (guideline variable based on hardness). Insufficient data was collected in 2023 to show conclusive trends.

During 2023, total and dissolved aluminum shows an overall consistent trend when samples were collected from March to September and remains within range of measurements in 2017 to 2022.

During 2023, total iron varies in concentration that measures below and above the BCAWQG-FST guideline and within range of measurements since 2017. Total iron measured at LBRR-EDP and RR9 are relatively consistent and elevated above the BCAWQG-FST guideline during 2023. The one sample collected from LBRR-DD in March 2023 was elevated above the BCAWQG-FST. During 2023, dissolved iron remains below the BCAWQG-FST guideline.

Metal concentrations for a number of elements, including total aluminum, total iron, total arsenic, total cobalt, total and dissolved copper, and total zinc show a trend from a higher value at freshet, coincident with elevated TSS values) in the spring that gradually decreases through summer and autumn to October. In 2023, metals generally measure within range of concentrations since 2017.

5.4 SBIAR Water Quality Monitoring

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between RSEM R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes.

At SBIAR, sufficient flowing water permitted samples to be collected during 2023 from:

- RBSBIAR-US (September);
- RBSBIAR-DS (March to September);
- RBSBIAR-EUS (May to July); and
- RBSBIAR-EDS (March).

In situ measurements were collected in the same months when sampling was possible, in addition to low flow conditions at RBSBIAR-EUS (March, April, August and September) and RBSBIAR-DS (October) that allowed only situ measurements when sample collection was not possible. Field observations were documented each month and results for each monthly sampling event were plotted on a quarterly basis on time series charts for trend and qualitative correlation analysis.

A summary of BCAWQG-FST water quality exceedances at SBIAR listed by monitoring location and month are listed in Table 9. The complete set of screening results based on the laboratory data are tabulated in Appendix B, Table B2.

5.4.1 In Situ Measurements and Field Observations

Values for water temperature, pH, total alkalinity, and electrical conductivity measured at the SBIAR monitoring locations are included in Table 8. At the SBIAR locations during 2023, the range in water temperatures was -0.1 °C to 21.3 °C. Measurements of pH ranged between 7.00 to 9.31, alkalinity ranged between 40 and 450 ppm, hardness ranged between 180 to 800 ppm and conductivity between 575 to 1,347 μ S/cm.

Flows in the SBIAR ditch system can vary between increases from the upstream to downstream locations, with flows of approximately 0.0005 L/s to 2.5 L/s. During the August 2023 sampling event, the ditch upstream from RBSBIAR-EUS was noted to be filled in.

5.4.2 Freshwater Short-Term Maximum Exceedances

Concentrations of total and dissolved iron, dissolved aluminum, total arsenic, total zinc, total cobalt, and dissolved cadmium were measured as exceedances to the BCAWQG-FST at various locations in the SBIAR catchment during 2023 (Appendix Table 9). Concentrations typically increase at downstream locations due to the influence of sediment washing in the ditchline and influence of SBIAR cut-slope.

In 2023, at the upstream SBIAR locations, one (1) exceedance was measured at RBSBIAR-US in one sampling event (September 2023) and one (1) exceedance was measured at RBSBIAR-EUS June 2023.

In 2023, at the downstream SBIAR locations, total iron (2), dissolved iron (1), dissolved aluminum (2), total arsenic (2), total zinc (1), total cobalt (1), dissolved cadmium (1) were measured at RBSBIAR-DS in six sampling events (March, April, June to September 2023), and total iron (1), total arsenic (1), total zinc (1) were measured at RBSBIAR-EDS in one sampling event (March 2023).

It is noted that the water flowing from the downstream locations do not have a direct downstream receptor; the water from the east ditch passes under the road via culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch which conveys to the RSEM R6 pond. Details of water flow and the intensive water quality monitoring program in RSEM R6 is referenced in Section 3.2 above.

5.4.3 Trend Monitoring and Details of 2023 Sample Results

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and, as discussed in Section 4, the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water in the SBIAR ditch. Recurring trends at SBIAR over the monitoring periods sine 2017 may be preliminary indications of long-term trends and are discussed below and summarized in the attached Figures 18 to 31. In 2018 and 2019 a trend was observed for total metals showing a potential progressive increase in concentrations was occurring, although this appears to have been short-term and temporary and has not been observed in the subsequent monitoring years from 2020 to 2023.

Alkalinity and pH values indicate that waters have remained alkaline from 2017 through 2023. Alkalinity is more variable than pH values. In 2020 and 2021, an overall increase in alkalinity is observed to occur between freshet in the spring towards the fall and winter month, which is observed in 2023 at RBSBIAR-DS but lack of significant data does not show this trend at other SBIAR locations. Acidity measured during 2023 remains within range to below range of values collected since 2018.

Typically, the SBIAR ditches measure variable TSS and TDS values attributable to the relatively small catchment and short residence time of waters that are subsequently sensitive to flux in surface water inputs from precipitation. In 2023, TDS values were elevated at RBSBIAR-DS in March, otherwise TDS values have remained relatively constant at the SBIAR locations and within range of previous sampling years since 2017.

During 2023, sulphate measures within range of values collected since 2017 with exception to one spike in sulphate at RBSBIAR-DS in March 2023. Sulphate values show more variability in 2020 than in previous (2017 to 2019) and following (2021 to 2023). The RBSBIAR-DS location shows a decreasing trend from March to September 2023, then consistent with sulphate values at all sample locations. A seasonal trend in the SBIAR ditches is observed whereby sulphate concentration peaks in spring/early summer followed by an overall decrease.

Ammonia (NH₄ as N) is subject to a temperature and pH-dependent BCAWQG-FST and BCAWQG-FLT guideline. Although no exceedances are measured to the BCAWQG-FST, it is observed that ammonia values have commonly measured higher in the downstream SBIAR ditches (RBSBIAR-DS/-EDS) than the upstream ditches from 2017 to 2022. In 2023, ammonia values show more variability, but minimal sample collection does not offer further trend analysis in 2023.

During 2023, total and dissolved aluminum measure within range of values collected since 2017. In 2023, the RBSBIAR-DS location was elevated in total aluminum in March (in addition to RBSBIAR-EDS) and September, relative to lower values during the summer. The BCAWQG-FST guideline relevant prior to August 2023 for dissolved aluminum measures three exceedances above the guideline, two (2) at RBSBIAR-DS and one (1) at RBSBIAR-EUS. For the BCAWQG-FLT guideline relevant after August 2023 for total aluminum, there were not enough samples and data collected to provide a long-term average, although the discrete September 2023 samples collected from RBSBIAR-DS and RBSBIAR-US both measured above the calculated (hardness, pH and DOC-dependent) BCAWQG-FLT guideline.

In 2023, total iron measures within range of values collected since 2017 and shows a similar spike in concentration in March and September at RBSBIAR-DS, RBSBIAR-EDS and RBSBIAR-EUS, relative to lower values during the summer months. In 2023, dissolved iron measures within range of values collected since 2017 with exception to a spike in dissolved iron in March 2023 at RBSBIAR-DS that is a higher value than measured since 2017.

Total iron shows a more variable trend below and above the BCAWQG-FST guideline, whereas dissolved iron commonly remains below detection limit and the BCAWQG-FST guideline. The measured dissolved iron in March 2023 at RBSBIAR-DS is an exception and exceeded the BCAWQG-FST guideline.

During 2023, the concentrations of metals, such as arsenic, cobalt, copper, and zinc measure within range of values in previous years from 2018 to 2022, although follow a similar trend of elevated concentration in March and September 2023, and lower values during the summer months. In 2023, dissolved cadmium shows a decreasing trend from March to September.

The downstream / upstream ratio of total zinc measured in both the RBSIBAR west ditch and RBSBIAR east ditch is shown in Figure 30a and 30b. In the years of 2018, 2019 and 2020, an annual increasing trend was observed but this does not appear to have continued since in the years of 2021, 2022 and 2023. Minimal samples were collected from both upstream and downstream locations in either ditch in 2023 for further trend analysis. In September 2023, one ratio of total zinc values in the west ditch measures below or within range of former years and does not indicate further increasing trend.

Monthly sampling in the SBIAR catchment occurred from 2017 to 2023 and will need to continue to be monitored going forward into 2024 for effective observations of trends.

5.5 L2 Powerhouse

Water quality sampling commenced at two locations within the BC Hydro L2 Powerhouse area at L2-US and L2-DS in October 2020, and continued sampling until March 2023, then were discontinued.

The L2-US location was sampled in each of the months of January, February and March 2023. The L2 Powerhouse L2-DS location was not sampled in 2023 due to frozen or dry conditions prior to the discontinuation of the L2 Powerhouse sample locations in March. In situ measurements were collected in each month where a sample for lab testing was collected.

A summary of in situ measurements are provided in Table 10 and water quality BCAWQG-FST exceedances measured at the L2 Powerhouse location are listed in Table 11. Screened lab data results are tabulated in Appendix B, Table B3.

Water from the L2 Powerhouse area is conveyed to AFDE RSEM R6 pond as needed or to the water treatment facility that discharges to the sediment pond. Water from the AFDE RSEM R6 pond is monitored prior to discharge.

5.5.1 Field Observations and In Situ Measurements

In situ measurements collected from January to March 2023 at L2-US recorded a range of pH 7.74 to 8.55 with mean pH value of 8.24, electrical conductivity 350 to 610 μ s/cm, hardness 250 to 450 ppm, alkalinity 80 ppm, water temperature 5.8 and 7.2 °C, and flow 2.0 to 5.0 L/s, with turbidity ranging between clear to slightly turbid.

No in situ measurements were collected from the L2-DS location in 2023.

5.5.2 Freshwater Short-Term Maximum Exceedance

In the three sampling events during 2023 at the L2-US location, there was one BCAWQG-FST exceedance measured for total iron (1).

No water quality samples were collected from the L2-DS location in 2023.

5.5.3 Trend Monitoring and Details of 2023 Sample Results

Trend charts for the L2 Powerhouse sample stations include sampling and further trends in 2023 at the L2-US location, since the L2-DS location was not sampled. From 2020 to 2023, the pH values measured at L2-US are consistently neutral to alkaline. Total alkalinity values are highly variable from 2020 to 2023; at L2-US, alkalinity shows a decreasing trend since August 2022 to March 2023, although is within range of alkalinity values since 2020. Acidity values measured at the L2 Powerhouse have been commonly at or below detection limit; at L2-US, acidity shows a decreasing trend from January to March 2023 at values within range of acidity values since 2020. Trend monitoring is discussed below and summarized in the attached Figures 31 to 44.

Sulphate and TDS values at L2-US and L2-DS show an overall decreasing trend since May 2022 that continues to March 2023 at L2-US. TSS values measured from January to March 2023 at L2-DS indicate a decreasing trend that remains within range of measurements collected since 2020.

Metal concentrations at L2-US from January to March 2023 show a decreasing trend for total aluminum, total iron, total arsenic, dissolved cadmium, and total zinc. The one (1) exceedance measured at the L2-US location in 2023 is for total iron in March prior to a sharp decreasing trend. Dissolved aluminum is measured below the BCAWQG-FST and shows an overall consistent trend from 2020 to 2023. Dissolved iron measures below detection limit in 2023 which is a continued trend from 2020.

Total and dissolved selenium do not have a BCAWQG-FST guideline for reporting requirements, although it is noted that both total and dissolved selenium show a decreasing trend at L2-US from above the FLT guideline in June through November 2022 to below the FLT guideline in December 2022 and continued decrease from January to March 2023.

5.6 BC Hydro Left Bank Debris Boom

Water quality sampling commenced at the BC Hydro LBDB area in October 2020 and continued sampling through the 2023 monitoring period. The most consistently sampled location is LB Pond. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LB Pond location, is immediately following a significant rainfall event. Sample staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

The LB Pond was sampled five times from March through September 2023. No other sample locations were sampled in 2023 due to dry or frozen conditions. The sample locations are shown on Figure 3.

A summary of water quality exceedances at LBDB relative to BCAWQG-FST listed by monitoring location and month are listed in Table 13, and the screening results based on the laboratory data are tabulated in Appendix B, Table B4.

5.6.1 Field Observations and In Situ Measurements

In 2023, six (6) in situ measurements were collected from LB Pond during each of the April to September sampling events.

In 2023, a range of in situ measurements were collected from LB Pond for pH (7.10 to 9.32), electrical conductivity (2.48 to 3800 μ s/cm), hardness (120 to 800 ppm), alkalinity (80 to 800 ppm), water temperature (7.3 to 23.1 °C) and no flow.

In 2023, no in situ measurements were collected from the upstream (LBDB-WUS and LBDB-EUS) or downstream (LBDB-WDS and LBDB-EDS) Armor ditches or the laydown drainage (LBDB-LD-MS and LBDB-LD-DS) locations due to dry or frozen conditions.

5.6.2 Freshwater Short-Term Maximum Exceedances

In 2023, BCAWQG-FST exceedances were not measured at the LB Pond location during the April, June, July, and August sampling events; four (4) exceedances were measured in the September sampling event for total and dissolved iron, dissolved aluminum, and total manganese. LB Pond is not a discharge station. Water is not commonly observed to discharge from the LB Pond, but if it does it passes through a limestone lined water management ditch system to the downstream monitoring station.

Water flow from the Armor Ditch sample locations are considered discharge locations but no samples or data was collected here in 2023 due to dry or frozen conditions.

5.6.3 Trend Monitoring and Details of 2023 Sample Results

Sampling at BC Hydro's LBDB area has primarily been limited to sampling at the LB Pond location, therefore comment on trend observations are limited to this location. Trend monitoring will continue in 2024 with the availability of further monthly sampling data. Trend charts are provided in Figures 46 to 57.

At LB Pond, pH values have remained neutral to alkaline with pH values at or above 7.0. Total alkalinity values consistently increase through the year from March to September 2023, which is a similar trend observed to occur in the previous years since 2020. Acidity values measure within a consistent range from 2020 to 2023. Sulphate values show a gradual increasing trend from March to autumn months in both 2022 and 2023, that measures above the BCAWQG-FLT guideline for the five months of sampling in 2023. This differs from a more consistent trend for sulphate values above the BCAWQG-FLT during the 2021 monitoring period. TDS values follow a similar trend to sulphate with a relatively consistent trend in 2021 followed by an increasing seasonal trend in 2022 and 2023. TSS values measure relatively consistent values in 2023, and more variable trends during 2021 and 2022.

Dissolved aluminum measured at LB Pond remains below the short-term BCAWQG-FST guideline in 2023 except in the September 2023 under the BC Ministry guidelines (2021), which changed to long-term BCAWQG-FST guideline in August 2023.

Total and dissolved iron concentrations follow similar trends in 2023 relative to previous years. At LB Pond, total iron exceeds the BCAWQG-FST guideline in September 2023, and dissolved iron exceeds the BCAWQG-FST in September 2023.

Total arsenic, dissolved cadmium, total cobalt, dissolved copper, and total and dissolved zinc do not measure BCAWQG exceedances during 2023, and commonly show a decreasing trend during 2023.

6.0 CONCLUSIONS AND RECOMMENDATIONS

A water quality monitoring program was implemented on behalf of BC Hydro to monitor the water quality at PAG exposure locations from River Road at Blind Corner, South Bank Initial Access Road, BC Hydro Left Bank Debris Boom, and L2 Powerhouse. Upstream, midstream, and downstream and discharge monitoring locations were established to characterize water quality and to maintain a continuous monitoring record commensurate with previous sampling completed in 2016 by Lorax on behalf of PRHP (where applicable). The water quality program

is conducted in accordance with the CEMP Rev. 12, Appendix E (Rev. 6.1) Acid Rock Drainage and Metal Leachate Management Plan, Section 5.2.1.7 (BC Hydro, 2023).

The program has incorporated monthly in situ water quality measurements and observations with laboratory analysis outside of frozen or dry conditions. Field observations were recorded from all areas monthly regardless of weather conditions or ability to collect in situ measurements or take samples for lab testing.

Water chemistry is monitored to identify influence of ARD/ML processes on water quality at River Road from construction related exposed PAG shale at Blind Corner, shale exposed in the east and west ditches within SBIAR, and construction PAG shale exposures at the BC Hydro LBDB and L2 Powerhouse areas.

The sampled locations are generally ephemeral. Residence time for water is low in the investigated area ditches due to their small catchment size. The flows in ditches are susceptible to seasonal change and flow rate is highly influenced by local precipitation events, thus the classification of flow in ditches can assist to interpret the source and subsequent chemical fluctuations in water sampled. For example, flows in ditches can be attributed to shallow or regional groundwater, spring freshet or surface run-off, dependent on the season and amount of precipitation recorded before and during the sampling event. Monthly water quality monitoring measures instantaneous water quality and may not be reflective of long-term baseline conditions.

The water quality program is achieving the purpose of evaluating water quality from dam site areas where construction related PAG exposures and PAG contact surface water is identified. The results of the program demonstrate that ARD/ML processes are occurring, however the management and mitigation measures implemented are working and that water quality remains primarily neutral to alkaline with metal concentrations dominantly below the established water quality criteria. The water quality monitoring program provides a framework for identifying water quality concerns from the exposed rock cuts in a timely manner and implementing the required mitigation measures.

6.1 River Road Water Quality Monitoring

Water quality laboratory data was collected from four locations (LBRR-DD, LBRR-EDP, LBRR-LC and RR9) and in situ measurements were collected at five of a total eleven water sample locations along the River Road catchment in 2023. No water quality samples or in situ measurements were collected from RR8 or LBRR-UC in 2023. The LBRR-12+500 location was discontinued and not sampled in 2023.

In situ field measurements of pH within the River Road ditch indicated a neutral to alkaline pH throughout the 2023 sampling year. In 2018 and 2019, acidic waters were collected in the upper portions of the ditch underlying the exposed shale cut-bank. However, in these instances the pH values progressively returned to circumneutral levels at the discharge location in part due to contact with limestone rip-rap in the ditch, and potential alkalinity input from groundwater or outflow from the upper cut-off ditch. The observation of consistent neutral to alkaline pH drainage conditions at all locations in River Road area in 2023 are indicative of changes in the exposed PAG slope over time. Visual observations show that the slope has weathered and developed a partial clay capping surface which may be limiting ARD/ML reactions, and sections of the exposed PAG slope have been observed to have naturally revegetated in localized areas.

Exceedances of total iron, total arsenic, total zinc, dissolved aluminum and chloride were noted in sampling events in March, April and September 2023. The exceedances are primarily attributed to washing, or flushing, of sediment and secondary mineral precipitate during freshet (or precipitation following a dry period), as water contacted accumulated sediment within the ditch in addition to the exposed shale, colluvium, and overburden cut-banks. It is anticipated that sediment in the ditch will continue to accumulate a small amount of secondary mineral formed by up-gradient ARD/ML processes. These minerals commonly contain an elevated concentration of metals related to

ML and mineral precipitation from acid neutralizing reactions. Sediment is also introduced into the ditch from the roadway.

Review, in previous years, of the Peace River monitoring data from Ecofish show that there are seasonal fluctuations in total metals concentrations and concentrations are highest during initial freshet in the Peace River. Additionally, Ecofish has reported that there were natural exceedances in the Peace River of the BCWQG for the protection of aquatic life, including total iron at upstream Peace River location, and these natural exceedances occurred predominantly during the freshet period (April to June) and observed at all sample sites (Ecofish, 2022). Exceedances were most often associated with elevated concentrations of suspended solids in the Peace River (Ecofish, 2022). During the sampling events in 2023, the highest turbidity measured in the Peace River was for the May 19, 2023 sample event, which does not appear to correlate with significantly higher TSS or BCAWQG-FST exceedances in May 2023 for the water quality monitoring.

ARD/ML management and mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone rip-rap lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage.

Chemical efficiency of the limestone to buffer acidic water is decreased when coated in precipitate. The formation of mineral scale can concentrate metals from solution as a result of the aqueous acid-base reactions. The mineral scale and sludge are susceptible to scouring and being washed during heavier rain events which has potential to reduce overall water quality conveyed down-gradient. The limestone rip-rap in the River Road ditch was replaced in July 2021, due to the accumulation of mineral scale onto the limestone, and sample events in July and August 2021 was limited due to dry or frozen conditions. Visual inspection of the limestone during 2022 and 2023 showed minimal precipitate formation in the surfaces, although some limestone rip-rap was obscured due to road sediment entering the ditches. The analytical results from 2023, combined with visual inspection, support that the limestone is effective in the maintenance of neutral alkaline drainage conditions and managing metal concentrations. The effectiveness and impact of the limestone rip-rap will continue to be monitored in future sampling events and analyzed for trend analysis over time.

The seasonal flows in ditches are important to consider when interpreting fluctuations and exceedances in parameters measured in water quality guidelines. The source of TSS is primarily from River Road run-off, scouring of sediment deposited within the River Road ditch and washing from the cut-slopes. Seasonally, elevated TSS levels have been noted to occur during spring melt and freshet season, typically April, when water flow can wash elevated precipitates from rock. The March 2023 sampling event represents both a warming event with melting and early spring freshet conditions.

There is limited data available at River Road in 2023. In March 2023, TSS measurements at LBRR-EDP and RR9 measure higher than the LBRR-DD and LBRR-LC locations. Total iron, total arsenic, total cobalt and total zinc are also elevated at LBRR-EDP and RR9 in March 2023.

The discharge locations to the Peace River of LBRR-DD and RR9 measure discharge flow and BCAWQG-FST exceedances in 2023. An estimated flow of 1 L/s at LBRR-DD measured one exceedance in total iron in March 2023. At RR9, an estimated flow of 1 L/s measured one exceedance in total iron in March, and an estimated flow of 0.075 L/s measured two exceedances in total iron and chloride in September 2023. No flow or samples were collected from the RR8 discharge location in 2023.

The measured lab pH of 8.19 (LBRR-DD), pH of 7.88 to 8.11 (LBRR-EDP) and pH of 7.92 and 8.05 at RR9 are within the acceptable range for BCAWQG-FST and indicate neutral to alkaline conditions. Low pH water has capacity to dissolve metals more readily than neutral, or alkaline, water.

The purpose of the diversion pipe is to address erosion and sediment control by transport of run-off water into an elongated ditchline to reduce flow velocities and to promote settlement of suspended sediment prior to discharge at RR8 and RR9. Inlets to culverts RR9 and RR8 are slightly elevated from the ditch base which will allow water to pond within the ditch and infiltrate or discharge via the culverts only if water levels reach sufficient height. In previous years it was noted that the diversion pipe was successfully reducing the amount of direct high TSS discharge into the Peace River by allowing the water to be collected and slowly infiltrate into the River Road ditch.

The estimated 1 L/s flow discharge rate from RR9 in March 2023 measured one BCAWQG-FST exceedance in total iron, which is interpreted to be related to freshet and the subsequent increase in turbidity and TSS, as shown in the EcoFish data. Exceedances are often associated with elevated concentrations of suspended solids in the Peace River.

The lower chimney (water quality monitored at LBRR-LC) drains into the River Road ditch down-gradient of LBRR 12+500 and up-gradient of LBRR-RR9. The LBRR-LC location was measured once in 2023 during March with no BCAWQG-FST exceedances. The upper chimney LBRR-UC location was not sampled in 2023. Since there is minimal data available for 2023, there is no to minimal indication that sediment accumulation is occurring on the limestone of the lower chimney ditch.

Recommendations for River Road

The River Road sampling stations demonstrate consistent neutral to alkaline drainage conditions in 2023. Additional slope mitigation is not required, however, disturbance of the shale slope is to be avoided as it may re-initiate ARD/ML processes if fresh surfaces are exposed. If erosion or scouring of the shale slope and fresh surface exposures are noted, additional short-term in situ monitoring in the River Road ditch should be evaluated to quantify the effect of fresh shale exposure on water quality, and if required additional mitigation should be considered.

The sediment source for elevated TSS is mainly attributed to scouring of accumulated sediment within the ditch from road grading and run-off from previous events, which includes washing, or flushing, of the exposed shale, colluvium, and overburden cut-banks. Continued management of the drainage system is required to reduce the amount of sediment infilling to the ditch from road grading operations as this sediment encases the limestone which reduces chemical efficiency for ARD mitigation and prematurely fills the cistern, which limits its performance to supress TSS.

The limestone rip-rap lining was last replaced in July 2021 and continues to be monitored to assess needs for maintenance, cleaning, descaling and/or removal and replacement of new limestone. With increased use of River Road, sediment and erosion control measures will be needed to address the management of sediment load coming from the road into the ditch, until such time that River Road is paved. The limestone is monitored for accumulation of precipitates and sediment and refreshed either by cleaning or replacement as needed, which was not determined to be required during 2022 or 2023.

During the sampling events in 2023, discharge from River Road to the Peace River was noted during March and September, with BCAWQG-FST exceedances measured at RR9 in March and September, and LBRR-DD in March 2023. No discharge at RR8 was observed from 2020 to 2023. It is recommended that in situ water quality measurements are collected from any discharge observed from culvert RR8 and/or RR9 during high flow events even if outside of regular sampling events.

As per CEMP Appendix E Section 5.2.1.7, it is recommended that water quality monitoring is continued on a monthly basis within the River Road catchment at the downstream stations. Continuous monthly monitoring will evaluate the effectiveness of ARD/ML mitigation strategies. There may be opportunities to reduce in situ sampling analysis at

the upstream locations given the consistency of in situ measurements over time. The sampling locations and frequency of monitoring will be reviewed with BC Hydro for the 2024 sampling year.

6.2 SBIAR Water Quality Monitoring

Water quality data was collected from four established sampling locations in 2023 that measure water directly from within the SBIAR ditch locations. The ditch samples provide long-term characterization of SBIAR water management and water quality originating from the SBIAR PAG slope at the upstream and downstream location in the east and west ditches. In May 2023, changes were made with respect to water conveyance in Area 21 up-gradient of SBIAR western slope. The corrugated pipes which were used to divert surface flow from Area 21 down the shale slope and along the ditch, to avoid creating PAG contact water were removed. There is no evidence that this had any effect on the overall water quality of the SBIAR monitoring locations.

Water flowing through the SBIAR ditch has no direct downstream receptor, and all water in the east and west ditches is conveyed directly to the PRHP RSEM R6 pond which is an approved PAG contact water management facility. Downstream water quality is monitored by PRHP within the PRHP RSEM R6 pond for management prior to discharge into the Peace River.

Evidence of active ARD/ML processes are observed on the shale slopes in SBIAR through observation of secondary iron hydroxide mineral formation. Alkalinity and pH indicate that the waters in SBIAR ditches have consistently remained alkaline during the monitoring periods from 2017 through 2023.

During the 2023 sampling period, sulphate values remained below the BCAWQG-FLT long-term guidelines at SBIAR sample locations, with exception to the two measurements in March 2023. From 2017 to 2019, the upstream location in both east and west ditches showed relatively low and consistent sulphate values. In July 2020, sulphate values at the RBSBIAR-US location sharply increased then remained at an elevated level through 2021 and 2022. In 2022, sulphate values remained below BCAWQG-FLT, which continued within a similar range of values during 2023 except for the RBSBIAR-DS and RBSBIAR-EDS locations in March 2023.

Screening of analytical data during 2023 for the downstream ditch locations resulted in BCAWQG-FST guideline exceedances at RBSBIAR-DS for total iron (2), dissolved iron (1), dissolved aluminum (2), total arsenic (2), total zinc (1), total cobalt (1) and dissolved cadmium (1) in three of six total samples analyzed in 2023. Exceedances at RBSBIAR-EDS were measured for total iron (1), total arsenic (1) and total zinc (1) in the one sample analyzed in 2023 (March).

Recommendations for SBIAR Water Quality Monitoring

The collection of one up-gradient and one down-gradient water sample from both the western and eastern SBIAR ditch is suggested to continue through 2024 for comparative purposes.

Changes to the vicinity of RBSBIAR-US have resulted in lower flows due to sediment and construction activities in 2023, therefore minimal samples were possible. Continued observations are required in 2024.

Downstream water is collected within the PRHP RSEM R6 pond for management prior to discharge into the Peace River. As per CEMP Appendix E, Section 5.2.1.7, since there is low to moderate risk of negative downstream effects on water quality, monitoring of water quality within SBIAR is recommended to be continued on a monthly basis in 2024. It is recommended that BC Hydro implement a long-term solution for the Site C operations phase for the exposed shale slope due to potential for ongoing ARD/ML processes.

6.3 L2 Powerhouse Water Quality Monitoring

Water conveyed to AFDE RSEM R6 pond from the L2 Powerhouse area is non-PAG contact. Water that is acidic or elevated in metals from the L2 Powerhouse area is pumped to the water treatment facility which discharges treated water to the RSEM R6 pond. Water is monitored by PRHP prior to discharge from the RSEM R6 pond.

During 2023, ongoing construction of the Powerhouse adjacent to the L2 slope included concrete works which may have mixed with drainage at the base of the L2 slope. Water quality sampling did not occur at L2-DS in 2023 and continued for January through March 2023 at L2-US before discontinuation of the sample location. Construction in 2023 extended to cover the locations of the L2 water quality sampling sites and sampling of the sites was terminated in April 2023.

One BCAWQG-FST exceedance was observed at L2-US in January, and none in February or March 2023. Due to the complex construction activities and water management that diverts water around the site, the sample stations may be influenced by factors outside of the shale excavations.

Recommendations for L2 Powerhouse Water Quality Monitoring

It may be important to continue to evaluate the potential for changing flow patterns and modification needed in relation to construction changes.

There are no current recommendations to reestablish sampling locations or continue sampling at L2 Powerhouse for the 2024 monitoring period.

6.4 BC Hydro Left Bank Debris Boom Monitoring

Sampling at BC Hydro's LBDB area commenced in 2020 and initially included sampling at LB Pond and a Peace River side channel location, which is now flooded. Additional sample locations were added in July 2021 following a review of the area to monitor construction contact water. The added monitoring locations are located in the armor ditches at the toe of the exposed construction PAG faces and laydown drainages downstream of the LB Pond. All locations were monitored in 2023 and sampled monthly outside of dry or frozen conditions.

Water management structures and ditch linings were amended in 2021 to improve flow management, prevent erosion and provide acid buffering capacity with limestone lining of ditches. These were proactive measures to manage signs of erosion and initial signs of ARD/ML generation on the exposed shale slopes. Mitigation and management controls were implemented in the LBDB area as discussed in Section 3.4. The exposed PAG slopes are temporary and PAG exposures are planned to be fully inundated by the reservoir filling when further flooding of the Peace River occurs, forecasted in the August of 2024.

The LB Pond station is the only station that has had consistent sample collection monthly during 2023. The other sampling stations are generally dry except after heavy rainfall events. No sampling of the armor ditches and laydown drainage occurred in 2023 due to dry or frozen conditions.

At LB Pond, in six sampling events between April to September 2023 there were BCAWQG-FST exceedances measured for total iron (1), dissolved iron (1), dissolved aluminum (1) and total manganese (1) in the month of September 2023. No BCAWQG-FST exceedances were measured in the months of April to August 2023 at LB Pond. Water is not commonly observed to discharge from the LB Pond, but if it does it passes through a limestone lined water management ditch system.

The LBDB ditches are designed to drain to sufficiently sized sumps to retain water from the ditches should there be increased water inputs such as rainfall events, which did not occur in 2023. Field samplers confirmed that there was no direct discharge to the Peace River in 2023, and that the sampled ditches were dry or frozen in 2023.

Recommendations for LBDB Water Quality Monitoring

BC Hydro should continue to monitor water quality on a monthly frequency to monitor future construction related activities in and around the catchment area. The exposed PAG slopes should continue to be monitored for evidence of ARD/ML processes including precipitate formation and oxidation staining until it is inundated by the reservoir.

LB Pond is the only location within the area that has been consistently available for sampling. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LB Pond location, is immediately following significant precipitation. Field sampling staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

7.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Erica Massey, M.Sc., P.Geo. Geoscientist Mining Practice Direct Line: 250.862.4832 erica.massey@tetratech.com PERMIT TO PRACTICE TETRA TECH CANADA INC.

PERMIT NUMBER: 1001972

Reviewed by: Lara Reggin, P.Geo. Principal Consultant Mining Practice Direct Line: 604.608.8631 lara.reggin@tetratech.com

/bi

REFERENCES

- Bai, Z., Dong, Y., Wang, Z and Zhu, T. (2006). Emission of ammonia from indoor concrete wall and assessment of human exposure. *Environment International*. 32(3):303-11. DOI: 10.1016/j.envint.2005.06.002.
- BC Hydro (2023). Construction Environmental Management Plan, Site C Clean Energy Project, Section 5.2.1.7 Revision 5.0 (February 19, 2019), Revision 5.1 (April 19, 2019), Revision 6.0 (July 15, 2019), and Revision 6.1 (December 12, 2019), Revision 7 (September 4, 2020), Revision 8 (June 21, 2021), Revision 10 (March 9, 2022). Revision 11 (October 10, 2022), Revision 12 (October 23, 2023), Appendix E (Rev.6.1).
- BC Hydro (2022). Site C Meteorological and Air Quality Stations. Retrieved: https://envistaweb.env.gov.bc.ca
- BC Ministry of Energy and Mines (1998). Policy for Metal Leaching and Acid Rock Drainage at Mine sites in British Columbia. July 1998.
- BC Ministry of Environment, BC MoE (2013). B.C. Field Sampling Manual: 2013 For Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment and Biological Samples.
- BC Ministry of Environment, BC MoE (2013). B.C. Field Sampling Manual, Part E Water and Wastewater Sampling. Accessed: https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual
- BC Ministry of Environment, BC MoE (2021) BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Water Protection & Sustainability Branch. Clark, M.J.R., editor (2003) British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312pp.
- BC Ministry of Environment, BC MoE (2023) BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Water Protection & Sustainability Branch. Clark, M.J.R., editor (2003) British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312pp.
- BC Biotic Ligand Model software provided by the BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch (BC MoE).
- Ecofish Research Ltd. (2022). PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2021 Annual Report. March 10, 2022.
- EcoFish Research Ltd. (2023a). PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2022 Annual Report.
- EcoFish Research Ltd. (2024a). PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2023 Annual Report.
- EcoFish (2024b) PAM 2023 Data for Tetra Tech. Reviewed January 30, 2024.
- Hemmera Envirochem Inc. and BGC Engineering Inc. (2012) Environmental Impact Statement, Site C Clean Energy Project, Volume 2, Appendix F, Groundwater Regime Technical Data Report, document number 06-105, December 2012.
- Klohn Crippen Berger Ltd. and SNC-Lavalin Inc. (2015) Site C Clean Energy Project: Implementation design geochemical characterization status at the end of 2014.
- Lorax Environmental Services (2024). Site C Clean Energy Project Acid Rock Drainage and Metal Leachate Management 2023 Annual Report.
- Price, W.A. 2009. MEND Report 1.20.1: Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials.
- Tetra Tech (2018) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road and L3 Creek 2017 Annual Report. IFU March 15, 2018.

- Tetra Tech (2019) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2018 Annual Report. IFU March 15, 2019.
- Tetra Tech (2020) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2019 Annual Report. IFU March 31, 2020.
- Tetra Tech (2021) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, L3 Creek, Left Bank Debris Boom and L2 Powerhouse 2020 Annual Report. IFU March 4, 2021.
- Tetra Tech (2022) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, L3 Creek, BC Hydro Left Bank Debris Boom and L2 Powerhouse 2021 Annual Report. IFU March 30, 2022.
- Tetra Tech (2023) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, BC Hydro Left Bank Debris Boom and L2 Powerhouse 2022 Annual Report. IFU March 28, 2023.

FIGURES

Figure 1	River Road Monitoring Locations (LB)						
Figure 2	SBIAR and L2 Powerhouse Monitoring Locations (RB)						
Figure 3	LBDB Monitoring Locations (LB)						
Figure 4	BC Hydro – Site C Meteorological and Air Quality Stations						
Figure 5	Turbidity and TSS Measured in the Peace River						
RIVER ROA	D (Fig 6-17)						
Figure 6	pH at RR Locations						
Figure 7	Total Alkalinity at RR Locations						
Figure 8	Acidity at RR Locations						
Figure 9	Sulphate at RR Locations						
Figure 10	a) TDS and b) TSS at RR Locations						
Figure 11	a) Total and b) Dissolved Aluminum at RR Locations						
Figure 12	b) Total and b) Dissolved Iron at RR Locations						
Figure 13	Total Arsenic at RR Locations						
Figure 14	Dissolved Cadmium at RR Locations						
Figure 15	Total Cobalt at RR Locations						
Figure 16	Dissolved Copper at RR Locations						
Figure 17	a) Total and b) Dissolved Zinc at RR Locations						
RBSBIAR (F	ig 18-31)						
Figure 18	pH at RBSBIAR Locations						
Figure 19	Total Alkalinity at RBSBIAR Locations						
Figure 20	Acidity at RBSBIAR Locations						
Figure 21	Sulphate at RBSBIAR Locations						
Figure 22	a) TDS and b) TSS at RBSBIAR Locations						
Figure 23	a) Total and b) Dissolved Aluminum at RBSBIAR Locations						
Figure 24	a) Total and b) Dissolved Iron at RBSBIAR Locations						
Figure 25	Total Arsenic at RBSBIAR Locations						
Figure 26	Dissolved Cadmium at RBSBIAR Locations						
Figure 27	Total Cobalt at RBSBIAR Locations						
Figure 28	Dissolved Copper at RBSBIAR Locations						
Figure 29	a) Total and b) Dissolved Zinc at RBSBIAR Locations						
Figure 30	a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc						
Figure 31	Ammonia at RBSBIAR Locations						

L2 Powerhouse (Fig 32-45)

Figure 32	pH at L2 Powerhouse Locations
Figure 33	Total Alkalinity at L2 Powerhouse Locations
Figure 34	Acidity at L2 Powerhouse Locations
Figure 35	Sulphate at L2 Powerhouse Locations
Figure 36	a) TDS and b) TSS at L2 Powerhouse Locations
Figure 37	a) Total and b) Dissolved Aluminum at L2 Powerhouse Locations
Figure 38	a) Total and b) Dissolved Iron at L2 Powerhouse Locations
Figure 39	Total Arsenic at L2 Powerhouse Locations
Figure 40	Dissolved Cadmium at L2 Powerhouse Locations
Figure 41	Total Cobalt at L2 Powerhouse Locations
Figure 42	Dissolved Copper at L2 Powerhouse Locations
Figure 43	a) Total and b) Dissolved Zinc at L2 Powerhouse Locations
Figure 44	a) Total and b) Dissolved Selenium at L2 Powerhouse Locations
Figure 45	Ammonia at L2 Powerhouse Locations
BC Hydro Left	Bank Debris Boom (Fig 46-57)
Figure 46	pH at LBDB Locations
Figure 47	Total Alkalinity at LBDB Locations
Figure 48	Acidity at LBDB Locations
Figure 49	Sulphate at LBDB Locations
Figure 50	a) TDS and b) TSS at LBDB Locations
Figure 51	a) Total and b) Dissolved Aluminum at LBDB Locations
Figure 52	a) Total and b) Dissolved Iron at LBDB Locations
Figure 53	Total Arsenic at LBDB Locations
Figure 54	Dissolved Cadmium at LBDB Locations
Figure 55	Total Cobalt at LBDB Locations
Figure 56	Dissolved Copper at LBDB Locations
Figure 57	a) Total and b) Dissolved Zinc at LBDB Locations

LEGEND

- X Water Sample (Insitu Testing & External Lab Testing)
- Discharge Location
- Site C Project Boundary

Sampe ID	Easting	Northing
LBDB-EDS	627994	6231856
LBDB-EUS	628202	6231908
LBDB-LD-DS	628093	6231766
LBDB-LD-MS	628147	6231844
LBDB-LD-US	628257	6231876
LBDB-WDS	627969	6231883
LBDB-WUS	628189	6231933
LBP-Pond	628227	6231885
LBDB Side Channel E	628311	6231511

NOTES Base data source: Imagery provided by Google; Maxar (May 2023).

> STATUS ISSUED FOR USE

SITE C WATER QUALITY MONITORING 2023 ANNUAL REPORT

Left Bank Debris Boom (LBDB)

PROJECTION UTM Zone 10				DATUM	M	CLIENT	
				NAD83		A BC Hydro	
Scale: 1:4,000						Power smart	
80	40	0			80		
Metres FILE NO.						TE TETRA TECH	
VMIN03021	-06_Fig03	WaterS					
OFFICE		DWN	CKD	APVD	REV		
Tt-VANC		SL	BB	EM	0	Eigung 2	
DATE	PROJECT NO.				Figure 5		
January 31.	ENG.V	ENG.VMIN03021-06					

Figure 5: Turbidity and TSS Measured in the Peace River

*Average turbidity and TSS across the Peace River include both left bank and right bank.

EcoFish Disclaimer: TSS:turbidity relationship used was the same all year. Note, these relationships are specific to a particular make/model of sensor. Please exercise caution if relationship applied to any data collected.

Figure 6: pH at River Road Locations

Figure 9: Sulphate at River Road Locations

Figure 10a: Total Dissolved Solids (TDS) at River Road Locations

Figure 10b: Total Suspended Solids (TSS) at River Road Locations

Figure 12a: Total Iron at River Road Locations

Figure 12b: Dissolved Iron at River Road Locations

Figure 15: Total Cobalt at River Road Locations

Figure 18: pH at RBSBIAR Locations

Figure 19: Total Alkalinity at RBSBIAR Locations

Figure 22a: Total Dissolved Solids (TDS) at RBSBIAR Locations

Figure 22b: Total Suspended Solids (TSS) at RBSBIAR Locations

Figure 23b: Dissolved Aluminum at RBSBIAR Locations

Figure 24a: Total Iron at RBSBIAR Locations

Figure 24b: Dissolved Iron at RBSBIAR Locations

Figure 25: Total Arsenic at RBSBIAR Locations

Figure 27: Total Cobalt at RBSBIAR Locations

Figure 28: Dissolved Copper at RBSBIAR Locations

Figure 29a: Total Zinc at RBSBIAR Locations

Figure 29b: Dissolved Zinc at RBSBIAR Locations

Figure 30b: RBSBIAR East Ditch Downstream (EDS), Upstream (EUS) Ratio - Total Zinc

Figure 32: pH at L2 Powerhouse Locations

Figure 35: Sulphate at L2 Powerhouse Locations

Figure 36a: Total Dissolved Solids (TDS) at L2 Powerhouse Locations

Figure 36b: Total Suspended Solids (TSS) at L2 Powerhouse Locations

Figure 37b: Dissolved Aluminum at L2 Powerhouse Locations

Figure 38a: Total Iron at L2 Powerhouse Locations

Figure 38b: Dissolved Iron at L2 Powerhouse Locations

Figure 39: Total Arsenic at L2 Powerhouse Locations

Figure 40: Dissolved Cadmium at L2 Powerhouse Locations

Figure 41: Total Cobalt at L2 Powerhouse Locations

Figure 42: Dissolved Copper at L2 Powerhouse Locations

Figure 43b: Dissolved Zinc at L2 Powerhouse Locations

Figure 44a: Total Selenium at L2 Powerhouse Locations

Figure 44b: Dissolved Selenium at L2 Powerhouse Locations

Figure 45: Ammonia (NH₄ as N) at L2 Powerhouse Locations

Figure 46: pH at LBDB Locations

Figure 47: Total Alkalinity at LBDB Locations

Figure 48: Acidity at LBDB Locations

Figure 49: Sulphate at LBDB Locations

Figure 50a: Total Dissolved Solids (TDS) at LBDB Locations

Figure 50b: Total Suspended Solids (TSS) at LBDB Locations

Figure 51b: Dissolved Aluminum at LBDB Locations

Figure 52a: Total Iron at LBDB Locations

Figure 52b: Dissolved Iron at LBDB Locations

Figure 53: Total Arsenic at LBDB Locations

Figure 54: Dissolved Cadmium at LBDB Locations

Figure 55: Total Cobalt at LBDB Locations

Figure 56: Dissolved Copper at LBDB Locations

Figure 57a: Total Zinc at LBDB Locations

Figure 57b: Dissolved Zinc at LBDB Locations

TABLES

- Table 1
 Water Sampling Locations and In Situ and Lab Events
- Table 2
 Temperature and Precipitation Daily and 7-Day Average
- Table 3 Classification of Flows in Ditch
- Table 4
 Turbidity and TSS of the Peace River for Water Sampling Events
- Table 5a QAQC Travel and Field Blanks
- Table 5bQAQC Field Replicate Samples
- Table 6
 River Road In Situ Water Quality Sampling
- Table 7
 River Road Water Quality Exceedances Summary (BCAWQG-FST)
- Table 8 RBSBIAR In Situ Water Quality Measurements
- Table 9
 RBSBIAR Water Quality Exceedances Summary (BCAWQG-FST)
- Table 10 L2 Powerhouse In Situ Water Quality Sampling
- Table 11L2 Powerhouse Water Quality Exceedances Summary (BCAWQG-FST)
- Table 12 LBDB In Situ Water Measurements
- Table 13 LBDB Water Quality Exceedances Summary (BCAWQG-FST)
- Table 14
 Discharge and Downstream Locations Minimum, Maximum and Mean Values

		Rout	ine Memo Nu	ımber:		-		1				2					3				4			-		-	· ·	
		Samp	ling Event N	umber:		1		2		3		4		5		6		7		8		9	1	0	1	1	1:	2
Catchment	Sample Site	UTM Co Zone 1	ordinates 0 (NAD83)	Elevation	30-J	an-23	20-	Feb-23	29-N	Mar-23	28-A	pr-23	19-N	lay-23	28-J	lun-23	17-J	lul-23	30-A	ug-23	28-5	Sep-23	29-0	ct-23	26-N	ov-23	21-De	ec-23
		Easting	Northing		In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab
	RBSBIAR-US	630327	6228397	468.0																	~	~						1
Right Bank - South	RBSBIAR-DS	630320	6228645	445.2					~	~	~	✓	~	✓	~	~	~	~	✓	✓	~	~	~				\square	1
Bank Initial Access	RBSBIAR-EUS	630376	6228399	464.6					~		~		~	✓	~	~	~	~	✓		~						\square	1
Road	RBSBIAR-EDS	630370	6228635	437.4					~	~																	\square	1
	RBSC-DS	630475	6228672	418.6																								i
	LBRR-DD*	632853	6229862	422.0					✓	✓																		Í
	LBRR-EDP	632715	6229832	416.4					✓	✓	✓	✓									✓	✓						ĺ
	LBRR-LC	632856	6229899	427.2					✓	✓																		Í
	LBRR-UC	633018	6230253	463.2																								ĺ
	LBRR-12+500	632914	6229921	432																								ĺ
Left Bank Biver Road	LBRR-12+600	632948	6229983	436									1															1
Niver Noad	LBRR-12+700	632992	6230078	443																								Í
	LBRR-12+810	633039	6230195	454																								Í
	LBRR-12+920	633000	6230282	463					✓		✓		✓		✓		✓		✓		✓							Í
	RR8*	632262	6229624	412																								Í
	RR9*	632460	6229680	413					✓	✓											✓	✓						Í
	LB Pond	628227	6231885	458							✓	✓	✓	~	✓	✓	✓	✓	√	✓	✓	✓						1
	LBDB-WUS	628189	6231933	-																								1
	LBDB-WDS	627969	6231883	-																								1
Left Bank Debris	LBDB-EUS	628202	6231908	-																								1
Boom	LBDB-EDS	627994	6231856	-																								1
	LBDB-LD-US	628257	6231876	-																								1
	LBDB-LD-MS	628147	6231844	-																								1
	LBDB-LD-DS*	628093	6231766	-																								1
	L2 DS	629607	6229185	385																								
L2 Powernouse	L2 US	629701	6229279	414	✓	✓	✓	✓	~	✓																		

Table 1: Water Sampling Locations and In Situ and Lab Events

*Discharge Location.

No sampling in December 2021 due to frozen condtions at all locations

All elevations are approximate

Table 2: Daily and 7-Day Mean Temperature and Precipitation

Date	Time	Precipitation	1		Temperatu	e ¹	Summary
Sample Event Date	Time Period	Precipitation Event	Total	Mean	Minimum	Maximum	24 Hr and 7 Day Precipitation
Bolded	rinio r oniou		(mm)	(°C)	(°C)	(°C)	
January 23-29, 2023	7 days	Jan 22, 26 and 27	1.08	-3.4	-20.8	8.4	Minimal (1.08 mm) precipitation.
January 29, 2023	24 hrs.	none	0.00	-15.2	-20.8	-9.8	No precipitation.
January 30, 2023	24 hrs.	30-Jan	0.91	-11.3	-15.3	-8.1	Minimal (0.91 mm) precipitation
February 13-18, 2023	7 days	Feb 13, 14, 18 and 19	2.36	-8.4	-17.9	4.7	minimal precipitation (2.36mm) on Feb 13, 14, 18, 19
February 19, 2023	24 hrs.	19-Feb	0.11	-10.2	-13.9	-6	minimal precipitation (0.11mm) on Feb 19
February 20, 2023	24 hrs.	20-Feb	0.21	-10.2	-14.7	-7.6	Minimal precipitation (0.21 mm) on Feb 20
March 22-28, 2023	7 days	Mar 26 only	0.44	0.3	-6.9	10.1	Minimal precipitation (0.44 mm) Mar 26
March 28, 2023	24 hrs.	none	0.00	1.2	-6.9	8.8	No precipitation.
March 29, 2023	24 hrs.	29-Mar	1.03	1.1	-0.7	2.5	Minimal precipitation (1.03 mm) on Mar 29
April 21-27, 2023	7 days	Apr 23, 24 and 26	3.38	6	-0.9	13.9	Minimal precipitation (3.38 mm) on April 23, 24, 26
April 27, 2023	24 hrs.	none	0.00	9.1	2.6	13.9	No precipitation.
April 28, 2023	24 hrs.	none	0.00	12	5.5	17.6	No precipitation.
May 12-18, 2023	7 days	none	0.00	17.8	6.9	32.1	No precipitation.
May 18, 2023	24 hrs.	none	0.00	15	6.9	22.5	No precipitation.
May 19, 2023	24 hrs.	none	0.00	14.1	9.2	19.6	No precipitation.
June 17-23, 2021	7 days	Jun 22, 24, 25 and 27	9.31	19.4	6.6	28.4	Moderate (9.31 mm) precipitation on June 22, 24, 25, 27
June 27, 2023	24 hrs.	27-Jun	0.71	20.4	14.6	28.3	Minimal (0.71 mm) precipitation.
June 28, 2023	24 hrs.	28-Jun	0.10	21.1	12.2	29.8	Minimal (0.10 mm) precipitation.
July 10-16	7 days	Jul 10-11 and 13-16	3.20	20	12.5	28.5	Minimal precipitation (3.20 mm) on June 10-11, 13-16
July 16, 2023	24 hrs.	none	0.07	18	12.7	23.7	Minimal (0.07 mm) precipitation
July 17, 2023	24 hrs.	none	0.00	16.8	12.5	23	Moderate precipitation on July 20 (6.72 mm) and July 21 (22.95 mm)
August 22-29, 2023	7 days	Aug 23 and 24	0.37	19.4	8.8	30.6	Minimal (0.37 mm) precipitation on Aug 23, 24
August 29, 2023	24 hrs.	none	0.00	17.3	11.1	25.3	No precipitation.
August 30, 2023	24 hrs.	30-Aug	0.28	18	11.5	27.1	Minimal (0.28 mm) precipitation
September 21-27, 2023	7 days	Sep 24, 25 and 27	12.31	12	3.1	26.2	Moderate (12.31 mm) precipitation Sep 24, 25, 27
September 27, 2023	24 hrs.	27-Sep	2.52	11.1	8.4	13.9	Minimal (2.52 mm) precipitation.
September 28, 2023	24 hrs.	28-Sep	8.67	8.7	7.0	9.7	Moderate (8.67 mm) precipitation.
October 22-28, 2023	7 days	Oct 22 and 23	4.63	-5.8	-14.7	3.3	Minimal (4.63 mm) precipitation Oct 22, 23
October 28, 2023	24 hrs.	none	0.00	-2.7	-7.3	3.3	No precipitation
October 29, 2023	24 hrs.	none	0.00	-3.8	-7.4	0.3	No precipitation
November 19-25, 2023	7 days	Nov 20 and 25	0.57	-3.7	-12.4	7.8	Minimal (0.57 mm) precipitation
November 25, 2023	24 hrs.	25-Nov	0.12	0.7	-1.5	2.9	Minimal (0.12 mm) precipitation
November 26, 2023	24 hrs.	none	0.00	-1.7	-3.3	1.5	No precipitation
December 14-20, 2023	7 days	Dec 19 only	3.55	-2.0	-9.5	0.49	Minimal (3.55 mm) precipitation
December 20, 2023	24 hrs.	none	0.00	-3.0	-7.4	4.2	No precipitation
December 21, 2023	24 hrs.	none	0.00	-1.0	-2.5	1.4	No precipitation

¹ BC Ministry of Environment, BC Air quality data: Fort St John North Camp C_Met_60 weather station. https://envistaweb.env.gov.bc.ca/.

WATER QUALITY MONITORING 2023 ANNUAL REPORT FILE: 704-ENG.VMIN03021-06 | MARCH 2024 | ISSUED FOR USE

Table 3: Classification of Flows in Ditch

Sample Event Date Bolded	Time Period	Precipitation Event	Total (mm)	Mean (°C)	24 Hr and 7 Day Precipitation	Classification
January 23-29, 2023	7 days	Jan 22, 26 and 27	1.08	-3.4	Minimal (1.08 mm) precipitation.	
January 29, 2023	24 hrs.	none	0.00	-15.2	No precipitation.	Regional groundwater flow; frozen conditions.
January 30, 2023	24 hrs.	30-Jan	0.91	-11.3	Minimal (0.91 mm) precipitation	
February 13-18, 2023	7 days	Feb 13, 14, 18 and 19	2.36	-8.4	minimal precipitation (2.36mm) on Feb 13, 14, 18, 19	
February 19, 2023	24 hrs.	19-Feb	0.11	-10.2	minimal precipitation (0.11mm) on Feb 19	Regional groundwater flow; frozen conditions.
February 20, 2023	24 hrs.	20-Feb	0.21	-10.2	Minimal precipitation (0.21 mm) on Feb 20	
March 22-28, 2023	7 days	Mar 26 only	0.44	0.3	Minimal precipitation (0.44 mm) Mar 26	
March 28, 2023	24 hrs.	none	0.00	1.2	No precipitation.	Regional groundwater flow; slight warming conditions
March 29, 2023	24 hrs.	29-Mar	1.03	1.1	Minimal precipitation (1.03 mm) on Mar 29	
April 21-27, 2023	7 days	Apr 23, 24 and 26	3.38	6.0	Minimal precipitation (3.38 mm) on April 23, 24, 26	
April 27, 2023	24 hrs.	none	0.00	9.1	No precipitation.	Surface runoff and early spring freshet; melting and warming conditions
April 28, 2023	24 hrs.	none	0.00	12.0	No precipitation.	warming conditions.
May 12-18, 2023	7 days	none	0.00	17.8	No precipitation.	
May 18, 2023	24 hrs.	none	0.00	15	No precipitation.	Surface runoff and spring freshet; melting and
May 19, 2023	24 hrs.	none	0.00	14.1	No precipitation.	warming conditions.
June 17-23, 2021	7 days	Jun 22, 24, 25 and 27	9.31	19.4	Moderate (9.31 mm) precipitation on June 22, 24, 25, 27	
June 27, 2023	24 hrs.	27-Jun	0.71	20.4	Minimal (0.71 mm) precipitation.	Late treshet surface runoff, shallow and regional
June 28, 2023	24 hrs.	28-Jun	0.10	21.1	Minimal (0.10 mm) precipitation.	groundwatch now.
July 10-16	7 days	Jul 10-11 and 13-16	3.20	20.0	Minimal precipitation (3.20 mm) on June 10-11, 13-16	
July 16, 2023	24 hrs.	none	0.07	18.0	Minimal (0.07 mm) precipitation	Shallow or regional groundwater flow; warm
July 17, 2023	24 hrs.	none	0.00	16.8	Moderate precipitation on July 20 (6.72 mm) and July 21 (22.95 mm)	temperatures.
August 22-29, 2023	7 days	Aug 23 and 24	0.37	19.4	Minimal (0.37 mm) precipitation on Aug 23, 24	
August 29, 2023	24 hrs.	none	0.00	17.3	No precipitation.	Snallow or regional groundwater flow; warm
August 30, 2023	24 hrs.	30-Aug	0.28	18.0	Minimal (0.28 mm) precipitation	temperatures.
September 21-27, 2023	7 days	Sep 24, 25 and 27	12.31	12.0	Moderate (12.31 mm) precipitation Sep 24, 25, 27	
September 27, 2023	24 hrs.	27-Sep	2.52	11.1	Minimal (2.52 mm) precipitation.	Snallow or regional groundwater flow and surface
September 28, 2023	24 hrs.	28-Sep	8.67	8.7	Moderate (8.67 mm) precipitation.	
October 22-28, 2023	7 days	Oct 22 and 23	4.63	-5.8	Minimal (4.63 mm) precipitation Oct 22, 23	
October 28, 2023	24 hrs.	none	0.00	-2.7	No precipitation	Regional groundwater flow; frozen conditions.
October 29, 2023	24 hrs.	none	0.00	-3.8	No precipitation	
November 19-25, 2023	7 days	Nov 20 and 25	0.57	-3.7	Minimal (0.57 mm) precipitation	
November 25, 2023	24 hrs.	25-Nov	0.12	0.7	Minimal (0.12 mm) precipitation	Regional groundwater flow; frozen conditions.
November 26, 2023	24 hrs.	none	0.00	-1.7	No precipitation	
December 14-20, 2023	7 days	Dec 19 only	3.55	-2.0	Minimal (3.55 mm) precipitation	
December 20, 2023	24 hrs.	none	0.00	-3.0	No precipitation	Regional groundwater flow; frozen conditions.
December 21, 2023	24 hrs.	none	0.00	-1.0	No precipitation	

Date	Turbidity (Da	ily Mean) and TSS M Peace River abov	leasurements an /e Moberly River	d Calculations -
Sampling Event Date Bolded	Lef	t Bank	Righ	it Bank
	NTU ¹	TSS ¹ (mg/L)	NTU ¹	TSS ¹ (mg/L)
January 23-29, 2023	4.4	3.1	6.6	4.7
January 29, 2023	2.5	1.8	2.5	1.7
January 30, 2023	4.6	3.3	7.5	5.3
January 31, 2023	5.0	3.6	6.4	4.6
February 13-19, 2023	4.0	2.8	4.7	3.3
February 19, 2023	23	17	2.9	2.0
Eebruary 20, 2023	22	1.6	1.0	1.0
February 21, 2023	2.2	1.0	0.9	0.7
April 22 28 2023	5.7	1.5	4.1	2.0
April 22-20, 2023	7.6	4.1		2.9
	7.0	5.4	5.4	3.9
March 29, 2023	6.1	4.3	3.5	2.5
March 30, 2023	8.7	6.2	5.3	3.8
April 21-27, 2023	20.2	14.3	16.1	11.4
April 27, 2023	24.8	17.6	23.3	16.5
April 28, 2023	20.9	20.6	33.2	23.6
April 29, 2023	170.1	23.0	41.7	29.6
Way 12-10, 2023	170.1	120.0	150.4	92.0
May 10, 2023	237.0	100.0	103.0	72.0
May 19, 2023	140.4	70.7	91.5	73.9
	0.4	6.6	10.7	7.6
June 27, 2023	13.5	0.0	15.3	10.8
June 28, 2023	17.3	12.3	19.2	13.6
June 29, 2023	16.3	11.6	15.2	10.8
July 10-16, 2023	14.3	10.1	8.5	6.0
July 16, 2023	38.9	27.6	12.9	9.2
July 17, 2023	14.4	10.2	8.1	5.7
July 18, 2023	11.2	8.0	6.9	4 9
August 23-29, 2023	4.6	3.2	2.0	1.0
August 29, 2023	5.1	37	3.6	2.5
August 30, 2023	34	24	1.5	1.0
August 31, 2023	3.5	2.5	1.5	1.1
September 21-27, 2023	3.9	2.8	2.9	2.1
September 27, 2023	4.0	2.8	3.6	2.6
September 28, 2023	4.3	3.0	3.1	2.2
September 29, 2023	5.3	3.8	5.2	3.7
October 22-28, 2023	5.3	3.8	4.1	2.9
October 28, 2023	4.6	3.2	2.2	1.5
October 29, 2023	3.4	2.4	2.7	1.9
October 30, 2023	4.1	2.9	2.2	1.6
November 19-25, 2023	1.5	1.1	1.3	0.9
November 25, 2023	0.7	0.5	0.5	0.3
November 26, 2023	0.7	0.5	0.4	0.3
November 27, 2023	0.7	0.5	0.5	0.3
December 14-20, 2023	4.2	3.0	4.5	3.2
December 20, 2023	2.5	1.8	2.7	1.9
December 21, 2023	2.5	1.8	2.7	1.9
December 22, 2023	2.5	1.8	2.6	1.9

Table 4: Turbidity and TSS of the Peace River for Water Sampling Events

¹ NTU (Nephelometric Turbidity Unit) and TSS (total suspended sediment) data provided by Ecofish Ltd., January 26, 2024.

NTU: to some extent, measures (scattered light at 90 degrees from the incident light beam) how much light reflects for a given amount of particulates dependent upon properties of the particles, e.g. their shape, color, and reflectivity.

Note: 7-day average turbidity values are calculated as the average turbidity measured during the prior seven days to the sampling event.

Table 5a: QAQC - Travel and Field Blanks

			Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Travel Blank	Field Blank
Ua	Unit	RDL	30-Jan-23	30-Jan-23	20-Feb-23	20-Feb-23	29-Mar-23	29-Mar-23	28-Apr-23	28-Apr-23	19-May-23	19-May-23	28-Jun-23	28-Jun-23	17-Jul-23	17-Jul-23	30-Aug-23	30-Aug-23	28-Sep-23	28-Sep-23
Physical Parameters																				
Acidity (as CaCO ₃)	µg/L	1000	<2000	<2000	2200	2200	<2000	<2000	<2000	<2000	2200	2200	<2000	<2000	2300	2400	2200	2100	2300	2300
Alkalinity (Total as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Electrical Conductivity (EC)	μS/cm	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hardness as CaCO ₃ , dissolved	µg/L	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hardness as CaCO ₃ , from total Ca/Mg	µg/L	600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600
рН	pH Units	0.1	5.43	5.46	5.31	5.53	5.42	5.36	5.32	5.56	5.17	5.15	5.69	5.36	5.46	5.42	5.28	5.26	5.40	5.39
Total Dissolved Solids (TDS)	µg/L	10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000
Total Suspended Solids (TSS)	µg/L	3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000
Alkalinity (Hydroxide as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Anions and Nutrients			_	_		_		_		_		_		_	_	_	_	_		
Ammonia (NH ₄ as N)	µg/L	5.0	<5	<5	15.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	µg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Nitrate (NO ₃ as N)	µg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nitrite (NO ₂ as N) Subbate (SO)	µg/L	200	< 1	<u>د</u> ا ۲۵۵۵	<1	<1	٤١	<u>د ا</u> ۲۵۵۵	<1	٤١	<1	< <u> </u>	<1	<1	<1	< <u> </u>	< -2000	<1	<1	<1
Dissolved Organic Carbon (DOC)	µg/L	500	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300
Metals Total	µg/L	500																		
Aluminum	ua/l	3.0	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	< 3	<3	<3	<3	<3	<3	<3
Antimony	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	ug/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	ua/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	μg/L	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Boron	µg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	µg/L	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
Calcium	µg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cesium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	µg/L	0.10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	µg/L	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	µg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lead	µg/L	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium	µg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Manganese	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Melvedenum	µg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
Nickel	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phosphorus	µg/L	50.0	<50	<50	<0.3	<0.5	<50	<50	<0.3	<50	<0.5	<0.5	<0.3	<0.3	<0.3	<50	<50	<0.3	<50	<0.5
Potassium	µg/L	50.0	<50	<50 <50	<50	<50	<50	<50 <50	<50	<50	<50	<50	<50	<50	<50	<50 <50	<50	<50	<50	<50
Rubidium	ua/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	µg/L	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Silicon	µg/L	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Silver	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Strontium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sulfur	µg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Tellurium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	µg/L	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	3.0	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Zirconium	µg/L	0.06	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			Field Blank	Travel Blank	Travel Blank	Field Blank														
Ua	Unit	RDL	30-Jan-23	30-Jan-23	20-Feb-23	20-Feb-23	29-Mar-23	29-Mar-23	28-Apr-23	28-Apr-23	19-May-23	19-May-23	28-Jun-23	28-Jun-23	17-Jul-23	17-Jul-23	30-Aug-23	30-Aug-23	28-Sep-23	28-Sep-23
Metals, Dissolved																				
Aluminum	µa/L	1.0																		
Antimony	ua/L	0.10																		
Arsenic	ua/L	0.10																		
Barium	ua/L	0.10																		
Bervllium	ua/L	0.10																		
Bismuth	ug/L	0.05																		
Boron	µg/L	10.0																		
Cadmium	ug/L	0.005																		
Calcium	µg/L	50.0																		
Cesium	µg/L	0.01																		
Chromium	µg/L	0.10																		
Cobalt	µg/L	0.10																		
Copper	µg/L	0.20																		
Iron	µg/L	10.0																		
Lead	µg/L	0.05																		
Lithium	µg/L	1.0																		
Magnesium	µg/L	5.0																		
Manganese	µg/L	0.10																		
Mercury	µg/L	0.005																		
Molybdenum	µg/L	0.05																		
Nickel	µg/L	0.50																		
Phosphorus	µg/L	50.0																		
Potassium	µg/L	50.0																		
Rubidium	µg/L	0.20																		
Selenium	µg/L	0.05																		
Silicon	µg/L	50.0																		
Silver	µg/L	0.01																		
Sodium	μg/L	50.0																		
Strontium	μg/L	0.2																		
Sulfur	µg/L	500																		
Tellurium	µg/L	0.20																		
Thallium	µg/L	0.01																		
Thorium	µg/L	0.10																		
Tin	µg/L	0.10																		
Titanium	µg/L	0.30																		
Tungsten	µg/L	0.10																		
Uranium	µg/L	0.01																		
Vanadium	µg/L	0.50								ļ										
Zinc	µg/L	1.0								ļ										
Zirconium	µg/L	0.06	1							ļ		l				ļ		ļ		
Laboratory Work Order Number	1		FJ2300206	FJ2300206	FJ2300373	FJ2300373	FJ2300677	FJ2300677	FJ2300936	FJ2300936	FJ2301129	FJ2301129	FJ2301553	FJ2301553	FJ2301738	FJ2301738	FJ2302196	FJ2302196	FJ23020574	FJ2302574

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

Blank indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Shaded gray only - exceeds BCAWQG-FSTM guideline.

Blank - not analyzed.

Table 5b: 2023 Quality Assurance/Quality Control for Water Quality Sample Results - Field Replicate Samples

,,			RBSBIAR-DS	RBSBIAR-DS-R		L2-US	L2-US-R		L2-US	L2-US-R		LBP-Pond	LBP-Pond-R		LBP-Pond	LBP-Pond-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R	RBSB	BIAR-US	RBSBIAR-US-R	í
Parameter	Unit	RDL	30-	-Jan-23	RPD %	20-F	eb-23	RPD %	29-M	ar-23	RPD%	28-	Apr-23	RPD %	19-N	May-23	RPD %	28-J	un-23	RPD %	17-	-Jul-23	RPD %	30-	-Aug-23	RPD %	28-Sep	p-23	RPD %
Physical Parameters																													
Acidity (as CaCO ₃)	µg/L	1000	28500	26500	7.27	4900	5700	15.09	<2000	<2000		<2000	<2000		10300	9900	3.96	<2000	<2000		<2000	<2000		<2000	<2000	<2	2000	<2000	
Alkalinity (Total as CaCO ₃)	mg/L	1.0	179000	178000	0.56	193000	186000	3.69	136000	134000	1.5	97300	94400	3.03	240000	241000	0.42	189000	198000	4.7	228000	228000	0	222000	218000	1.82 18	5000	189000	2.14
Hardness as CaCO ₂ dissolved	µs/cm	2.0	238000	247000	0.74	250000	547	0.00	340	342	0.6	1270	1270	0.00	2630	2650	0.76	681	781	13.7	821	821	0 38	820	797	2.84 5	512	511	0.20
Hardness as CaCO ₃ , dissolved Hardness as CaCO ₃ , from total Ca/Mg	µg/L µg/L	500	238000	239000	2.48	261000	272000	4.13	147000	150000	1.3	499000	530000	6.03	1200000	1200000	0.00	348000	304000	13.5	280000	204000	3.27	222000	209000	6.03 27	9000	285000	2.13
pH	pH Units	0.1	8.16	8.17	0.12	8.26	8.26	0.00	8.07	8.06	0.1	8.03	8.05	0.25	8.19	8.18	0.12	8.05	8.19	1.7	8.32	8.30	0.24	8.32	8.31	0.12 8	3.26	8.25	0.12
Total Dissolved Solids (TDS)	µg/L	10000	440000	434000	1.37	376000	348000	7.73	226000	206000	9.3	796000	960000	18.68	2200000	2250000	2.25	430000	502000	15.5	461000	608000	27.50	551000	543000	1.46 30	2000	359000	17.25
Total Suspended Solids (TSS)	µg/L	3000	84400	111000	27.2	5500	10500	62.5	3500	<3000	15.4	45700	9100	133.58	4100	20900	134.40	5300	3300	46.5	<3000	3700	20.90	<3000	<3000	20	9000	255000	19.83
Alkalinity (Hydroxide as CaCO ₃)	µg/L	1000	<1000	<1000		<1000	<1000		<1000	<1000		<1000	<1000		<1000	<1000		<1000	<1000		<1000	<1000	0.00	<1000	<1000	<1	1000	<1000	
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	0.56	<1000	<1000	3.60	<1000	<1000	15	<1000	<1000	3.03	<1000	<1000	0.42	<1000	<1000	47	223000	3400	38.10	2400	1800	1 38 18	5000	<1000	2.14
Anions and Nutrients	µ9/∟	1000	179000	178000	0.50	193000	180000	3.09	130000	134000	1.5	97300	94400	3.03	240000	241000	0.42	189000	198000	4.7	223000	223000	0.09	219000	210000	1.36 10	5000	189000	2.14
Ammonia (NH ₄ as N)	µg/L	5.0	43.5	40.1	8.13	<5	<5		9.5	10.2	7.1	10	10.3	2.96	12.3	10.5	15.79	9.4	241	185.0	140	140	0.00	16.4	16.4	0.00 1	14.2	16.8	16.77
Chloride (Cl [°])	µg/L	500	10200	10600	3.85	12600	13000	3.13	3460	3460	0.0	8560	6860	22.05	<10000	<10000		59600	42500	33.5	34400	33900	1.46	30600	27700	9.95 12	2700	13500	6.11
Nitrate (NO ₃ [*] as N)	µg/L	5.0	352	352	0.00	331	324	2.14	164	164	0.0	89.9	<25	112.97	<100	<100		640	152	123.2	191	186	2.65	309	280	9.85 6	69.7	62.4	11.05
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0	1.1	1.1	0.00	1.3	1.4	7.41	3.9	3.9	0.0	<5	<5	0.00	<20	<20	4.45	4.8	20.4	123.8	50.4	51.5	2.16	21.2	20.2	4.83 3	3.4	4	16.22
Dissolved Organic Carbon (DOC)	µg/∟ ug/l	300	106000	109000	2.79	2440	118000	0.85	42900	42800	0.2	12500	13200	0.33	1370000	1390000	1.45	90300	165000	58.5 10.5	156000	154000	1.29	159000	142000	11.30 91	1300	91300	0.00
Metals. Total	µg/∟		3.00	1.71	34.70	2440	2400	0.02	2200	2200	3.0	12300	13200	0.40	18000	17800	1.12	1390	1090	19.5	1030	1070	1.20	1230	1230	1.01 3	670	4000	3.30
Aluminum	µg/L	3.0	2060	2200	6.57	1220	1510	21.25	81.8	66.3	20.9	165	200	19.18	188	55.9	108.32	27.6	166	143.0	86.9	90.5	4.06	169	165	2.40 2	270	1850	20.39
Antimony	µg/L	0.10	0.38	0.39	2.60	0.33	0.34	2.99	0.31	0.31	0.0	0.13	0.12	8.00	0.2	<0.2		0.13	0.19	37.5	0.17	0.16	6.06	<0.1	<0.1	0).49	0.46	6.32
Arsenic	µg/L	0.10	1.47	1.77	18.52	0.6	0.63	4.88	0.34	0.32	6.1	0.53	0.56	5.50	0.61	0.55	10.34	0.25	0.28	11.3	0.42	0.39	7.41	0.5	0.48	4.08 2	2.68	2.4	11.02
Barium	µg/L	0.10	213	224	5.03	134	140	4.38	62.3	59.8	4.1	33.2	33.5	0.90	31.9	26.4	18.87	110	59.2	60.0	63.3	61.4	3.05	61.2	62.5	2.10 2	207	208	0.48
Beryllium	µg/L	0.10	0.122	0.14	13.74	<0.1	<0.1		< 0.1	< 0.1		<0.1	<0.1		<0.1	<0.1	+	<0.1	<0.1	+ +	<0.1	<0.1	┥ ┥	<0.1	<0.1	0.	.127	0.136	6.84
Boron	μg/L μα/Ι	10	<0.05 31	<0.05 31	0.00	<0.05 30	<0.05 31	3.28	~U.U5 18	~U.U5 18	0.0	<0.05 76	<0.05 77	1 31	SU. I 158	SU.1 162	2.50	<0.00 97	<0.05 160	144.9	<u.ud 210</u.ud 	<0.05 220	0.46	~U.U5 206	<0.05 203	1 02	30	30	0.00
Cadmium	µg/L	0.005	0.0689	0.0927	29.46	0.0225	0.0231	2.63	0.007	<0.005	33.3	0.128	0.128	0.00	0.0528	0.0418	23.26	0.0092	0.113	169.9	0.0437	0.036	19.32	0.0188	0.0191	1.58 0.	.187	0.213	13.00
Calcium	μg/L	50	72700	70400	3.21	79900	79900	0.00	43400	44100	1.6	115000	121000	5.08	257000	261000	1.54	99400	84300	16.4	76200	73200	4.02	59800	55800	6.92 71	1000	73300	3.19
Cesium	µg/L	0.01	0.691	0.782	12.36	0.237	0.263	10.40	0.015	0.012	22.2	0.024	0.028	15.38	0.021	<0.02		<0.01	0.036	113.0	0.031	0.028	10.17	0.025	0.023	8.33 0.	.381	0.296	25.11
Chromium	µg/L	0.10	3.71	3.87	4.22	2.18	2.65	19.46	0.97	0.94	3.1	<0.5	<0.5		<0.5	<0.5		<0.5	<0.5		<0.5	<0.5		<0.5	<0.5	5	5.81	6.68	13.93
Cobalt	µg/L	0.10	1.83	2.14	15.62	0.36	0.41	12.99	0.12	<0.1	18.2	3.38	3.47	2.63	3.13	2.44	24.78	<0.1	3.44	188.7	1.12	1.11	0.90	0.31	0.3	3.28 2	2.17	2.18	0.46
Copper	µg/L	0.50	5.61	6.42	13.47	1.87	1.66	11.90	1.01	0.94	7.2	2.02	2.02	0	1.46	<1	37.40	<0.5	1.53	101.5	1.06	1.05	0.95	1.01	0.97	4.04 7	7.22	7.04	2.52
Lead	µg/L ug/l	0.05	2790	2 11	20.87	0.395	0.454	20.52	0.08	0.061	40.0 27.0	0.178	0 139	8.70 24.61	670 <0.1	454 <0.1	38.43	<0.05	92 <0.05	14.1	<0.05	54 <0.05	10.95	82 ≤0.05	63 <0.05	1.21 5	040	400U 2.81	21.10
Lithium	µg/L	1.0	9.3	9.2	1.08	8.2	8.5	3.59	3.4	3.6	5.7	14.9	14.8	0.67	42.2	41.7	1.19	10	37.6	116.0	39.8	39	2.03	51.3	49.1	4.38 1	12.3	12	2.47
Magnesium	µg/L	5.0	15400	15300	0.65	15000	17600	15.95	9630	9790	1.6	51500	55300	7.12	135000	133000	1.49	24300	22800	6.4	21700	21400	1.39	17600	17000	3.47 24	4800	24700	0.40
Manganese	µg/L	0.10	44.9	58.6	26.47	7.61	10	27.14	1.89	1.46	25.7	848	853	0.59	1490	1110	29.23	16.9	50.8	100.1	17.5	17.2	1.73	2.02	1.99	1.50 1	136	143	5.02
Mercury	µg/L	0.005	<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005		<0.005	<0.005	0.0	0203	0.0237	15.45
Molybdenum	µg/L	0.05	2.82	2.78	1.43	3.9	3.62	7.45	3.73	3.53	5.5	0.935	0.956	2.22	0.619	0.577	7.02	1.48	2.7	58.4	2.87	2.84	1.05	2.88	2.91	1.04 1	1.89	1.43	27.71
Nickel	µg/L	0.5	5.14	5.44	5.67	1.46	1.54	5.33	<0.5	<0.5		15.8	14.9	5.86	22	20.9	5.13	0.63	16.4	185.2	9.65	9.57	0.83	4.68	4.66	0.43 7	7.71	7.33	5.05
Priosphorus	µg/∟ ug/l	50.0	2810	180	0.71	2830	<50 2890	2 10	<50 2290	<50 2260	13	73 14300	14600	2.08	<100	<100	1 29	<50	<50 3530	15.4	<50 3660	<50 3600	1.65	<50 3020	<50 2000	1.00 4	340	296	8.45
Rubidium	µg/L	0.2	7.28	7.4	1.63	3.62	4.32	17.63	1.78	1.71	4.0	2.64	2.62	0.76	4.6	4.33	6.05	0.66	1.78	91.8	1.85	1.65	11.43	1.33	1.35	1.49 3	3.74	3.26	13.71
Selenium	µg/L	0.05	1.88	1.87	0.53	1.33	1.38	3.69	0.813	0.764	6.2	0.446	0.389	13.65	0.289	0.212	30.74	0.757	0.617	20.4	0.402	0.372	7.75	0.154	0.164	6.29 1	1.57	1.45	7.95
Silicon	µg/L	100	7840	7570	3.50	7330	7590	3.49	3770	3700	1.9	2240	2220	0.90	940	800	16.09	4790	3890	20.7	3960	3850	2.82	3540	3500	1.14 4	940	4370	12.24
Silver	µg/L	0.01	0.031	0.041	27.78	0.01	0.012	18.18	<0.01	<0.01		<0.01	<0.01		<0.02	<0.02		<0.01	<0.01	0.0	<0.01	<0.01		<0.01	<0.01	0.	.045	0.036	22.22
Sodium	µg/L	50.0	29100	28800	1.04	33400	34200	2.37	11200	11200	0.0	83000	86600	4.25	186000	183000	1.63	19200	66900	110.8	82200	81300	1.10	113000	106000	6.39 8	350	8420	0.83
Sufer	µg/L	0.2	180	185	2.74	166	165	0.60	96.6	97.2	0.6	329	329	0.00	650	649	0.15	229	425	59.9	445	435	2.27	464	466	0.43 3	339	351	3.48
Tellurium	ua/L	0.2	<0.2	<0.2	2.74	<0.2	<0.2	0.21	<0.2	<0.2	0.2	<0.2	<0.2	2.04	<0.4	<0.4	1.00	<0.2	<0.2	01.0	<0.2	<0.2	4.10	<0.2	<0.2	0.33 34	+200 <0.2	<0.2	1.10
Thallium	µg/L	0.01	0.052	0.059	12.61	0.024	0.026	8.00	<0.01	<0.01		0.012	0.014	15.38	<0.02	<0.02		<0.01	0.015	40.0	0.01	<0.01		<0.01	<0.01	0.	.062	0.052	17.54
Thorium	µg/L	0.10	0.58	0.77	28.15	0.17	0.22	25.64	<0.1	<0.1		<0.1	<0.1		0.32	<0.2	46.15	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	(0.8	0.7	13.33
Tin	µg/L	0.10	0.13	0.15	14.29	<0.1	<0.1		0.13	0.13	0.0	0.15	<0.1		<0.2	<0.2		<0.1	0.25	85.7	0.1	0.11	9.52	<0.1	<0.1	0).15	0.11	30.77
Titanium	µg/L	0.30	37	37.9	2.40	32.9	36.5	10.37	2.25	1.64	31.4	6.48	7.26	11.35	1.63	<0.6	92.38	<0.3	<0.3		0.3	<0.3		<0.3	<0.3	4	19.5	37.4	27.85
i ungsten Uranium	µg/L	0.10	<0.1	<0.1	10.53	<0.1	<0.1	2.00	0.22	0.21	4.7	<0.1	<0.1	7 / 1	<0.2	<0.2	2 97	<0.1	<0.1	6.9	<0.1	<0.1	0.00	<0.1	<0.1	2.02 4	×U.1	<0.1	2 83
Vanadium	ug/L	0.50	6.93	7 71	10.66	4.3	5	15.05	1.26	1 14	10.0	0.65	0.75	14 29	<1	<1	2.07	<0.5	<0.5	0.0	<0.5	<0.5	0.00	<0.5	<0.5	2.05 1	3 35	7.09	16.32
Zinc	µg/L	3.0	19.4	23.6	19.53	15.2	13.6	11.11	4.7	4.6	2.2	44.4	43	3.20	19.7	16.1	20.11	<3	17.8	142.3	7.8	8.1	3.77	3.3	<3	9.52 2	26.1	24.7	5.51
Zirconium	µg/L	0.06	0.67	1.1	48.59	1.28	1.31	2.32	<0.2	<0.2		<0.2	0.22	9.52	<0.4	0.59	38.38	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2	<	<0.2	<0.2	
Metals, Dissolved																													,
Aluminum	µg/L	1.0	20.4	25	20.26	8.8	8.8	0.00	16.1	16.3	1.2	17.9	16.8	6.34	9.8	12	20.18	2.2	133	193.5	74.1	68.3	8.15	152	150	1.32 3	37.8	30.7	20.73
Anumony	µg/L	0.10	0.28	0.29	3.51	0.28	0.31	10.17	0.31	0.3	3.3	0.11	0.1	9.52	<0.2	<0.2	12.00	0.12	0.18	40.0	0.14	0.14	0.00	<0.1	<0.1	8 70 0	J.18	0.19	5.41
Barium	<u>µg/L</u> ua/l	0.10	81.8	83.9	2.53	91.2	95	4.08	56.3	58.5	3.8	31.1	30.7	14.43	24.7	25.6	3.58	113	60.9	20.4 59.9	61.6	62.2	0.00	62.3	60.8	2.44 1	105	102	2.90
Beryllium	μg/L	0.10	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	5.0	<0.1	<0.1	0	<0.1	<0.1	2.00	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	<	<0.1	<0.1	
Bismuth	µg/L	0.05	<0.05	<0.05		<0.05	<0.05		< 0.05	<0.05		< 0.05	<0.05		<0.1	<0.1		< 0.05	< 0.05		<0.05	< 0.05		< 0.05	< 0.05	<(0.05	<0.05	
Boron	µg/L	10.0	26	26	0.00	26	26	0.00	19	18	5.4	76	75	1.32	149	147	1.35	25	166	147.6	205	200	2.47	270	274	1.47	26	26	0.00
Cadmium	µg/L	0.005	0.0079	0.0127	46.60	0.0064	0.0057	11.57	<0.005	<0.005		0.131	0.111	16.53	0.0351	0.0316	10.49	0.0085	0.106	170.3	0.033	0.0288	13.59	0.0157	0.0142	10.03 0.	.018	0.0176	2.25
Calcium	µg/L	50.0	72300	75400	4.20	73400	75900	3.35	42900	43600	1.6	117000	120000	2.53	242000	246000	1.64	104000	82300	23.3	72000	70500	2.11	56900	56600	0.53 61	1400	61600	0.33
Chromium	µg/L ua/l	0.01	<0.01 <0.5	<0.01	+	<0.01	<0.01		<0.01 0.79	<0.01 0.70	1 2	<0.01	<0.01 <0.5	┟──┼	<0.02	<0.02	+	<0.01	0.028 <0.5	94.7	0.027 <0.5	0.026	3.77	0.022 <0.5	0.024	8.70 <	0.01	<0.01 <0.5	
Cobalt	μα/L	0,10	<0.0	<0.0		<0.0	<0.0		<0.78	<0.79	1.3	3.34	3.18	4,91	2.46	>0.0	2.05	<0.0	3.43	188.7	1.05	1.01	3,88	0.28	0.27	3.64 0).12	0.11	8.70
Copper	µg/L	0.20	3.15	0.46	149.03	0.65	0.54	18.49	0.73	0.56	26.4	1.94	1.92	1.04	0.75	0.68	9.79	0.4	1.12	94.7	0.9	0.88	2.25	1.26	0.84	40.00 0	0.69	0.66	4.44
Iron	µg/L	10.0	<10	<10		<10	<10		<10	<10		52	61	15.93	89	98	9.63	18	<10	57.1	13	13	0.00	39	32	19.72	40	30	28.57
Lead	µg/L	0.05	0.121	<0.05		<0.05	<0.05		<0.05	<0.05		<0.05	<0.05		<0.1	<0.1		<0.05	<0.05	0.0	<0.05	<0.05		<0.05	<0.05	<(0.05	<0.05	
Lithium	µg/L	1.0	6.5	6.4	1.55	6.5	6.9	5.97	3.6	3.6	0.0	15.2	15	1.32	39.8	39.3	1.26	10	37.4	115.6	38.8	36.7	5.56	49.9	51.2	2.57 1	11.2	11	1.80
Magnesium	µg/L	5.0	14000	14200	1.42	16100	15800	1.88	9600	9630	0.3	51900	53300	2.66	139000	140000	0.72	23600	23100	2.1	20800	21300	2.38	16500	16900	2.40 23	3500	23300	0.85
Manganese	µg/L	0.10	2.4	2.46	2.47	0.92	1.05	13.20	0.28	0.25	11.3	865 <0.005	853	1.40	1070	1090	1.85	15.1	51./	109.6	16.4	16.2	1.23	1./	1.54	9.88 1	10.2	13.1	U./6
Molybdenum	μα/L	0.05	27	2 71	0.37	3.33	3.46	3.83	37	~0.005	5.6	0.005	0.926	0.22	~0.005	0.626	1.61	1.5	2.72	57.8	2.79	2 71	2.91	2.8	2.88	2,82 1	1.82	1.75	3.92
Nickel	µg/L	0.50	0.81	0.75	7.69	<0.5	0.52	0.00	<0.5	<0.5	0.0	14.3	14.3	0.00	20.6	20.6	0.00	0.63	15.6	184.5	8.87	8.98	1.23	4.48	4.28	4.57 0	0.58	0.56	3.51
Phosphorus	µg/L	50.0	<50	<50		<50	<50		<50	<50		<50	<50		<100	<100		<50	<50	0.0	<50	<50		<50	<50		<50	<50	
Potassium	µg/L	50.0	2080	2120	1.90	2470	2490	0.81	2330	2280	2.2	14800	15300	3.32	15100	15600	3.26	4170	3550	16.1	3590	3590	0.00	3270	3350	2.42 4	030	4010	0.50
Rubidium	µg/L	0.20	0.93	0.72	25.45	1	0.93	7.25	1.64	1.64	0.0	2.1	2.11	0.48	4.37	4.29	1.85	0.85	1.38	47.5	1.58	1.55	1.92	1.38	1.35	2.20 0).55	0.56	1.80
Selenium	µg/L	0.05	1.75	1.92	9.26	1.61	1.65	2.45	0.789	0.816	3.4	0.324	0.42	25.81	0.245	0.224	8.96	0.943	0.698	29.9	0.38	0.452	17.31	0.215	0.171	22.80 1	1.53	1.47	4.00
Silver	µg/L ug/l	0.01	4360	4220	3.26	4820	4//U <0.01	1.04	3570	3710 <0.01	3.8	1970	1920	2.57	/bU <0.02	/31 <0.02	3.89	4670 <0.01	3800	20.5	3820	3900	2.07	336U <0.01	3340 <0.01	0.60 1	340 0.01	<0.01	U./5
Sodium	µg/L	50.0	28600	29600	3.44	32400	34000	4.82	10600	10700	0.9	86700	89300	2.95	186000	185000	0.54	19200	67000	110.9	79000	79700	0.88	105000	109000	3.74 8	160	8110	0.61
h																													

			RBSBIAR-DS	RBSBIAR-DS-R		L2-US	L2-US-R		L2-US	L2-US-R		LBP-Pond	LBP-Pond-R		LBP-Pond	LBP-Pond-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-US	RBSBIAR-US-R	
Parameter	Unit	RDL	30	-Jan-23	RPD %	20-F	eb-23	RPD %	29-M	lar-23	RPD%	28-	Apr-23	RPD %	19-N	lay-23	RPD %	28-Ji	un-23	RPD %	17-	-Jul-23	RPD %	30-	Aug-23	RPD %	28-	Sep-23	RPD %
Strontium	µg/L	0.2	174	171	1.74	162	172	5.99	95.6	96.7	1.1	328	330	0.61	645	650	0.77	227	437	63.3	436	426	2.32	454	458	0.88	310	306	1.30
Sulfur	µg/L	500	37800	38100	0.79	46000	46400	0.87	13700	14500	5.7	233000	240000	2.96	509000	518000	1.75	35100	63500	57.6	53600	54300	1.30	58600	58800	0.34	33300	33600	0.90
Tellurium	µg/L	0.20	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2		<0.2	<0.2		<0.4	<0.4		<0.2	<0.2	0.0	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2	
Thallium	µg/L	0.01	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01		0.011	0.013	16.67	< 0.02	<0.02		<0.01	0.013	26.1	<0.01	<0.01		<0.01	<0.01		<0.01	<0.01	
Thorium	µg/L	0.10	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.2	<0.2		<0.1	<0.1	0.0	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
Tin	µg/L	0.10	<0.1	<0.1		<0.1	<0.1		0.1	<0.1		<0.1	<0.1		<0.2	<0.2		<0.1	0.22	75.0	0.11	<0.1		<0.1	<0.1		<0.1	<0.1	
Titanium	µg/L	0.30	0.34	0.52	41.86	<0.3	<0.3		<0.3	<0.3		0.52	0.68	26.67	<0.6	<0.6		<0.3	<0.3	0.0	<0.3	<0.3		<0.3	<0.3		1.03	0.74	32.77
Tungsten	µg/L	0.10	<0.1	<0.1		<0.1	<0.1		0.23	0.21	9.1	<0.1	<0.1		<0.2	<0.2		<0.1	<0.1	0.0	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
Uranium	µg/L	0.01	1.55	1.57	1.28	1.55	1.6	3.17	0.86	0.884	2.8	1.05	1.12	6.45	2.4	2.38	0.84	1.33	1.22	8.6	0.98	0.983	0.31	0.832	0.823	1.09	1.38	1.36	1.46
Vanadium	µg/L	0.50	<0.5	<0.5		<0.5	<0.5		1.02	0.94	8.2	<0.5	<0.5		<1	<1		<0.5	<0.5	0.0	<0.5	<0.5		<0.5	<0.5		<0.5	<0.5	
Zinc	µg/L	1.0	3.4	1.7	66.67	8.3	6.8	19.87	2.6	2.8	7.4	41.7	40.5	2.92	13.7	14.4	4.98	<1	15.5	175.8	6.2	5.9	4.96	2.7	2.4	11.76	<1	<1	
Zirconium	µg/L	0.06	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2		<0.2	<0.2		<0.4	<0.4		<0.2	<0.2	0.0	<0.2	<0.2		<0.2	<0.2		<0.2	<0.2	
Laboratory Work Order Number			FJ2300206	FJ2300206		FJ2300373	FJ2300373		FJ2300677	FJ2300677		FJ2300936	FJ2300936		FJ2301129	FJ2301129		FJ2301553	FJ2301553		FJ2301738	FJ2301738		FJ2302196	FJ2302196		FJ2302574	FJ2302574	
Notes:																													

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

Blank indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

RPD greater than 30%

Blank - not analyzed.

Table 6: River Road - In Situ Water Quality Sampling

					In-Situ Tests	- 2023			
Sample Site	Date	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity	Comments
LBRR-DD ¹	29-Mar-23	7.76	98	800	80	1.0	1.0	clear	Flow discharging to Peace River.
LBRR-LC	29-Mar-23	7.83	1052	800	80	1.1	1.0	clear	
LBRR-UC				no me	asurements				
LBRR-12+600				no me	asurements				
LBRR-12+700				no me	asurements				
LBRR-12+810				no me	asurements				
	29-Mar-23	7.81	644	450	40	-0.1	0.25	turbid	surface flow over ice.
	28-Apr-23	8.30	1,650	450	180	9.1	0.50	clear	
	19-May-23	8.03	1472	800	180	14.4	0.50	clear	
LBRR-12+920	28-Jun-23	7.99	1468	450	240	17.3	0.50	clear	
	17-Jul-23	7.94	1482	-	-	16.2	0.25	clear	
	30-Aug-23	8.21	1696	240	800	13.4	0.10	clear	
	28-Sep-23	7.86	2800	800	180	11.7	0.10	turbid	
RR8 ¹				no me	asurements				
	29-Mar-23	8.34	1296	800	80	0.9	1.0	slightly turbid	Flow discharging to Peace River.
KK9	28-Sep-23	8.00	3890	800	120	12.2	0.075	slightly turbid	
	29-Mar-23	7.79	21.30	800	120	-0.20	0.75	turbid	Flow discharging to Peace River; ice in culvert.
LBKK-EDP	28-Apr-23	8.29	2570	450	120	5.4	0.25	slightly turbid	infiltrates to ground d/s ~ 50m.
	28-Sep-23	8.11	3380	800	180	11.8	0.075	turbid	

¹ Discharge station

	Sampling Dates	Total Iron (Fe)	Total Arsenic (As)	Total Zinc (Zn)	Dissolved Aluminum (Al)	Chloride (Cl)
LBRR-DD ¹	29-Mar-23	~				
	29-Mar-23	✓	\checkmark	✓		
LBRR-EDP	28-Apr-23	✓	\checkmark		✓	
	28-Sep-23	\checkmark	\checkmark		\checkmark	\checkmark
RR8 ¹	-					
PD0 ¹	29-Mar-23	~				
KK3	28-Sep-23	~				✓
LBRR-UC	-					
LBRR-LC	29-Mar-23					

Table 7: Summary of Water Quality Exceedances (BCAWQG-FST) Along River Road from Water Sampling Events in 2023

¹ Discharge station

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life water use and Short Term Maximum (FST) WQG. Exceedances denoted by a check mark.

					In-Situ Tests -	2023			
Sample Site	Date	рН	EC (μS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity	Comments
RBSBIAR-US	28-Sep-23	8.35	575	250	120	11.9	2.5	turbid	
	29-Mar-23	7.68	1347	800	80	-0.1	0.20	slightly turbid	channelized flow thru ice.
	28-Apr-23	8.61	1177	450	180	10.4	0.25	clear	
	19-May-23	8.48	681	450	180	11.0	0.50	clear	pumping from area 20
	28-Jun-23	8.36	792	250	240	17.6	0.75	clear	
KB3BIAR-D5	17-Jul-23	8.33	770	180	250	15.0	0.50	clear	
	30-Aug-23	9.31	803	240	450	14.0	0.25	clear	algae in ditch; clear flow
	28-Sep-23	8.30	619	450	180	11.9	2.5	turbid	
	29-Oct-23	8.29	1051	450	120	0.7	0.06	clear	
	29-Mar-23	7.00	-	450	40	-	0.05		min. surface flow over ice; test strip only
	28-Apr-23	7.87	775	450	180	11.1	0.0005	clear	trickle, not enough flow to sample
	19-May-23	7.81	678	450	180	12.6	0.1	clear	algae in pools; trickle flow
RBSBIAR-EUS	28-Jun-23	8.10	718	250	180	21.3	0.1	clear	
	17-Jul-23	7.82	754	180	450	18.0	0.05	clear	
	30-Aug-23	9.00	-	240	450	-	0.025		ditch upstream filled in
	28-Sep-23	7.97	904	450	240	12.4	0.03	clear	
RBSBIAR-EDS	29-Mar-23	7.95	984	800	40	0.0	0.15		surface flow over ice

Table 8: RBSBIAR - In Situ Water Quality Measurements

Table 9: Summary of Water Quality Exceedances (BCAWQG-FST) RBSBIAR from Water Sampling Events in 2023

	Sampling Dates	Total Iron (Fe)	Dissolved Iron (Fe)	Dissolved Aluminum (Al) ³	Total Arsenic (As)	Total Zinc (Zn) ²	Total Cobalt (Co)	Dissolved Cadmium (Cd) ²
RBSBIAR-US (West ditch; upstream)	28/Sep/23	*						
	29/Mar/23	✓	✓		\checkmark	\checkmark	✓	\checkmark
	28/Apr/23							
RBSBIAR-DS (West ditch;	19/May/23							
	28/Jun/23							
downstream)	17/Jul/23							
	30/Aug/23			✓				
	28/Sep/23	~		✓	✓			
RBSBIAR-EUS	19/May/23							
(East ditch;	28/Jun/23			✓				
upstream)	17/Jul/23							
RBSBIAR-EDS (East ditch; downstream)	29/Mar/23	~			\checkmark	\checkmark		

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

¹Copper-dissolved guideline is dependant on pH, hardness and Dissolved Organic Carbon

²Hardness-dependent parameters (Zn, Cd) use capped hardness values in guideline calculations.

³Calculated guideline is pH dependent for dissolved Aluminum.

Table To: E2 Towerhouse - In ona Water Quality bamping											
	Date	In-Situ Tests - 2023									
Sample Site		рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity	Comments		
L2 US	30-Jan-23	8.55	610	450	80	7.2	5	slightly turbid			
	20-Feb-23	8.44	562	450	80	7.2	2.5	clear			
	29-Mar-23	7.74	350	250	80	5.8	2.0	clear-silty	mult. hoses discharging mix of silty or clear water; active construction in areas		
L2 DS											

Table 10: L2 Powerhouse - In Situ Water Quality Sampling

Table 11: Summary of Water Quality Exceedances (BCAWQG-FST) at the L2 Powerhouse Area From Water Sampling Events in 2023

	Sampling Dates	Total Iron (Fe)
	30-Jan-23	\checkmark
L2 US	20-Feb-23	
	29-Mar-23	
L2 DS	-	

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

¹Calculated guideline is pH dependent for dissolved Aluminum.

²Hardness-dependent parameters use capped hardness values in guideline calculations.

³Ammonia guideline is based on temperatrue and pH

Sample Site			In-Situ Tests - 2023										
		Date	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/s)	Turbidity				
	LBDB-LD-US		no measurements										
	LB Pond	28-Apr-23	7.45	1285	450	80	7.30	n/a	clear edge; turbid centre				
		19-May-23	7.10	2.48	800	180	13.7	n/a	clear edge; turbid centre				
		28-Jun-23	7.32	3.56	450	240	23.1	n/a	turbid; standing water				
Laydown Drainage		17-Jul-23	7.68	4.03	240	800	22.0	n/a	turbid; veg in pond				
		30-Aug-23	9.32	4.81	120	800	16.9	n/a	stagnant, rust iron; natural sheen; heavily vegetated				
		28-Sep-23	7.26	3800	800	240	13.0	n/a	slightly turbid				
	LBDB-LD-MS	no measurements											
	LBDB-LD-DS	no measurements											
Upstream Armor	LBDB-EUS	no measurements											
Ditch	LBDB-WUS				r	no measurem	ents						
Downstream	LBDB-EDS	no measurements											
Armor Ditch	LBDB-WDS				r	no measurem	ents						

Table 12: LBDB - In Situ Water Quality Sampling

Table 13: Summary of Water Quality Exceedances (BCAWQG-FST) at the Left Bank Debris Boom From Water Sampling Events in 2023

	Sampling Dates	Total Iron (Fe)	Dissolved Iron (Fe)	Dissolved Aluminum (Al) ¹	Total Arsenic (As)	Total Manganese (Mn) ²	Total Zinc (Zn) ²
	28-Apr-23						
	19-May-23						
L R Dond	28-Jun-23						
LB Folia	17-Jul-23						
	30-Aug-23						
	28-Sep-23	~	~	~		~	

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life water use and Short Term Maximum (FST) WQG. Exceedances denoted by a check mark.

¹Calculated guideline is pH dependent for dissolved Aluminum.

²Hardness-dependent parameters (Mn, Zn) use capped hardness values in guideline calculations.

	Unit		BCAWQG-FLT ²	LBRR-DD		RR9		RBSBIAR-DS			RBSBIAR-EDS
Discharge/Downstream Locations		BCAWQG - FST ¹		1 Sample Event	2 Sample Events			6 Sample Events			1 Sample Event
				Minimum	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum
Hardness as CaCO3	µg/L	NG	NG	476000	513000	1700000	1106500	210000	929000	390500	465000
рН	pH Units	6.5 - 9.0	6.5-9.0	8.19	7.92	8.05	7.99	7.39	8.33	8.11	7.74
Acidity (Total as CaCO3)	µg/L	NG	NG	<2000	2100	6600	4350	<2000	6700	1950	2900
Alkalinity (Total as CaCO3)	mg/L	NG	NG	216	123	155	139	93	228000	107417	85800
Total Dissolved Solids (TDS)	µg/L	NG	NG	729000	966000	2620000	1793000	342000	1540000	680333	801000
Total Suspended Solids (TSS)	µg/L	NG	NG	15300	108000	268000	188000	4100	410000	190600	1340000
Anions and Nutrients											
Chloride (Cl-)	µg/L	600000	150,000	96600	219000	971000	595000	14700	60000	39583	38700
Sulphate (SO4)	µg/L	NG	Hardness-dependent	236000	226000	499000	362500	90300	964000	300217	423000
Metals, Total											
Aluminum - New FLT Guideline Aug 2023	µg/L	NG	pH, DOC, Hardness- dependent	546	2120	3770	2945	27.6	11800	2788	20700
Iron	µg/L	1000	NG	1500	6340	11700	9020	64.0	20800	5576	62600
Arsenic	µg/L	5.0 prior to Aug 2023	5.0 after Aug 2023	1.2	2.66	4.42	3.54	0.25	11.3	3.09	29.2
Cadmium	µg/L	NG	NG	0.148	0.376	0.449	0.4125	0.009	6.55	1.25	2.3
Cobalt	µg/L	110	4.0	1.58	6.72	7.98	7.4	0.31	180	39.1	30.7
Copper - Guideline prior to Aug 2019	µg/L	NG	NG	2.92	8.08	11.9	10.0	0.86	109	26.3	69.7
Zinc - Guideline prior to Aug 2023	µg/L	Hardness dependent	Hardness dependent	17.2	26.9	63.6	45.3	3.30	1380	306.8	383
Metals, Dissolved											
Aluminum - Guideline prior to Aug 2023	µg/L	pH-dependent	pH-dependent	17.5	65.80	79.3	72.6	2.20	152	79.4	31.0
Iron	µg/L	350	NG	11	<10	<20	<10	13.0	2120	442	21.0
Arsenic	µg/L	NG	NG	0.48	0.2	0.47	0.34	0.22	0.44	0.31	0.19
Cadmium	µg/L	Hardness dependent	Hardness dependent	0.0663	0.079	0.214	0.15	0.009	5.59	0.98	0.154
Cobalt	µg/L	NG	NG	0.91	3.95	4.79	4.37	0.28	173	36.2	3.48
Copper	µg/L	pH, DOC, hardness dependent	pH, DOC, hardness dependent	1.23	2.82	6.95	4.89	0.40	10.1	2.46	0.98
Zinc - NEW Guideline Aug 2023	µg/L	pH, DOC, hardness dependent	pH, DOC, hardness dependent	5.0	3.0	6.0	4.5	2.70	1060	217	5.9

Table 14: Discharge and Downstream Locations - Minimum, Maximum and Mean Values

*<Detection Limit values use half the value to calculate mean values.

PHOTOGRAPHS

Photo 1 River Road LBRR-UC location, September 28, 2023. Photo 2 River Road LBRR-LC location, May 19, 2023. Photo 3 River Road LBRR-920 location, May 19, 2023. Photo 4 River Road LBRR-DD location, discharge area, May 19, 2023. Photo 5 River Road LBRR-EDP location looking upstream, May 19, 2023. Photo 6 River Road LBRR-EDP location looking downstream, May 19, 2023. Photo 7 River Road RR8 inlet location, May 19, 2023. Photo 8 River Road RR8 outlet location, May 19, 2023. Photo 9 RBSBIAR-US upstream west ditch, looking upstream, September 28, 2023. Photo 10 RBSBIAR-US upstream west ditch, looking downstream, September 28, 2023. Photo 11 RBSBIAR-DS downstream west ditch looking upstream, September 28, 2023. Photo 12 RBSBIAR-DS downstream west ditch looking downstream, September 28, 2023. Photo 13 RBSBIAR-EUS upstream east ditch, looking upstream, September 28, 2023. Photo 14 RBSBIAR-EUS upstream east ditch, looking downstream, September 28, 2023. Photo 15 RBSBIAR-EDS downstream east ditch, September 28, 2023. Photo 16 RBSBIAR-EDS downstream east ditch, looking upstream, September 28, 2023. Photo 17 L2-US location, March 29, 2023. Photo 18 L2-DS location, March 29, 2023. Photo 19 L2-US and L2-DS location, March 29, 2023. Photo 20 LB Pond location, September 28, 2023. Photo 21 LBDB-EUS location, looking upstream, September 28, 2023. Photo 22 LBDB-EUS location, looking downstream, September 28, 2023. Photo 23 LBDB-EDS location, looking upstream, September 28, 2023. Photo 24 LBDB-EDS location, looking downstream, September 28, 2023. Photo 25 LBDB-LD-US location, May 19, 2023. Photo 26 LBDB-LD-MS location, May 19, 2023. Photo 27 LBDB-LD-DS location, September 28, 2023. Photo 28 LBDB-WDS and LBDB-EDS location, looking downstream, May 19, 2023. Photo 29 LBDB-WUS location, looking downstream, September 28, 2023. Photo 30 LBDB-WDS location, looking upstream, September 28, 2023.

Photo 1: River Road LBRR-UC location, September 28, 2023.

Photo 2: River Road LBRR-LC location, May 19, 2023.

Photo 3: River Road LBRR-12+920 location, May 19, 2023.

Photo 4: River Road LBRR-DD location, discharge area, May 19, 2023.

Photo 5: River Road LBRR-EDP end-of-pipe sample collection location looking upstream, May 19, 2023.

Photo 6: Road LBRR-EDP location looking downstream from the end-of-pipe location towards RR8 and RR9, May 19, 2023.

Photo 7: River Road RR8 inlet location, May 19, 2023.

Photo 8: River Road RR9 outlet location, May 19, 2023. Samples are collected from outlet location.

Photo 9: RBSBIAR-US location, looking upstream, September 28, 2023.

Photo 10: RBSBIAR-US location, looking downstream, September 28, 2023.

Photo 11: RBSBIAR-DS location, looking upstream, September 28, 2023.

Photo 12: RBSBIAR-DS location, looking downstream, September 28, 2023.

Photo 13: RBSBIAR-EUS location, looking upstream, September 28, 2023.

Photo 14: RBSBIAR-EUS location, looking downstream, September 28, 2023.

Photo 15: RBSBIAR-EDS location, September 28, 2023.

Photo 16: RBSBIAR-EDS location, looking upstream, September 28, 2023.

Photo 17: L2-US location, March 29, 2023.

Photo 18: L2-DS sample location, March 29, 2023.

Photo 19: L2-US and L2-DS locations, marked with red arrows, March 29, 2023.

Photo 20: LBP Pond location, September 28, 2023.

Photo 21: LBDB-EUS location, looking upstream, September 28, 2023.

Photo 22: LBDB-EUS location, looking downstream, September 28, 2023.

Photo 23: LBDB-EDS location looking upstream, September 28, 2023.

Photo 24: LBDB-EDS location looking downstream, September 28, 2023.

Photo 25: LBDB-LD-US location, May 19, 2023.

Photo 26: LBDB-LD-MS location, May 19, 2023.

Photo 27: LBDB-LD-DS location, September 28, 2023.

Photo 28: LBDB-WDS and LBDB-EDS location, May 19, 2023.

Photo 29: LBDB-WUS location looking downstream, September 28, 2023.

Photo 30: LBDB-WDS location looking upstream, September 28, 2023.

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SURFACE WATER ANALYTICAL LABORATORY RESULT TABLES

B1 – 2023 Surface Water Laboratory Analytical Results from River Road Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B2 – 2023 Surface Water Laboratory Analytical Results from SBIAR Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B3 – 2023 Surface Water Laboratory Analytical Results from L2 Powerhouse Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B4 – 2023 Surface Water Laboratory Analytical Results from Left Bank Debris Boom Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

Appendix B1: LBRR Surface Water	Analytica	I Results									
Parameter	Unit	RDL	BCAWOG - EST 1	BCAWOG-FLT ²	LBRR-DD	LBRR-LC	LBRR-EDP	LBRR-EDP	LBRR-EDP	RR9	RR9
	0		BCAWQG-131	BCAWQGILI	29-Mar-23	29-Mar-23	29-Mar-23	28-Apr-23	28-Sep-23	29-Mar-23	28-Sep-23
Physical Parameters											
Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	1000	3000	2200	3600	8500	2100	6600
Alkalinity (Total as CaCO ₃)	mg/L	1.0	NG	NG	216	212	208	185	255	155	123
Electrical Conductivity (EC)	µS/cm	2.0	NG	NG	1090	1030	937	2510	2980	1280	3760
Hardness as CaCO3, dissolved	µg/L	500	(Acceptable ranges exist when calculating	(Acceptable ranges exist when calculating	476000	458000	372000	1530000	1330000	513000	1700000
		500	exceedances for Cd, Cu, Pb, Mn, Zn)	exceedances for Cd, Cu, Pb, Mn, Zn)							
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L	500	65.0	6500	477000	450000	667000	1710000	1470000	536000	1740000
pri Total Dissolved Solids (TDS)	pH Units	10000	0.5 - 9 NG	6.3-9.0 NG	8.19	8.12	7.91	8.11	7.88	8.05	7.92
Total Suspended Solids (TSS)	µg/L ug/l	3000	NG	NG	15300	9100	1680000	2130000	2190000	268000	2620000
Alkalinity (Hydroxide) as CaCO ₃	µg/L	1000	NG	NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	NG	NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	216000	212000	208000	185000	255000	155000	123000
Anions and Nutrients (Matrix: Water)											
Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	7.0	7.4	98.6	43.9	91.9	97.8	157
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)		3950	4950	7420	4950	7420	4950	7420
Ammonia FLT Guideline	µg/L			pH dependent (at Temp 4 °C or in situ T)	759	952	1430	952	1430	952	1430
Chloride (Cl')	µg/L	500	600,000	150,000	96600	88700	143000	88800	728000	219000	971000
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-100	NG	NG	4610	4700	267	318	539	335	832
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-20	Guideline: 600 ug/L	Guideline: 200 ug/L	93.6	96.9	11.8	6.5	<20	11.2	21.6
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000	236000	218000	163000	1350000	426000	226000	499000
				Hardness 76,000-180,000 = 309,000							
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250.000 site-specific	309000	309000	309000	429000	429000	309000	429000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	6.28	5630	5230	4.12	7.26	5.18	8.67
Metals, Total	1										
Aluminum	µg/L	3.00	NG		546	104	16800	7880	6810	3770	2120
NEW FLT GUIDELINE AUG 2023 (no FST Guideline)				pH, DOC, Hardness-dependent; valid hardness 10-					457	376	513
Antimony	ua/I	0.1-0.2	NG	430 mg/L, pri 6.0-8.7, DOC 0.8-12.3 mg/L NG	0.17	0.12	1 22	0.07	0.9	0.56	0.74
Arsenic	µg/L	0.10	5, discontinued in Aug 2023	5.0	1.2	0.12	18.9	9.74	7.11	4.42	2.66
Barium	µg/L	0.10	NG	NG	46.4	38.4	829	361	303	221	200
Beryllium	µg/L	0.10	NG	NG	<0.1	<0.1	0.949	0.504	0.537	0.209	0.122
Bismuth	µg/L	0.05-0.10	NG	NG	<0.05	<0.05	0.226	<0.25	<0.1	<0.05	<0.1
Boron	µg/L	10.0	1200	1200	34	33	44	119	115	41	139
Cadmium	µg/L	0.005	NG	NG	0.148	0.0748	2.08	1.18	1.13	0.449	0.376
Calcium	µg/L	50	NG	NG	130000	122000	195000	485000	431000	148000	523000
Cesium	µg/L	0.01		NG	0.092	0.031	1.82	0.729	0.473	0.476	0.203
Chromium ⁴	µg/L	0.1-0.7	NG	NG	1	<0.5	48.3	19.9	20.8	9.4	5.56
Copait	µg/L	0.10	110 Cala based on Hardness	4.0	1.58	0.75	23.6	10.4	13	7.98	6.72
Copper -	µg/L	0.50	Hardness 13 000 - 400 000 : calc :	2 10 10	2.92	1.64	53.1	22.2	26.4	11.9	8.08
Cu STM Guideline Calc.	µg/L		Hardness > 400,000 is Capped Value of 400,000								
Cu I TA Guideline Calc.	ua/L			Hardness 50,000 - 250,000: calc.;							
	F-5	40	4000	Hardness > 250,000, Cu = 10							
Load ³	µg/L ug/l	0.05-0.1	Calc based on Hardness	Calc, based on Hardness	1500	219	58000	24800	21100	11700	6340
Lead	µg/∟	0.03-0.1	Hardness ≤ 8000 is 3:	Calc. based on Hardness	0.55	0.096	19	7.19	7.62	3.56	2.02
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Hardness 8000-360,000: calc.		417	417	417	417	417	417	417
			Hardness>360,000 is Capped Value of 360,000	Hardnass 8000 260 000; sala							
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness > 360,000 is Capped Value of 360,000	20	20	20	20	20	20	20
Lithium	µg/L	1.0	NG	NG	16	11.3	33.8	85.2	69	22.8	86.4
Magnesium	μg/L	5.0	NG	NG	37100	35200	43800	122000	96200	40500	106000
Manganese ³	µg/L	0.10	Calc. based on hardness	Calc. based on Hardness	63.4	67.8	1450	562	899	444	750
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394.2	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
			······································	Hardness 37,000 - 450,000: calc.;	0505.0	0505.0	0044.0	0505.0	0505.0	0505.0	0505.0
Mn FLI Guideline Caic (Based on Hardness as CaCO3)	µg/∟			Hardness > 450,000 is Capped Value of 450,000	2585.0	2585.0	2241.8	2585.0	2585.0	2585.0	2585.0
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	< 0.005	<0.005	0.174	<0.005	0.0534	0.0142	0.009
Molybdenum	µg/L	0.05	2000	≤ 1000	2.58	2.26	4.12	3.64	5.7	3.55	7.73
Nickei	µg/L	0.5	NG	NC	19.9	10.7	80	133	56.2	31.5	39.6
Potassium	µg/∟ ua/l	50.0	NG	NG	94	<5U 6010	2390	10600	1280	450	288
Rubidium	ua/L	0.2	NG	NG	1.82	1.03	21.2	10000	9.05	6.34	9 39
Selenium	μg/L	0.05	NG	2.0	0.72	0.61	1.6	2.22	1.26	1.08	1.72
Silicon	µg/L	100		NG	4350	4030	26300	15100	12700	8070	5960
Silver ³	µg/L	0.01-0.02	0.10 - 3.0	0.05 - 1.5	0.015	<0.01	0.319	0.129	0.114	0.061	0.045
Ag FST Guideline Calc			Hardness ≤ 100,000 Ag = 0.10		3.0	3.0	3.0	3.0	3.0	3.0	3.0
			naturess > 100,000 Ag = 3.0	Hardness ≤ 100.000 Ag = 0.05							
Ag ⊢L Γ Guideline Calc				Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium	µg/L	50.0	NG	NG	31700	30700	26000	41600	90400	35600	96500
Strontium	µg/L	0.2	NG	NG	356	348	1110	1460	4150	1260	6830
Sulfur	µg/L	500	NG	NG	75900	72200	55600	522000	164000	71900	196000
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.4	<1	<0.4	<0.2	<0.4
Thorium	µg/L	0.01-0.055	NG	NG	0.025	0.012	0.373	0.167	0.14	0.087	0.096
Tin	µg/L ua/l	0.1-0.2	NG	NG	U.1/ <0.1	<0.1	0.30	2.37	0.32	0.17	U.76 <∩ ?
Titanium	µg/L	0.3-1.2	NG	NG	10.8	2.06	285	<0.5 196	132	104	~0.2 66.6
Tungsten	μg/L	0.1-0.2	NG	NG	<0.1	<0.1	0.29	<0.5	<0.2	0.17	<0.2
Uranium	µg/L	0.01	NG	NG	2.06	2.33	4.39	5.94	7.1	3.18	7.24
Vanadium	µg/L	0.5-1.0	NG	NG	1.63	<0.5	59.1	27.7	22.7	13.1	7.33
Zinc ³	µg/L	3.0	Calc. based on Hardness	Calc. based on Hardness	17.2	5.1	314	151	125	63.6	26.9
Zn EST Guideline Calc	uo/I		Hardness < 90,000 = 33.0		322.5	309.0	244 5	340.5	340.5	340.5	340.5
	µ9/∟		Hardness > 500,000 - 500,000, Calc.		JZZ.U	309.0	244.0	040.0	J+U.J	J40.3	J4U.J
				Hardness < 90,000 = 7.5	407 -	407 -	107.5	407 -	407 -	407 -	407 -
Zh FLi Guideine Caic.	µg/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value	187.5	187.5	187.5	187.5	187.5	187.5	187.5
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.4	1.48	1.2	0.34	1.05
Metals, Dissolved											
Aluminum ⁵	µg/L	1.0	100	50	17.5	15.4	70.6	105	116	65.8	79.3
AI FST Guideline Calc (based on pH), to Aug 2023	µg/L		pH < 6.5 : calc. Al		100	100	100	100	100	100	100
		1	p.100.074	median pH < 6.5 ; calc. Al				50		50	
ALFET Guideline Calc (based on median pH), to Aug 2023	µg/L			median pH ≥ 6.5 : 50.0 AI	50	50	50	50	50	50	50
Antimony	µg/L	0.1-0.2	NG	NG	0.11	0.1	0.15	<0.5	0.32	0.16	0.5
Arsenic	µg/L	0.10	NG	NG	0.48	0.58	0.19	0.25	0.36	0.2	0.47

Barium	µg/L	0.10	NG	NG	27	35.3	57.6	87	81.6	64.3	110
Beryllium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	µg/L	0.05-0.1	NG	NG	<0.05	< 0.05	<0.05	<0.25	<0.1	<0.05	<0.1
Boron	µg/L	10.0	NG	NG	34	34	30	100	108	42	132
Cadmium ³	µg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.066	0.056	0.080	0.249	0.131	0.0787	0.214
Cd FST Guideline Calc.	µg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000		2.80	2.80	2.28	2.80	2.80	2.80	2.80
Cd FLT Guideline Calc.	µg/L			Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Calcium	µg/L	50.0	NG	NG	128000	124000	103000	421000	380000	140000	507000
Cesium	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.05	<0.02	<0.01	<0.02
Chromium	µg/L	0.10	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	µg/L	0.10	NG	NG	0.91	0.66	3.85	1.47	4.76	3.95	4.79
Copper ⁶	µg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	1.23	1.7	5.35	1.88	2.45	2.82	6.95
Cu FST Guideline Value (Acute)	µg/L		BLM Ligand Model value		40.2	33.9	25.3	18.6	41.8	30.2	51.4
Cu FLT Guideline Value (Chronic)	µg/L			BLM Ligand Model value	7.7	6.4	4.5	3.27	5.3	5.7	8.6
Iron	µg/L	10.0-20.0	350	NG	11	12	5	57	10	5	10
Lead	µg/L	0.05-0.1	NG	NG	<0.05	< 0.05	0.14	<0.25	<0.1	<0.05	<0.1
Lithium	µg/L	1.0	NG	NG	15.5	11.9	18.1	71.3	67.9	22.7	93.4
Magnesium	µg/L	5.0	NG	NG	37900	36100	28000	116000	91900	39600	105000
Manganese	µg/L	0.10	NG	NG	37.3	66.3	178	89.8	302	196	588
Mercury	µg/L	0.005	NG	NG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	NG	NG	2.37	2.26	2.16	1.54	6.44	2.51	7.29
Nickel	µg/L	0.50	NG	NG	16.5	10.2	18	92.8	30.1	18.6	32.1
Phosphorus	µg/L	50.0-100.0	NG	NG	<50	<50	<50	<250	<100	<50	<100
Potassium	µg/L	50.0	NG	NG	6110	6230	5870	9090	14400	7280	27600
Rubidium	µg/L	0.20	NG	NG	0.97	0.77	1.18	3.33	3.99	1.42	7.28

Appendix B1: LBRR Surface Water Analytical Results

		PDI	1		LBRR-DD	LBRR-LC	LBRR-EDP	LBRR-EDP	LBRR-EDP	RR9	RR9
Parameter	Unit	RDL	BCAWQG - FST	BCAWQG-FLT	29-Mar-23	29-Mar-23	29-Mar-23	28-Apr-23	28-Sep-23	29-Mar-23	28-Sep-23
Selenium	µg/L	0.05	NG	2.0	0.612	0.682	0.865	1.5	1.1	0.888	1.63
Silicon	µg/L	50.0	NG	NG	3710	3900	2460	3380	3080	2480	2600
Silver	µg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.05	<0.02	<0.01	<0.02
Sodium	µg/L	50.0	NG	NG	31100	29700	23400	39200	88300	34900	93000
Strontium	µg/L	0.20	NG	NG	361	355	825	1300	3910	1210	6640
Sulfur	µg/L	500	NG	NG	76500	71400	52400	506000	158000	72500	186000
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<1	<0.4	<0.2	<0.4
Thallium	µg/L	0.01	NG	NG	<0.01	<0.01	0.011	<0.05	0.031	0.011	0.056
Thorium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.2	<0.1	<0.2
Tin	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.2	<0.1	<0.2
Titanium	µg/L	0.3-0.6	NG	NG	<0.3	<0.3	<0.3	<1.5	<0.6	<0.3	<0.6
Tungsten	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.2	<0.1	<0.2
Uranium	µg/L	0.01	NG	NG	1.99	2.26	1.89	4.78	5.32	2.76	6.21
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	<2.5	<1	<0.5	<1
Zinc	µg/L	1.00	NG	NG	5	4.6	9	17.2	3	6	3
Zn FST Guideline Calc NEW GUIDELINE AUG 2023	µg/L		Hardness and DOC-dependent, Capped Value; valid for Hardness 13.8-250.5 mg CaCO3/L, DOC 0.3-17.3 mg/L						47.2		57.3
Zn FLT Guideline Calc NEW GUIDELINE AUG 2023	µg/L			Hardness and DOC-dependent, Capped Value; valid for Hardness 23.4-399 mg CaCO ₃ /L, pH 6.5- 8.13, DOC 0.3-22.9 mg/L)					165.7		217.2
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<1	<0.4	<0.2	<0.4
Laboratory Work Order Number					FJ2300677	FJ2300677	FJ2300677	FJ2300936	FJ2302574	FJ2300677	FJ2302574

Notes: Screening completed on BCAWQG-FST¹ and FLT² guideline values.

BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) guidelines.

² BC Minister N Generative Control of Control and Control of Con

³ Guideline is hardness dependent. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.

⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

^a Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.
⁵ Guideline is pH dependant.
NG - No Guideline
Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. **BOLD and shaded dark gray:** Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline. **RED** - Measured value is below detection limit (DL); value shown is 50% of DL
Blank. Net conducted

Blank - Not analyzed

Appendix B2:	SBIAR	Surface	Water	Analytical Results	
reportant bar	00000	04		, analy about 1 to barto	

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FST 1 BCAWQG - FLT 2		RBSBIAR-DS 28-Apr-23	RBSBIAR-DS 19-May-23	RBSBIAR-DS 28-Jun-23	RBSBIAR-DS 17-Jul-23	RBSBIAR-DS 30-Aug-23	RBSBIAR-DS 28-Sep-23	RBSBIAR-US 28-Sep-23	RBSBIAR-EDS 29-Mar-23	RBSBIAR-EUS 19-May-23	RBSBIAR-EUS 28-Jun-23	RBSBIAR-EUS 17-Jul-23
Physical Parameters Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	6700	1000	2400	1000	1000	1000	1000	1000	2900	10000	1000	3800
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0	NG NG	NG NG	93.3 1830	217 1140	214 660	189 681	228 821	222 820	194 550	185 512	85.8 979	91 857	194 775	252 801
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New Japuary 2020)	µg/L	500	NG	NG	929000	312000	271000	357000	265000	210000	270000	250000	465000	331000	300000	369000
pH	pH Units	0.10	6.5 - 9	6.5-9.0	7.39	8.33	8.06	8.05	8.32	8.32	8.25	8.26	7.74	7.45	8.20	8.10
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG NG	NG NG	1540000 343000	758000 4100	432000 11100	430000 5300	461000 1500	551000 1500	342000 410000	302000 209000	801000 1340000	657000 92100	493000 3100	533000 3500
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000	<1000 2600	<1000 <1000	<1000 <1000	<1000 5000	<1000 2400	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	93300	215000	214000	189000	223000	219000	194000	185000	85800	91000	194000	252000
Ammonia (NH4 as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	310	644	124	9.4	140	16.4	26.7	14.2	142	13	222	14.6
Ammonia FST Guideline Ammonia FLT Guideline	µg/L		pH dependent (at Temp 4 C or in situ T)	pH dependent (at Temp 4 °C or in situ T)	15300 1970	3150 606	4950 952	6220	3150 606	3150 606	3150 606	3150 606	10300	13600 1970	3950 759	4950 952
Chloride (Cl') Nitrate (NO ₃ ⁻ as N)	μg/L μg/L	500 5.0-25.0	600000 NG	150,000 NG	60000 258	38200 882	30800 1150	59600 640	34400 191	30600 309	14700 59.8	12700 69.7	38700 842	55600 763	42300 150	59800 541
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	CI-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	10.2	18.7	11.1	4.8	50.4	21.2	2.3	3.4	39	8.8	19.4	<5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	964000	323000	110000	90300	156000	159000	109000	91300	423000	326000	164000	86000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	429000	309000	309000	309000	309000	309000	309000	429000	429000	309000	309000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L	1.0	NG	NG	5.15	1.91	1.84	1.39	1.65	1.23	4.69	3.87	3.24	4.09	2.36	2.62
Aluminum	µg/L	3.00	NG	pH, DOC, Hardness-dependent; valid	11800	95	223	27.6	86.9	169	4550	2270	20700	37.6	167	51.1
NEW August 2023 FLT Guideline (no FST)	µg/L			hardness 10-430 mg/L, pH 6.0-8.7, DOC 0.8- 12.3 mg/L						174	390	348				
Antimony Arsenic	μg/L μg/L	0.10	NG 5, discontinued Aug 2023	NG 5.0	0.92	0.28	0.26	0.13 0.25	0.17 0.42	<0.1 0.5	0.6 5.7	0.49 2.68	1.04 29.2	0.18	0.18	0.13 0.36
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG NG	340 2.07	35.8 <0.1	91.2 <0.1	110 <0.1	63.3 <0.1	61.2 <0.1	303 0.442	207 0.127	1140	132 <0.1	59.4 <0.1	142 <0.1
Bismuth	µg/L	0.05	NG 1200	NG 1200	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	0.064	<0.05	0.416	<0.05	<0.05	<0.05
Cadmium	µg/L	0.005	NG	NG	6.55	0.192	0.0517	0.0092	0.0437	0.0188	0.682	0.187	2.3	0.0139	0.12	0.0135
Calcium Cesium	μg/L μg/L	50 0.01	NG NG	NG	210000 1.16	81800 0.04	77000 0.06	99400 <0.01	76200 0.031	59800 0.025	83000 0.834	71000 0.381	202000 3.51	92000 <0.01	81600 0.03	111000 <0.01
Chromium ⁴	µg/L	0.1-1.0	NG	NG	12	<0.5	<0.5	<0.5	<0.5	<0.5	8.93	5.81	38.7	<0.5	<0.5	<0.5
Copper ³	μg/L	0.50	Calc. based on Hardness	2 to 10	180	0.86	0.73	<0.1	1.12	1.01	8.9 19.6	7.22	30.7	0.17	3.61	<0.5
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of 400,000													
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L		,	Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10												
Iron	µg/L	10	1000	NG Calc, based on Hardness	20800	103	378	106	64	82	12300	5640	62600	157	68	162
Pb FST Guideline Calc (Based on Hardness as CaCO3),	ug/l	0.05	Based on Hardness 8000-360,000 Hardness ≤ 8000: 3	Calc. based of Hardness	417.0	347.5	290.5	412.6	282.3	209.9	289.1	262 12	416.97	374 69	330.60	416.97
applies to water hardness 8000-360,000 µg/L	10-		Hardness > 8000 : calc.	Applies to Hardness 8000-360,000												
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L	10	NC	Hardness ≤ 8000, NG Hardness > 8000 : calc.	19.6	16.9	14.6	19.4	14.3	11.5	14.6	13.53	19.57	17.92	16.20	19.57
Magnesium	μg/L	5.0	NG	NG	97000	64.5 25100	22.8	24300	39.8 21700	51.3	18.1 25400	12.3 24800	35.4 47800	23000	37.4 22900	10.3 25300
Manganese ³ Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L µa/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	2410 3394.18	132 3394.18	26.8 3394.18	16.9 3394.18	17.5 3394.18	2.02	289 3394.18	136 3295.0	1310 3394.2	52.9 3394.2	51.8 3394.2	33.9 3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	ua/L		Mn : calc.	Applies to Hardness 37000-450000 µg/L	1845.8	1845.8	1845.8	2175.8	1771	1529	1793	1705.0	2585.0	2061.4	1925.0	2228.6
Mercury (Based on methyl Hg & total mass Hg)	μg/L	0.005	NG	Mn : calc. Calc.	0.0439	<0.005	<0.005	<0.005	<0.005	<0.005	0.0301	0.0203	0.0572	<0.005	<0.005	<0.005
Molybdenum Nickel	µg/L µg/L	0.05	2000 NG	≤ 1000 NG	3.91 528	3.19	2.3	1.48	2.87	2.88	2.42	1.89	5.69 96.8	1.86	2.72	1.32
Phosphorus	µg/L	50.0	NG	NG	761	<50	<50	<50	<50	<50	516	272	2600	<50	<50	<50
Rubidium	µg/L µg/L	0.2	NG NG	NG	5220	3320 2.58	3030 1.84	4120 0.66	3660 1.85	3020	4870 8.05	4340 3.74	6770 34.3	3490 0.62	3530 1.98	4480 0.84
Selenium Silicon	μg/L μg/L	0.05	NG NG	2.0 NG	7.72	0.775	1.09	0.757	0.402	0.154	1.75	1.57 4940	4.35	0.536	0.64	0.888
Silver ³ (Based on Hardness < or > 100000)	µg/L	0.01	0.10 - 3.0	0.05 - 1.5	0.106	<0.01	<0.01	<0.01	<0.01	<0.01	0.087	0.045	0.543	<0.01	<0.01	<0.01
Ag FST Guideline Calc	µg/L		Hardness > 100,000 Ag = 3.0	Hardness ≤ 100.000 Ag = 0.05	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Caic	μg/L μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	1.5	1.5	41600	1.5	1.5	1.5	1.5	8350	1.5	1.5	68000	20500
Strontium	µg/L	0.2	NG	NG	1150	703	320	229	445	464	404	339	497	203	446	246
Tellerium	µg/L	0.2	NG	NG	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2
Thallium Thorium	μg/L μg/L	0.01	NG	NG	0.169 12.9	0.023 <0.1	0.02 <0.1	<0.01	0.01 <0.1	<0.01	0.121 2.52	0.062	0.569	0.014 <0.1	0.014 <0.1	<0.01 <0.1
Tin Titanium	μg/L μg/L	0.10	NG	NG	0.26	0.21	1.27	<0.1	0.1	<0.1	0.22	0.15	0.6	<0.1	0.24	<0.1
Tungsten	µg/L	0.10	NG	NG	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
Vanadium	μg/L μg/L	0.50	NG	NG	10.8	<0.5	1.42	<0.5	<0.5	<0.5	2.21	8.35	5.17 67.6	1.46	1.3 <0.5	<0.5
Zinc ³ (Based on Hardness < or > 90,000)	µg/L	3.0	Calc. based on Hardness Hardness 90,000 - 500,000, Calc.	Calc. based on Hardness	1380	13.8	4.8	1.5	7.8	3.3	129	26.1	383	<3	17.2	1.5
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of 500,000	Hardness 00.000 - 330.000. Calc	340.5	199.5	168.75	233.25	164.25	123	168	153	314.25	213.75	190.50	242.25
Zn FLT Guideline Calc.				Hardness > 330,000 is Capped Value of 330,000	187.5	174	143.25	187.5	138.75	97.5	142.5	127.5	188	188	165	188
Zircronium Metals, Dissolved	µg/L	0.06	NG	NG	0.47	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2
Aluminum ⁵	µg/L	1.0	100	50	97.7	48.1	10.8	2.2	74.1	152	102	37.8	31	57	140	2.5
AI FST Guideline Calc (based on pH), to Aug 2023	µg/L		pH < 6.5 : carc. Al pH ≥ 6.5 : 100.0 Al	and an it is a second	100	100	100	100	100	100	100	100	100	100	100	100
AI FLT Guideline Calc (based on median pH), to Aug 2023	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50	50	50	50	50	50	50	50	50	50	50	50
Antimony Arsenic	µg/L µg/L	0.10	NG NG	NG	0.38	0.28	0.2	0.12 0.23	0.14 0.37	<0.1 0.44	0.19 0.33	0.18 0.29	0.16 0.19	0.12 0.24	0.19 0.32	0.11 0.35
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG NG	37.9 0.133	37.5 <0.1	80.3 <0.1	113 <0.1	61.6 <0.1	62.3 <0.1	69.5 <0.1	105 <0.1	29.9	131 <0.1	61.1 <0.1	144 <0.1
Bismuth		0.05	NG	NG	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L µg/L	0.005	Calc. based on Hardness	Calc. based on hardness	5.59	205 0.199	0.0387	0.0085	0.033	0.0157	36 0.0384	0.018	0.154	0.0707	0.109	0.0072
Cd FST Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000		2.801	1.899	1.642	2.182	1.605	1.263	1.636	1.512	2.801	2.018	1.824	2.257
Cd FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Canned Value of	0.457	0.457	0.441	0.457	0.433	0,365	0.439	0.415	0.457	0.457	0.457	0.457
Calcium	μα/Ι	50.0	NG	285,000 NG	204000	85000	73000	104000	72000	56000	68000	61400	137000	0.1000	82300	106000
Cesium	49/r	0.01	NG	NG	0.025	0.036	0.017	<0.01	0.027	0.022	<0.01	<0.01	<0.01	<0.01	0.031	<0.01
Chromium Cobalt	μg/L μg/L	0.10	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 3.48	<0.5	<0.5 3.49	<0.5
Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μα/l	0.20	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	10.1	0.70	0.38	0.40	0.90	1.26	1.4	0.69	0.98	2.44	1.15	0.37
Cu FLT Guideline Value (Chronic)	µg/L			BLM Ligand Model value	2.3	1.92	2.1	0.84	1.45	2.1	5.4	4.3	2.0	1.9		
Iron Lead	μg/L μg/L	10.0 0.05	350 NG	NG NG	2120	<10 <0.05	<10	18	13 <0.05	39 <0.05	18	40 <0.05	21 <0.05	148	12	60 <0.05
Lithium	μg/L μg/L	1.0 5.0	NG	NG	200	71.3 24300	21.5 21000	10 23600	38.8 20800	49.9 16500	14.6 23700	11.2 23500	12.1 29900	8.5 24700	37.5 23000	9.7 25400
Manganese	μg/L μα/l	0.10	NG	NG	2340	136	14.8	15.1	16.4	1.7	27.7	13.2	211	55.4	51.7	30.7
"2	P3/L	0.000			~0.000	~0.000	~0.000	-0.000	~v.000	~v.000	~0.000	~0.000	~0.000	-0.000	~0.000	-0.000

Nickel	µg/L	0.50	NG	NG	511	22.9	4.6	0.63	8.87	4.48	5.62	0.58	13.6	5.17	16	0.64
Phosphorus	µg/L	50.0	NG	NG	<100	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	4210	3580	2920	4170	3590	3270	4080	4030	2780	3740	3630	4420
Rubidium	µg/L	0.20	NG	NG	2.39	2.33	1.33	0.85	1.58	1.38	1.02	0.55	0.94	0.63	1.43	0.79
Selenium	µg/L	0.05	NG	2.0	7.23	0.869	1.15	0.943	0.38	0.215	1.47	1.53	3.01	0.623	0.662	0.965
Silicon	µg/L	50.0	NG	NG	2940	3160	3940	4670	3820	3360	1430	1340	1410	3040	3870	5100
Silver	µg/L	0.01	NG	NG	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	55700	153000	42100	19200	79000	105000	11500	8160	16400	16300	67700	20400
Strontium	µg/L	0.20	NG	NG	1140	719	329	227	436	454	344	310	291	207	452	239
Sulfur	µg/L	500	NG	NG	332000	128000	34800	35100	53600	58600	39200	33300	139000	35100	65200	29900
Tellurium	µg/L	0.20	NG	NG	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.022	0.024	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.014	<0.01
Thorium	µg/L	0.10	NG	NG	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.2	0.21	1.26	<0.1	0.11	<0.1	<0.1	<0.1	0.32	<0.1	0.24	<0.1
Titanium	µg/L	0.30	NG	NG	<0.6	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	1.03	0.32	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	4.66	1.45	1.4	1.33	0.98	0.832	1.39	1.38	2.25	1.59	1.24	1.16
Vanadium	µg/L	0.50	NG	NG	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	1060	13.4	2.7	0.5	6.2	2.7	3.4	0.5	5.9	11.9	15.6	0.5
Zn FST Guideline Calc NEW GUIDELINE AUG 2023	µg/L		Hardness and DOC-dependent, Capped Value; valid for Hardness 13.8-250.5 mg CaCO3/L, DOC 0.3-17.3 mg/L							76	130	116				
Zn FLT Guideline Calc NEW GUIDELINE AUG 2023	µg/L			Hardness and DOC-dependent, Capped Value; valid for Hardness 23.4-399 mg CaCO ₃ /L, pH 6.5-8.13, DOC 0.3-22.9 mg/L)						10	23	19				
Zircronium	µg/L	0.06	NG	NG	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					FJ2300677	FJ2300936	FJ2301129	FJ2301553	FJ2301738	FJ2302196	FJ2302574	FJ2302574	FJ2300677	FJ2301129	FJ2301553	FJ2301738

Nickel

 Screening completed on BC AWQG-FWALFST 1 and FLT 2 guideline values.

 * BC Ministry of Environment, Water Protection & Sustainability Branch (2019), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwarer Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines.

 * BC Ministry of Environment, Water Protection & Sustainability Branch (2018), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwarer Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines.

 * Guideline is bardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentices after the laboratory result, where applicable.

 * Guideline is for Chromium (IV) (atton. Analytical results are for unspecialed Chromium. Where analytical results exceed the guideline, speciated analysis may be viculatine is Disolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

 * Guideline is Disolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

 * Guideline is Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

 * Guideline is Disolved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis.

 * Guideline for Gravy: Exceeds BCAWQG-FFST (Short-term Maximum) g

Appendix B3 L2 Powerhouse Area Water A	nalytical	Results	Γ				
Parameter		RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2-US	L2-US	L2-US
Bhysical Parameters					30-Jan-23	20-Feb-23	29-Mar-23
Acidity (Total as CaCO ₃)	µg/L	1000; 2000	NG	NG	28500	4900	1000
Alkalinity (Total as CaCO ₃)	mg/L	1.0	NG	NG	179	193	136
Hardness as CaCO3, dissolved	μ3/cm μg/L	500	NG	NG	238000	250000	147000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L pH Units	0.10	6.5 - 9.0	6.5-9.0	245000 8.16	261000 8.26	148000 8.07
Total Dissolved Solids (TDS)	µg/L	10000	NG	NG	501000	376000	226000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO	μg/L μg/L	3000 1000	NG NG	NG NG	84400 <1000	5500 <1000	3500 <1000
Alkalinity (Carbonate as CaCO ₃)	μg/L	1000	NG	NG	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	179000	193000	136000
Ammonia (NH₄ as N)	µg/L	5.0	pH dependent (6.5-9.0); GL capped at pH 9.0	pH dependent (6.5-9.0); GL capped at pH 9.0	43.5	2.5	9.5
Ammonia FST Guideline Ammonia FLT Guideline	µg/L		pH dependent (at Temp 4 [°]C or in situ T)	pH dependent (at Temp 4 $^{\circ}$ C or in situ T)	3950 759	3150 606	4950 952
Chloride (CI)	µg/L	500	600000	150,000	10200	12600	3460
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0	NG Cl-dependent (> 10.000 µg/L)	NG Cl-dependent (> 10.000 µg/L)	352	331	164
Nitrite $(NO_2^{-1} as N)$	µg/L	1.0-5.0	Guideline: 600 ug/L	Guideline: 200 ug/L	1.1	1.3	3.9
Sulphate (SO ₄) °	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000;	106000	117000	42900
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000;	309000	309000	309000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	3.00	2.44	2.20
Metals, Total Aluminum	µg/L	3.00	NG	NG	2060	1220	81.8
NEW FLT GUIDELINE AUG 2023 (no FST Guideline)				pH, DOC, Hardness-dependent; valid hardness			
Antimony	µg/L	0.10	NG	NG	0.38	0.33	0.31
Arsenic	µg/L	0.10	5.0 NG	5.0 NG	1.47	0.6	0.34
Beryllium	μg/L	0.10	NG	NG	0.122	<0.1	<0.1
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.05 31	<0.05 30	<0.05 18
Cadmium	µg/L	0.005	NG	NG	0.0689	0.0225	0.007
Cesium	μg/L μg/L	0.01	NG	NG NG	0.691	0.237	43400 0.015
Chromium ⁴	µg/L	0.1-1.0	NG	NG	3.71	2.18	0.97
Copper ³	μg/L μg/L	0.50	Calc. based on Hardness	4.0 2 to 10	5.61	1.87	1.01
Cu FST Guideline Calc. (relevant prior to August 2019)	µa/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of				
	- 3' -		400,000	Hardness 50 000 - 250 000, colo :			
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000. calc., Hardness > 250,000, Cu = 10			
Iron	µg/L µa/L	10 0.05	1000 101 - 348	NG Calc. based on Hardness	2790 1.72	608 0.395	84 0.08
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies			Based on Hardness 8000-360,000		246.2	262.1	100.0
to water hardness 8000-360,000 μg/L	µg/L		Hardness > 8000: 3 Hardness > 8000 : calc.		240.2	202.1	133.3
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	12.9	13.5	8.5
l ithium	ug/l	1.0	NG	Hardness > 8000 : calc.	9.3	82	3.4
Magnesium	μg/L	5.0	NG	NG	15400	15000	9630
Manganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	44.9	7.61	1.89
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Mn : calc.	Applies to Hardpass 37000 450000 ug/l	3162.76	3295	2159.94
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Mn : calc.	1652.2	1705	1251.8
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	2000	Calc. ≤ 1000	<0.005	<0.005 3.9	<0.005 3.73
Nickel	µg/L	0.50	NG	NC	5.14	1.46	<0.5
Potassium	μg/L μg/L	50.0	NG	NG	2810	2830	2290
Rubidium Selenium	µg/L µg/l	0.2	NG NG	NG 2.0	7.28	3.62	1.78
Silicon	μg/L	100.0	NG	NG	7840	7330	3770
Silver ³ (Based on Hardness < or > 100000)	µg/L	0.01	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	0.031	0.01	<0.01
Ag FST Guideline Calc	µg/L		Hardness > 100,000 Ag = 3.0	Hardness < 100,000, Ag = 0,05	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L	50.0		Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5
Strontium	μg/L μg/L	0.2	NG	NG NG	29100 180	33400 166	96.6
Sulfur	µg/L	500.0	NG	NG	37000	47400	14000
Thallium	μg/L μg/L	0.01	NG	NG	0.052	0.024	<0.01
Thorium Tin	µg/L µa/L	0.10	NG NG	NG NG	0.58 0.13	0.17 <0.1	<0.1 0.13
Titanium	µg/L	0.3-4.5	NG	NG	37	32.9	2.25
Uranium	μg/L μg/L	0.10	NG	NG	1.8	1.89	0.22
Vanadium	µg/L	0.50	NG	NG	6.93	4.3	1.26
	µg/L	3.0	Hardness 90,000 - 500,000, Calc.		19.4	13.2	4.7
zn FST Guideline Calc.	μg/L		Hardness > 500,000, is Capped Value of 500,000		144.0	153.0	75.8
Zn FLT Guideline Calc.	ua/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of	118.5	127.5	50.25
Zireronium	1.5°=	0.06	NG	330,000	0.67	- 1 29	<0.2
Metals, Dissolved	µg/L	0.00	UNU		0.07	1.20	<u>~∪.∠</u>
Aluminum ⁵	µg/L	1.0		50	20.4	8.8	16.1
ALFST Guideline Calc (based on pH)	μg/L		pH ≥ 6.5 : 100.0 Al	modion pH = 6.5 + sets Al	100	100	100
AI FLT Guideline Calc (based on median pH)	µg/L			median pH ≤ 6.5 : 50.0 Al	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG NG	NG NG	0.28	0.28 0.28	0.31 0.25
Barium	μg/L	0.10	NG	NG	81.8	91.2	56.3
Bismuth	µg/L	0.10	NG	NG NG	<0.05	<0.1 <0.05	<0.1 <0.05
Boron	µg/L	10.0	NG Calo, based on Hardness	NG Calc, based on bordness	26	26	19
	µy/∟	0.000	Hardness 7,000 - 455,000, Calc.	שמוט, שמפכע טון וומועוופאא	0.0079	0.0004	0.0025
Cd FST Guideline Calc.	µg/L		Hardness > 455,000, is Capped Value of 455,000		1.44	1.51	0.87
Cd FLT Guideline Calc.	ua/L			Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	0.40	0.42	0.28
Coloium	rg/ -	F0.0	NO	285,000	70000	70400	40000
Cesium	μg/L μg/L	0.01	NG	NG	<0.01	<0.01	42900 <0.01
Chromium Cobalt	μg/L	0.10	NG	NG	<0.5 <0 1	<0.5 <0 1	0.78 <0 1
Copper ⁶	μg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	3.15	0.65	0.73
Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L	-	BLM Ligand Model value	BLM Ligand Model value	14.9 2.62	17.2 3.30	10.5 1.90
Iron	μg/L	10.0	350	NG	5	5	5
Lead Lithium	μg/L μg/L	0.05	NG NG	NG NG	0.121 6.5	<0.05	<0.05
Magnesium Manganese	µg/L	5.0	NG	NG	14000	16100	9600
Mercury	μg/L	0.005	NG	NG	<0.005	<0.005	<0.005
Molybdenum Nickel	µg/L µa/l	0.05	NG	NG	2.7 0.81	3.33 <0.5	3.7 <0.5
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50
Potassium Rubidium	μg/L μg/L	50.0 0.20	NG NG	NG NG	2080	2470 1	2330 1.64

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2-US	L2-US	L2-US	
					30-Jan-23	20-Feb-23	29-Mar-23	
Selenium	μg/L	0.05	NG	2.0	1.75	1.61	0.789	
Silicon	µg/L	50.0	NG	NG	4360	4820	3570	
Silver	μg/L	0.01	NG	NG	<0.01	<0.01	<0.01	
Sodium	μg/L	50.0	NG	NG	28600	32400	10600	
Strontium	µg/L	0.20	NG	NG	174	162	95.6	
Sulfur	µg/L	500	NG	NG	37800	46000	13700	
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	
Thallium	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	0.1	
Titanium	µg/L	0.30	NG	NG	0.34	<0.3	<0.3	
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	0.23	
Uranium	µg/L	0.01	NG	NG	1.55	1.55	0.86	
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	1.02	
Zinc	µg/L	1.00	NG	NG	3.4	8.3	2.6	
Zn FST Guideline Value (Acute) - New Guideline Aug 2023	µg/L		Hardness and DOC-dependent, Capped Value; valid for Hardness 13.8-250.5 mg CaCO3/L, DOC 0.3-17.3 mg/L					
Zn FLT Guideline Value (Chronic) - New Guideline Aug 2023	μg/L			Hardness and DOC-dependent, Capped Value; valid for Hardness 23.4-399 mg CaCO ₃ /L, pH 6.5-8.13, DOC 0.3-22.9 mg/L)				
Zircronium	μg/L	0.06	NG	NG	<0.2	<0.2	<0.2	
Laboratory Work Order Number					FJ2300206	FJ2300373	FJ2300677	

Appendix B4 LBDB Area Water Analytical Results

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBP POND 28-Apr-23	LBP POND 19-May-23	LBP POND 28-Jun-23	LBP POND 17-Jul-23	LBP POND 30-Aug-23	LBP POND 28-Sep-23
Physical Parameters Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	<2000	10300	<2000	8300	7300	31200
Alkalinity (Total as CaCO ₃)	mg/L uS/cm	1.0	NG	NG	97.3	240 2630	258	216	234	394 3770
Hardness as CaCO3, dissolved	μg/L	500	NG	NG	506000	1180000	2000000	2290000	2330000	1740000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L	0.40	<u> </u>	0.5.0.0	499000	1200000	1940000	2320000	2450000	1760000
рп Total Dissolved Solids (TDS)	μg/L	10000	0.5 - 9 NG	0.5-9.0 NG	796000	8.19 2200000	8.31 3390000	7.98 4290000	8.35 4750000	7.56 3310000
Total Suspended Solids (TSS)	µg/L	3000	NG	NG	45700	4100	26900	34900	32300	61600
Alkalinity (Hydroxide) as CaCO ₃	µg/L	1000	NG	NG	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	1000	NG	NG	97300	240000	253000	216000	228000	394000
Anions and Nutrients										
Ammonia (NH₄ as N) Ammonia FST Guideline	µg/L µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	10 6220	12.3 3950	14.5 3150	16.3 6220	26.8 2520	283 11900
Ammonia FLT Guideline	μg/L			pH dependent (at Temp 4 °C or in situ T)	1200	759	606	1200	484	1970
Chloride (Cl')	µg/L	500	600000	150,000	8560	<10000	3150	<10000	13000	13200
	µg/L	5.0-25.0	NG CI-dependent (> 10,000 µg/L)	NG Cl-dependent (> 10,000 µg/L)	89.9	<100	<25	<100	<100	<100
	µg/L	1.0-5.0	Guideline: 600 ug/L	Guideline: 200 ug/L	<5	<20	<5	<20	<20	<20
	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	604000	1370000	2280000	2710000	3050000	2190000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	429000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	12.5	18	23.6	30	36.9	29.8
Metals, Total	ug/l	3.00	NG	NG	165	100	94.1	21	61.9	106
Authorn	µg/L	5.00	NO	pH, DOC, Hardness-dependent; valid	105	100	04.1	51	01.0	190
NEW FLT GUIDELINE AUG 2023 (no FST Guideline)				hardness 10-430 mg/L, pH 6.0-8.7, DOC 0.8- 12.3 mg/L					1196	1189
Antimony	µg/L	0.10	NG	NG	0.13	0.2	<0.5	<0.5	<0.5	<0.5
Arsenic Barium	µg/L µg/L	0.10	5, discontinued Aug 2023 NG	5.0 NG	0.53	0.61	0.78	0.6	0.93	0.95
Beryllium	μg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	µg/L	0.05	NG	NG	<0.05	<0.1	<0.25	<0.25	<0.25	<0.25
Boron Cadmium	µg/L µg/l	10.0	1200 NG	1200 NG	76	158	280	346	351	228
Calcium	μg/L	50	NG	NG	0.128 115000	257000	412000	454000	419000	342000
Cesium	μg/L	0.01	NG	NG	0.024	0.021	<0.05	<0.05	<0.05	<0.05
Chromium ⁴	µg/L	0.1-1.0	NG	NG	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<2.5
Copper ³	μg/L μg/L	0.10	Calc. based on Hardness	4.0 2 to 10	2.02	3.13 1.46	<2.5	<2.5	<2.5	3.53
Cu EST Quideline Cale (relevant prior to August 2010)			Hardness 13,000 - 400,000 : calc.;							
	µg/L		400,000 s Capped Value of 400,000							
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10						
Iron	µg/L	10	1000	NG	297	670	868	437	756	14100
Lead ³	µg/L	0.05	101 - 348	Calc. based on Hardness	0.178	<0.1	<0.25	<0.25	<0.25	<0.25
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360.000 µg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3		417.0	417.0	417.0	417.0	417.0	417.0
			Hardness > 8000 : calc.	Applies to Hardness 8000-360,000						
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG Hardness > 8000 : calc.	19.6	19.6	19.6	19.6	19.6	19.6
Lithium	µg/L	1.0	NG	NG	14.9	42.2	74.7	82.3	72.4	34.2
Magnesium	µg/L	5.0	NG	NG	51500	135000	222000	289000	340000	220000
	µg/L	0.10	Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	848	1490	1070	561	1990	11400
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Mn : calc.	A	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 µg/L Mn : calc.	2585	2585	2585	2585	2585	2585
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum Nickel	µg/L µg/L	0.05	2000 NG	≤ 1000	0.935	0.619	0.565	0.352 8.43	0.602	0.501
Phosphorus	μg/L	50.0	NG	NG	73	<100	<250	<250	<250	<250
Potassium	µg/L	50.0	NG	NG	14300	15600	9640	14500	24900	17500
Rubidium Selenium	µg/L ug/l	0.2	NG	NG 2.0	2.64	4.6	4.63	5.23	7.24	5.86
Silicon	µg/L	100.0	NG	NG	2240	940	<500	<500	<500	1340
Silver ³ (Based on Hardness < or > 100000)	µg/L	0.01	0.10 - 3.0	0.05 - 1.5	<0.01	<0.02	<0.05	<0.05	<0.05	<0.05
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L			Hardness ≤ 100,000 Ag = 0.05 Hardness ≥ 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium	µg/L	50.0	NG	NG	83000	186000	297000	376000	481000	344000
Strontium	µg/L	0.2	NG	NG	329	650	1020	1140	1170	940
Suitur Tellerium	µg/L	500.0 0.2	NG	NG	224000	505000	895000	985000	1180000	793000
Thallium	µg/L	0.01	NG	NG	0.012	<0.4	<0.05	<0.05	<0.05	<0.05
Thorium	µg/L	0.10	NG	NG	<0.1	0.32	<0.5	<0.5	<0.5	<0.5
Titanium	µg/L µg/l	0.10	NG	NG	0.15	<0.2	<0.5	<0.5	< 0.5	<0.5
Tungsten	μg/L	0.10	NG	NG	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5
Uranium	µg/L	0.01	NG	NG	1.04	2.47	3.96	3.8	3.27	2.29
Vanadium Zinc 3 (Record on Hardness $< \alpha > 00,000$)	µg/L	0.50	NG Calc, based on Hardness	NG Calc, based on Hardness	0.65	<1	<2.5	<2.5	<2.5	<2.5
	P9/L	0.0	Hardness 90,000 - 500,000, Calc.		44.4	19.7	1.5	1.5	1.5	1.5
Zn FST Guideline Calc., prior to Aug 2023	µg/L		Hardness > 500,000, is Capped Value of 500,000		340.5	340.5	340.5	340.5	340.5	340.5
Zn El T Guideline Calc, prior to Aug 2023	ug/l			Hardness 90,000 - 330,000, Calc.	187 5	187 5	187 5	187.5	187 5	187 5
Little Condointe Galo, prior to Aug 2023	µy/∟			330,000	01.0	07.0	6.101	01.0	G. 101	6.101
Zircronium Metale Dissolved	µg/L	0.06	NG	NG	<0.2	<0.4	<1	<1	<1	<1
Aluminum ⁵	µg/L	1.0	100	50	17.9	9.8	7.4	7.7	11.7	114
AI FST Guideline Calc (based on pH), prior to Aug 2023	µg/L		pH < 6.5 : calc. Al		100	100	100	100	100	100
ALELT Quideling Cale (based on mediate LU) and the Cale	ua//		pri≥ 0.3 ° 100.0 Al	median pH < 6.5 : calc. Al	E0	E0.	E0	50	E0	E0
Antimony	µg/L	0.40	NC	median pH ≥ 6.5 : 50.0 Al	UU	00	-0U	00	-0.5	-0.5
Arsenic	μg/L μg/L	0.10	NG	NG	0.45	<0.2 0.53	<0.5 0.68	<0.5	<0.5 0.81	<0.5
Barium	μg/L	0.10	NG	NG	31.1	24.7	46.5	25	22	24
Beryllium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	µa/L	0.05	NG	NG	<0.05 76	<0.1 149	<0.25 315	<0.25 328	<0.25 339	<0.25 220
Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L	0.005	Calc. based on Hardness	Calc. based on hardness	0.131	0.0351	0.0125	0.0125	0.0125	0.0125
Cd FST Guideline Calc.	ua/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of		2.80	2.80	2.80	2.80	2.80	2.80
	1.5.5		455,000							
Cd FLT Guideline Calc.	µg/L			Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	0.46	0.46	0.46	0.46	0.46	0.46
Calcium	µg/L	50.0	NG	285,000 NG	117000	242000	414000	450000	412000	337000

Parameter		RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBP POND					
					28-Apr-23	19-May-23	28-Jun-23	17-Jul-23	30-Aug-23	28-Sep-23
Cesium	µg/L	0.01	NG	NG	<0.01	<0.02	<0.05	<0.05	<0.05	<0.05
Chromium	µg/L	0.10	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	µg/L	0.10	NG	NG	3.34	2.46	1.18	<0.5	1	3.62
Copper ⁶	µg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	1.94	0.75	3.34	0.5	0.5	0.5
Cu FST Guideline Value (Acute)	µg/L		BLM Ligand Model value		53.6	128.2	104	85.5	163.1	73.6
Cu FLT Guideline Value (Chronic)	µg/L			BLM Ligand Model value	9.36	21.3	18.6	14.9	34.4	7.3
Iron	µg/L	10.0	350	NG	52	89	62	25	340	10100
Lead	µg/L	0.05	NG	NG	<0.05	<0.1	<0.25	<0.25	<0.25	<0.25
Lithium	µg/L	1.0	NG	NG	15.2	39.8	76.1	79.5	72.9	38.5
Magnesium	µg/L	5.0	NG	NG	51900	139000	234000	284000	317000	218000
Manganese	µg/L	0.10	NG	NG	865	1070	1090	439	1810	11600
Mercury	µg/L	0.005	NG	NG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	NG	NG	0.924	0.616	0.424	0.368	0.642	0.479
Nickel	µg/L	0.50	NG	NG	14.3	20.6	9.96	7.9	5.87	7.04
Phosphorus	µg/L	50.0	NG	NG	<50	<100	<250	<250	<250	<250
Potassium	µg/L	50.0	NG	NG	14800	15100	10300	14200	24600	16900
Rubidium	µg/L	0.20	NG	NG	2.1	4.37	4.06	5.24	7.49	5.82
Selenium	µg/L	0.05	NG	2.0	0.324	0.245	0.256	0.308	0.331	0.344
Silicon	µg/L	50.0	NG	NG	1970	760	390	<250	<250	1220
Silver	µg/L	0.01	NG	NG	<0.01	<0.02	<0.05	<0.05	<0.05	<0.05
Sodium	µg/L	50.0	NG	NG	86700	186000	310000	366000	454000	324000
Strontium	µg/L	0.20	NG	NG	328	645	1050	1150	1120	859
Sulfur	µg/L	500	NG	NG	233000	509000	886000	973000	1120000	729000
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.4	<1	<1	<1	<1
Thallium	µg/L	0.01	NG	NG	0.011	<0.02	<0.05	<0.05	<0.05	<0.05
Thorium	µg/L	0.10	NG	NG	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5
Tin	µg/L	0.10	NG	NG	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5
Titanium	µg/L	0.30	NG	NG	0.52	<0.6	<1.5	<1.5	<1.5	<1.5
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5
Uranium	µg/L	0.01	NG	NG	1.05	2.4	3.92	3.64	3.2	2
Vanadium	µg/L	0.50	NG	NG	<0.5	<1	<2.5	<2.5	<2.5	<2.5
Zinc	µg/L	1.00	NG	NG	41.7	13.7	2.5	2.5	2.5	6
Zn FST Guideline Value (Acute) - New Guideline Aug 2023	µg/L		Hardness and DOC-dependent, Capped Value; valid for Hardness 13.8-250.5 mg CaCO3/L, DOC 0.3-17.3 mg/L						70	57
Zn FLT Guideline Value (Chronic) - New Guideline Aug 2023	µg/L			Hardness and DOC-dependent, Capped Value; valid for Hardness 23.4-399 mg CaCO ₃ /L, pH 6.5-8.13, DOC 0.3-2.9 mg/L)					367	487
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.4	<1	<1	<1	<1
Laboratory Work Order Number					FJ2300936	FJ2301129	FJ2301553	FJ2301738	FJ2302196	FJ2302574

