

Site C Clean Energy Project

:]g\Yf]Yg`UbX`5eiUh]W<UV]hUh`Acb]hcf]b[`UbX`:c``ck!id`Dfc[fUa`

Peace River and Site C Reservoir Water and Sediment Quality Monitoring Programs (Mon-8 and Mon-9)

Construction Year 2 (2016)

Danielle MacDonald, B.Sc. Tetra Tech Canada Inc.

Nigel Cavanagh, M.Sc., R.P.Bio. Tetra Tech Canada Inc.

April 10, 2017

Peace River and Site C Reservoir 2016 Water and Sediment Quality Monitoring Programs

PRESENTED TO BC Hydro and Power Authority

APRIL 10, 2017 ISSUED FOR USE FILE: ENV.VENV03118

> Saulteau EBA Environmental Services Joint Venture Suite 1000 – 10th Floor, 885 Dunsmuir Street Vancouver, BC V6C 1N5 CANADA Tel 604.685.0275 Fax 604.684.6241

This page intentionally left blank.

TABLE OF CONTENTS

1.0	BACK	GROUND	1
	1.1 P	Program Objectives	.1
	1.2 N	Nanagement Hypothesis	.2
2.0	METHO	ODS	3
3.0	RESUL	LTS	5
	3.1 P	Peace River Water Quality Results: Site C Reservoir and Downstream Reach	.6
		Villiston and Dinosaur Reservoirs Water and Sediment Quality Results	
	3.3 ⊤	urbidity Monitoring Station Results	.9
4.0	DISCU	ISSION	2
	4.1 C	Quality Assurance and Quality Control	3
5.0	CLOSI	URE	5

LIST OF FIGURES IN TEXT

Figure 3: 2016 Daily Average Turbidity Measurements for Peace Above Moberly - Right Bank (PAM-	
RB)	9
Figure 4: 2016 Daily Average Turbidity Measurements for Peace Above Moberly - Left Bank (PAM-	
LB)	. 10
Figure 5: 2016 Daily Average Turbidity Measurements for Peace Above Pine - Right Bank (PAP-RB)	11
Figure 6: 2016 Daily Average Turbidity Measurements for Peace Above Pine - Left Bank (PAP-LB)	. 12

APPENDIX SECTIONS

TABLES

- Table 1 May Surface Water Quality Results
- Table 2
 June Surface Water Quality Results
- Table 3
 July Surface Water Quality Results
- Table 4
 August Surface Water Quality Results
- Table 5 September Surface Water Quality Results
- Table 6
 October Surface Water Quality Results
- Table 7
 Reservoir Sediment Quality Results
- Table 8
 Reservoir Water Quality Depth Profile
- Table 9a Water Quality Assurance and Quality Control Results
- Table 9b Water Quality Assurance and Quality Control Results

FIGURES

- Figure 1 Site Location
- Figure 2a Water Quality Monitoring Station Location Plan
- Figure 2b Water Quality Monitoring Station Location Plan

APPENDICES

Appendix ALaboratory ReportsAppendix BSEES JV General Conditions

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of BC Hydro and Power Authority and their agents. Saulteau EBA Environmental Services Joint Venture does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than BC Hydro and Power Authority, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Saulteau EBA Environmental Services Joint Venture's General Conditions are provided in Appendix A of this report.

1.0 BACKGROUND

As part of the 2016 Water and Sediment Quality Monitoring Programs (Monitoring Program), the Saulteau EBA Environmental Services Joint Venture (SEES JV) has conducted the 2016 events (May to October) associated with Site C Clean Energy Project (Project) on behalf of the BC Hydro and Power Authority (BC Hydro).

In accordance with Provincial Environmental Assessment Certificate Condition No. 7¹ for BC Hydro's Site C Clean Energy Project (the Project), BC Hydro has developed the Site C Fisheries and Aquatic Habitat Monitoring and Follow-up Program (FAHMFP²). The overall Fisheries and Aquatic Habitat Monitoring and Follow-up Program includes two sub-monitoring programs focused on assessment of Project effects on water and sediment quality:

- Site C Mon-8 Site C Reservoir Water and Sediment Quality Monitoring Program: This Program will investigate the effects of reservoir formation on water and sediment quality.
- Site C Mon-9 Peace River Water and Sediment Quality Monitoring Program: This Program will investigate the effects of the Project on water and sediment quality in the Peace River downstream of the Project.

The timeline for the annual Monitoring Programs encompasses years 2 to 9 (2016 to 2023) of the construction phase and years 1 to 10 of the operation phase of the Project. This report provides and overview of the Site C Mon-8 and Site C Mon-9 sub Monitoring Programs for year 2 of the construction phase. The programs were carried out between May and October, 2016.

Site C is located along the Peace River and Pine River, in the City of Fort St. John region between the Districts of Hudson's Hope and Taylor, BC, accessible via Highways 97 and 29. A station location map has been provided as Figure 1. All surface water monitoring stations (stations) can be accessed by either boat via public boat launch (road accessible). Station Locations have been identified in Figures 2a and 2b.

The Site C Mon-8 study area includes monitoring of eight (8) stations within the Site C Reach, defined as the portion of the Peace River that will be inundated by the Project and includes the Peace River from the Peace Canyon Dam (PCD) downstream to the Site C dam site, and those sections of the Halfway and Moberly tributary rivers that will be inundated following reservoir creation (approximately 10 km sections). Reference stations selected to monitor water flowing into the Site C Reach are located in Dinosaur and Williston reservoirs near the outlets.

The Site C Mon-9 study area includes monitoring of nine (9) stations within the Peace River from the Site C dam site downstream to the Many Islands area in Alberta, a distance of approximately 120 km.

1.1 **Program Objectives**

The overall objectives of the 2016 Water and Sediment Quality Monitoring Programs were to:

- Provide a qualitative description of the field site conditions, including representative photographs and geospatially referenced locations of each station;
- Collect field measured and laboratory analyzed parameters at each station;

¹ The EAC Holder must develop a Fisheries and Aquatic Habitat Monitoring and Follow-up Program to assess the effectiveness of measures to mitigate Project effects on healthy fish populations in the Peace River and tributaries, and, if recommended by a QEP or FLNR, to assess the need to adjust those measures to adequately mitigate the Project's effects.

² Site C Fisheries and Aquatic Habitat Monitoring and Follow-up Program available at https://www.sitecproject.com/documentlibrary/environmental-management-plans-and-reports

- Provide a description of potential sources of error and steps taken as part of quality assurance; and
- Present the tabulated data in comparison to guidelines considered applicable to the Monitoring Programs.

Sampling under this program will contribute to the information used to address the primary fisheries management questions listed in the FAHMFP:

- Mon-8: Does the construction and operation of the Project affect fish and fish habitat (as measured through water and sediment quality) in the reservoir and lower sections of reservoir tributaries?
- Mon-9- Does the construction and operation of the Project affect fish and fish habitat (as measured through water and sediment quality) in the Peace River downstream of the Project?

This broad question requires a number of smaller questions to be answered because of the various ways that the Project can affect fish and fish habitat:

Mon-8:

- 1. Is there a change in water or sediment quality in the Site C Reach during the construction of the Project?
- 2. Is there a change in water or sediment quality in the Site C Reach during the operation of the Project?
- 3. How effective are proposed mitigation methods in maintaining/protecting water and sediment quality in the Site C Reach?

Mon-9:

- 1. Is there a change in water or sediment quality in the Peace River between the Site C dam site and the Many Islands area in Alberta during the construction of the Project?
- 2. Is there a change in water or sediment quality in the Peace River between the Site C dam site and the Many Islands area in Alberta during the operation of the Project?
- 3. How effective are proposed mitigation methods in maintaining/protecting water and sediment quality in the Peace River between the Site C dam site and the Many Islands area in Alberta?

1.2 Management Hypothesis

To address the management questions, the program will test the following hypotheses, as provided in the monitoring plans:

Mon-8:

- H₁: During construction, modeled water quality predictions presented in the Environmental Impact Statement (EIS) are similar to measured water quality in the Site C Reach.
- H₂: During operation, modeled water quality predictions presented in the EIS are similar to measured water quality in the Site C Reach.
- H₃: During construction, water and sediment quality for non-modeled parameters remain within background ranges of concentrations, or comply with relevant environmental guidelines³ in the Site C Reach.
- H₄: During operation, water and sediment quality for non-modeled parameters remain within background ranges of concentrations, or comply with relevant environmental guidelines in the Site C Reach.

Two hypotheses related to the effectiveness of mitigation measures for water and sediment quality:

³ As described in the Construction Environmental Management Plan for the Project

- H₅: During construction, mitigation methods employed are effective in maintaining/protecting water and sediment quality in the Site C Reach.
- H₆: During operation, mitigation methods employed are effective in maintaining/protecting water and sediment quality in the Site C Reach.

Mon-9:

- H₁: During construction, modeled water quality predictions presented in the EIS are similar to measured water quality in the Peace River between the Site C dam site and the Many Islands area in Alberta.
- H₂: During operation, modeled water quality predictions presented in the EIS are similar to measured water quality in the Peace River between the Site C dam site and the Many Islands area in Alberta.
- H₃: During construction, water and sediment quality for non-modeled parameters remain within background ranges of concentrations, or comply with relevant environmental guidelines in the Peace River between the Site C dam site and the Many Islands area in Alberta.
- H₄: During operation, water and sediment quality for non-modeled parameters remain within background ranges of concentrations, or comply with relevant environmental guidelines in the Peace River between the Site C dam site and the Many Islands area in Alberta.

Two hypotheses related to the effectiveness of mitigation measures for water and sediment quality.

- H₅: During construction, mitigation methods employed are effective in maintaining/protecting water and sediment quality in the Peace River between the Site C dam site and the Many Islands area in Alberta.
- H₆: During operation, mitigation methods employed are effective in maintaining/protecting water and sediment quality in the Peace River between the Site C dam site and the Many Islands area in Alberta.

The fisheries management questions and management hypotheses will require several years of data to be collected. This report is the first year of data collection for these programs under the Fisheries and Aquatic Habitat Monitoring and Follow-up Program.

2.0 METHODS

To maintain compliance with the FAHMFP Program Objectives, a field sampling methodology was developed for collecting water and sediment quality data representative of 19 stations included within the 2016 Monitoring Program. Standard practices available from the British Columbia Field Sampling Manual (Clark, 2002) were used to develop the following 2016 Monitoring Program procedures:

- Sampling within surface water flow (and bottle submerged) and away from the watercourse banks provides information on the quality of the channel flow and a general overview of water quality in the system. Areas of unusual flow characteristics (e.g. eddies or backwater areas), or floating debris was avoided.
- Water quality samples were collected from each station within 0.2 m depth from surface, and additionally, depth
 profile sample data was collected from reservoir stations at Williston (W1) and Dinosaur (D1). Water quality
 samples were collected monthly from each station between May and October 2016; the first and final events
 included more extensive analytical testing than others.

- Sediment quality samples were collected from depositional areas of the reservoir stations at Williston (W1) and Dinosaur (D1) during the October event using a Wildco Petite Ponar sampling device. Depth of samples were determined in the field based on accessibility and obtaining samples representative of adequate quantities of sediment deposition within the water body (i.e. low coarse material content). Sediment samples collected using a grab sampling device were extracted from the centre of the soil mass collected.
- Samples were collected from near the bow via the side access of a jet engine boat, pointing the vessel upstream at all times to collect upstream flow representative samples and to avoid contamination that could be introduced to the sample from the vessel.
- In situ surface water quality measurements were determined using an YSI ProDSS Multimeter which recorded sample depth, specific conductivity, electrical conductivity, pH, temperature, dissolved oxygen, salinity, and turbidity of the source water.
- Water transparency within the reservoirs was recorded by measuring the depth of visibility of a secchi disk.
- Where possible, laboratory analysis bottles were filled directly from the water source to minimize cross contamination of samples collected at each station (i.e. surface water). Where additional handling was required, a new 1 L plastic bottle (i.e. routine sample bottle) was filled from the source, and sample water was decanted into other laboratory analysis bottles or filters. Depth profile samples were collected using a Wildco Kemmerer sampler.
- Decontamination of sampling equipment between monitoring locations by triple rinsing field parameter and sample collecting equipment.
- The use of clean, new nitrile gloves and filters at each new monitoring location during all water sampling.
- Required preservatives were added into the sample containers (e.g., dissolved metals and total metals nitric acid, dissolved and total nutrients – sulfuric acid, dissolved and total mercury – hydrochloric acid).
- Where dissolved parameters were filtered by laboratory staff, the samples were not preserved in the field.
 Dissolved parameters filtered in the field (using new high capacity Waterra filters) were field preserved.
- The sample ID, date, and location on container label were recorded using water resistant labelling.
- One blind duplicate sample was submitted per every 10 ambient samples submitted.
- One trip blank and one field blank were submitted per event, unless otherwise noted.
- Samples were stored in a cooler with ice packs to lower temperature and maintain them below 4°C.
- All field activities were recorded on formatted field data sheets concurrently with ongoing field activities and supported by GPS referencing at each monitoring station.
- Chain-of-custody forms including analytical selection were completed for the samples. The analytical testing for the 2016 Monitoring Program is derived from the British Columbia Approved and Working Water Quality Guidelines (BC MOE 2015 and 2016).
- Samples were delivered to the ALS Environmental laboratory depot in Fort St. John, BC.
- Water quality samples were laboratory analyzed for the following parameters:
 - Monthly from May to October: Colour, alkalinity, pH, total dissolved solids, total suspended solids, dissolved organic carbon, total organic carbon, ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total nitrogen, total phosphorus, total dissolved phosphorus, soluble reactive phosphorus;

- Monthly (May to October): chlorophyll a was analyzed for reservoir samples only; and
- May and October only: Major ions (calcium, magnesium, potassium, sodium), total and dissolved metals and metalloids (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, titanium, uranium, vanadium, and zinc).
- Sediment quality samples were laboratory analyzed for the following parameters:
 - October only: particle size, nutrients, and total metals (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, titanium, uranium, vanadium, and zinc.
- Field measurement and sample collection occurred during the following dates:
 - May 29 to June 2, 2016
 - June 20 to 22, 2016
 - July 25 to 27, 2016
 - August 23 to 25, 2016
 - September 20 to 22, 2016
 - October 21, and October 24 to 25, 2016

Field parameter measurements and laboratory analytical results have been compiled in Tables 1 to 9.

3.0 RESULTS

Results, both *in-situ* and laboratory, were compared between the sampling seasons and between stations (from upstream to downstream reaches). The objective of data analysis is to identify differences and identify parameter concentrations that differ from guidelines.

Water quality results are presented in Tables 1 to 9 and the Appendix A (laboratory reports), attached to this report, and include the following for each sampling location:

- Field parameter measurements and field observations;
- Laboratory analytical results for each sample submitted, including duplicate, trip blank, and field blank analysis;
- Exceedances of the British Columbia Approved and Working Water Quality Guidelines are bolded and shaded in grey (BC MOE 2015 and 2016). Guidelines for freshwater aquatic life for short term maximums were applied for water quality under the approved and working guidelines. However, working water quality guidelines were limited for most parameters, therefore, only approved guideline values were generated and presented in the tables. As approved guidelines for sediment quality are not available, only working guidelines were applied. Moving forward, the British Columbia Approved and Working Water Quality Guidelines (BC WQG) will be referred to as the guidelines in this document;
- Relative per cent differences (RPD) between the laboratory results for the duplicate sample pairs are presented in Table 9B;

3.1 Peace River Water Quality Results: Site C Reservoir and Downstream Reach

The Site C Mon-8 study area includes monitoring of eight (8) stations within the Site C Reach, defined as the portion of the Peace River that will be inundated by the Project and includes the Peace River from the Peace Canyon Dam (PCD) downstream to the Site C dam site, and those sections of the Halfway and Moberly tributary rivers that will be inundated following reservoir creation (approximately 10 km sections).

- Site C Reservoir Station IDs:
 - Peace Canyon (PC1)
 - Upper Site C Reservoir (PR1)
 - Middle Site C Reservoir (PR2)
 - Halfway River Upstream (HU) and Downstream (HD)
 - Lower Site C Reservoir (PR3)
 - Moberly River Upstream (MU) and Downstream (MD)

The Site C Mon-9 study area includes monitoring of nine (9) stations within the Peace River from the Site C dam site downstream to the Many Islands area in Alberta, a distance of approximately 120 km.

- Downstream Reach Station IDs:
 - Peace at Pine (PD1)
 - Pine River (PINE)
 - Peace at Beatton (PD2)
 - Beatton River (BEATTON)
 - Peace at Kiskatinaw River (PD3)
 - Kiskatinaw River (KR)
 - Peace at Pouce Coupe (PD4)
 - Pouce Coupe (POUCE)
 - Peace at Many Islands (PD5)

PC1 is considered the most upstream sample location and PD5 is considered the most downstream sample location within the lotic sample set. Samples were collected from designated stations relating to the aforementioned sample names. Peace River samples were collected from mid-channel flow locations, isolating source water considered to be well mixed within the Peace River. Tributary river samples were collected upstream of the Peace River confluence to isolate mid-channel flow source prior to it mixing with the main Peace River channel. Generally, samples were collected approximately 150 m upstream of the confluence with the Peace River unless referring to MU (approximately 30 km upstream of the confluence) and HU (approximately 60 km upstream of the confluence). Due to heavy precipitation generated runoff, tributary samples were omitted for the Moberly Upstream location during all events except for May 2016, and for the Halfway Upstream location during the August, September, and October 2016 events, as they could not be safely accessed (i.e. extreme turbulence or large woody debris observed).

Throughout the sampling events, dissolved oxygen, electrical conductivity and specific electrical conductivity remained generally stable within the Peace River from PC1 to PD1. Results within the tributaries was consistently elevated above Peace River results. Field measured water temperatures generally increased from upstream to downstream locations, however, the temperature within tributaries was found to be generally elevated over that of the Peace River, notably during June to August months when temperatures within the tributaries were elevated above guideline values. In July, all temperatures measured downstream of BEATTON (Peace River and Tributary samples) were elevated above guidelines. The pH values remained within guidelines throughout the sample set and events, with the exception of June, when values were considered acidic and below guidelines within BEATTON, PD3, and PD5 (in June). The range of field measured pH was 5.71 to 8.68 over the Monitoring Program. Laboratory analyzed pH is considered secondary to field measured pH by a calibrated instrument due to the exceeded hold times (15 minutes) of all laboratory analyzed pH values.

Colour, total suspended solids (TSS), total dissolved solids, and turbidity were considered to be high throughout the sample set and over each sample event. Turbidity and TSS parameters were highest during the June, July, and August months, likely associated with heavy precipitation events. Since the BC WQG for turbidity and TSS rely on daily sample collection over a 30 day period (for long term average guideline) or the use of automated data collection over a 24 hour period (short term maximum guideline) to establish , the individual samples collected for the 2016 Monitoring Program were not compared to guidelines. Data collected from automated sampling equipment located within the Peace River in the upstream vicinity of Moberly and Pine tributary rivers is further discussed in Section 3.3 of this report.

Hardness increased from upstream to downstream as tributary waters contributed to the flow, analyzed between 64.20 to 250.0 mg/L for all samples collected in May, September, and October, which ranges from moderately soft to very hard water (ESRD 2014).

Anions and nutrients analyzed within the lotic sample set were not observed to exceed guidelines, however, results for the tributary source waters were observed to be elevated above the Peace River samples. Total organic carbon (TOC) concentrations were within normal range (1 to 30 mg/L) for natural waterbodies (BC MELP 1998). Dissolved organic carbon (DOC) concentrations were found to exceed the TOC concentration, which was attributed to the use of polyethersulfone based filters and is discussed further within the Discussion and QA/QC sections of this memo.

Total and dissolved metals and metalloid analysis was conducted for May and October events only. Exceedances of guidelines were observed for total iron at HU, HD, MD, BEATTON, KR, PD4, POUCE, and PD5 during the May event, as well as for total copper and zinc at the BEATTON station. Total iron was also exceeded at MD, PINE, BEATTON, KR, PD4, POUCE, and PD5 during the October event, in addition to dissolved iron and aluminum at BEATTON.

No other exceedances of guidelines were observed within the lotic sample set.

3.2 Williston and Dinosaur Reservoirs Water and Sediment Quality Results

Two (2) reference stations were selected to monitor water flowing into the Site C Reach from Dinosaur and Williston reservoirs.

- Reference Station Sample IDs:
 - Williston (W1) Deep and Shallow; and
 - Dinosaur (D1) Deep and Shallow.

Samples were collected at least 25 m from the shoreline, within the middle of the reservoir towards the outlet. Depth profiles were developed by measuring field parameters throughout the water column, however, a distinct hypolimnion could not be identified within the first 9.0 m of the thermocline during the May event. Therefore, measurements were collected at 0.5 m intervals between 0.2 and 5.0 m depths for the remaining sampling events. Water column samples were collected for analysis from the 0.2 and 5.0 m depths between June and October. A sample at 0.2 m was collected for May.

Water quality results are presented in Tables 1 to 6; depth profiles have been provided in Table 8; and sediment quality results are presented in Table 7, all located within the Tables section attached to this report.

Throughout the sampling events, dissolved oxygen, electrical conductivity and specific electrical conductivity remained generally stable within both W1 and D1. Field measured water temperatures generally increased then decreased with the seasonal changes from May to October. Throughout the water column, temperatures generally decreased slightly with depth, however, a distinct hypolimnion could not be identified as there was no stratification observed within the top 9 m at any time, meaning the upper portions of the reservoirs were well mixed throughout the summer. July and August measurements were the most elevated temperatures recorded over the course of events, and exceeded the guidelines for all water column measurements at W1.

The pH values remained within guidelines throughout the water column measurements of both reservoirs over the course of events, with the exception of one measurement collected at surface (0.0 m) at D1 in July. A pH value of 4.48 was is acidic and below the guideline range of values, however, this was in contrast to the overall water column measured (above 8.13 pH). Laboratory analyzed pH is considered secondary to field measured pH by a calibrated instrument due to the exceeded hold times (15 minutes) of all laboratory analyzed pH values.

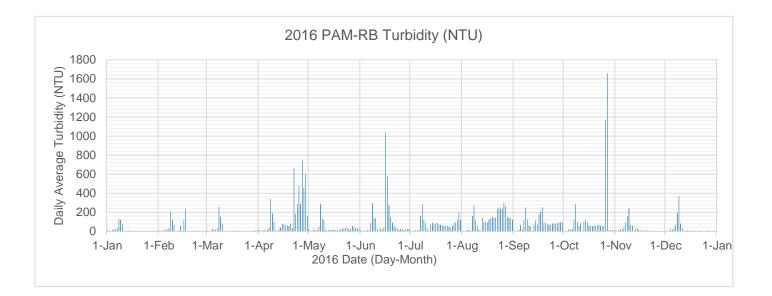
Colour, total suspended solids, total dissolved solids, and turbidity were considered to be moderate to low throughout the sample set and over each sample event. Secchi depth ranged from 1.5 to 5.0 m below surface for D1 and 2.0 to 5.0 m for W1. It is likely that the lower secchi depth results were due to significant precipitation runoff events observed in June to August. Hardness concentrations ranged from 86.6 to 99.5 mg/L for all samples collected in May and October, which is considered moderately hard to hard water (ESRD 2014).

Since the BC WQG for turbidity and TSS rely on daily sample collection over a 30 day period (for long term average guideline) or the use of automated data collection over a 24 hour period (short term maximum guideline) to establish, the individual samples collected for the 2016 Monitoring Program were not compared to guidelines. Data collected from automated sampling equipment located within the Peace River in the upstream vicinity of Moberly and Pine tributary rivers is further discussed in Section 3.3 of this report. SEES JV did not review data collected by automated equipment upstream of these stations.

Anions and nutrients analyzed within the lentic sample set were not observed to exceed available guidelines, and were considered to be consistent with analysis conducted for the Peace River samples, which are located downstream of W1 and D1. TOC concentrations were within normal range (1 to 30 mg/L) for natural waterbodies (BC MELP 1998). DOC concentrations were found to exceed the TOC concentration, which was attributed to the use of polyethersulfone based filters and is discussed further within the Discussion and QA/QC sections of this report.

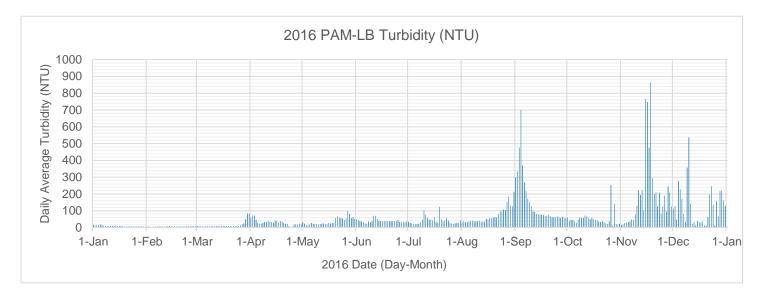
Total and dissolved metals and metalloid analysis for water quality was conducted for May and October events only. No exceedance of guidelines was observed within the lentic sample set for metals or metalloid parameters, or for any other water quality parameters within the lentic sample set.

Sediment quality samples were collected for D1 and W1 within the benthic layers of the littoral zone at 13.5 m and 22.5 m depths, respectively, as a means to collect samples with a high fines to coarse material ratio. Particle size analysis of each sample determined that Dinosaur sediment was classified as silt and Williston as silt loam.


Sediment anions and nutrient levels were considered moderately low and close to detection limits, and pH was within a normal range. Both D1 and W1 samples exceeded the guidelines for arsenic, cadmium, iron, and nickel. No other exceedance of guidelines was observed within the sediment quality analysis.

3.3 Turbidity Monitoring Station Results

In compliance with the FAHMFP, BC Hydro operates automatic instream turbidity measurement probes located in the Site C Reservoir and Downstream Reach sections of the Peace River. In relation to the Monitoring Program, data collected from four (4) separate probe locations is included in this report:


- Peace Above Moberly Right Bank (PAM-RB): located on the right bank of the Peace River, directly upstream
 of the confluence with the Moberly River;
- Peace Above Moberly Left Bank (PAM-LB): located on the left bank of the Peace River, directly upstream of the confluence with the Moberly River;
- Peace Above Pine Right Bank (PAP-RB): located on the right bank of the Peace River, directly upstream of the confluence with the Pine River; and
- Peace Above Pine Left Bank (PAP-LB): located on the left bank of the Peace River, directly upstream of the confluence with the Pine River.

Figures 3 to 6 present the graph representations of data sets collected from each of the aforementioned turbidity monitoring stations, which includes daily averages of turbidity data collected throughout 2016.

The PAM-RB station was positioned within a straight section of the channel on the right bank, the watercourse banks and substrate of which were visually observed in the field to be of low or flattened slope. Flow rates were visually observed to be consistent during average flow periods, and therefore, the probe remained in place and instrument function was considered to be in good condition. Elevated turbidity levels observed during the spring period is likely attributed to increased seasonal precipitation; calibration of equipment took place during late October and therefore, increases exceeding 1000 NTU during that time are not representative of instream turbidity conditions.

Figure 4: 2016 Daily Average Turbidity Measurements for Peace Above Moberly - Left Bank (PAM-LB)

The PAM-LB station is located within a straight section of the Peace River on the left bank, where the probe is positioned on moderately sloping channel substrate and below high, vertical banks. During late march, field maintenance operations performed on the station may have shifted the turbidity probe, causing the noticeable increase in average readings observed following that event (e.g. exposure of probe to instream conditions may have been changed when rotated or moved).

Low battery voltage was observed in mid-November, however, field response was delayed by the replacement equipment delivery, and therefore, erratic data observed following this event is more likely attributed to equipment malfunction than instream turbidity conditions.

A noticeable elevation in turbidity during late August leading through the end of September is characterized by steady increases in turbidity, gradually increasing to almost 700 NTU before decreasing again, which may correlate to an instream event if compared to precipitation and flow level data for the Peace River, which was considered outside the scope of this report.

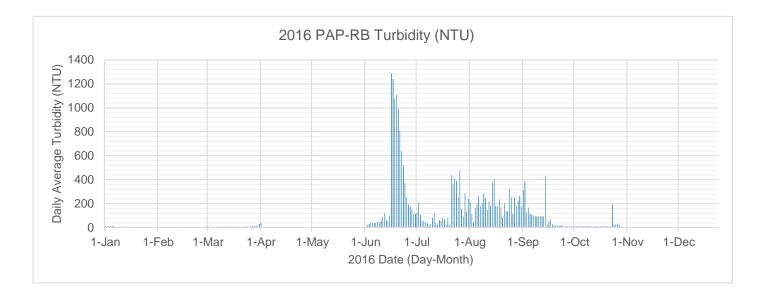
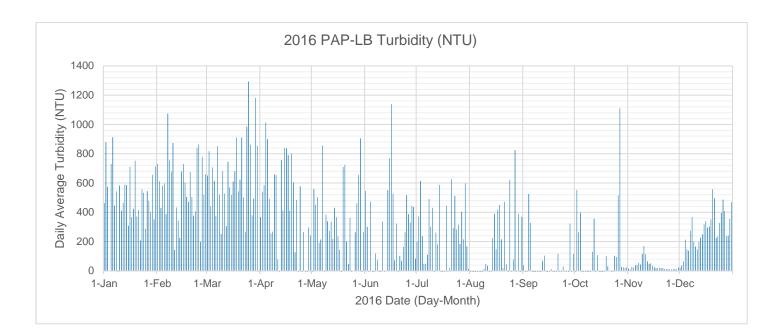



Figure 5: 2016 Daily Average Turbidity Measurements for Peace Above Pine - Right Bank (PAP-RB)

The PAP-RB station was positioned within a straight section of the channel on the right bank, the watercourse banks and substrate of which were visually observed in the field to be of low or flattened slope. Flow rates were visually observed to be consistent during average flow periods, however, deposition of sediment and debris was frequently observed throughout 2016 field visits. In July, 2016, the equipment position and operation was found to be compromised by an uprooted spruce tree, the weight of which strained the cable between the probe and upland mounted controller cabinet. High precipitation rates and regional flood conditions were observed by field staff in June, 2016, and it is estimated that elevated turbidity measurements during this time period are attributed to both regional fluctuations of turbidity related to seasonal conditions as well as debris interference of the sensor operation.

The probe was repositioned and cleared of debris during the July 2016 field event, however, erratic data measurements continued to occur throughout the following months until late September when the station communicated no response from the probe. The station controller was found to require a new power source and unit controller terminal strip. Overall low or erratic measurements observed in 2016 may be attributed to overall poorly functioning equipment.

Figure 6: 2016 Daily Average Turbidity Measurements for Peace Above Pine – Left Bank (PAP-LB)

The PAP-LB station is located on the left bank and directly downstream of the outside of a bend in the Peace River. The probe is positioned on steep sloping channel substrate and below high, vertical banks. Erratic turbidity measurements were recorded throughout the 2016 Monitoring Program, attributed to a high level of turbulent flow conditions visually observed by field staff at the location. Unstable flow and steep sides of the channel substrate where the probe was installed may have contributed to rotation of the probe base, air bubbles trapped over the sensor lens, and inconsistent exposure of the probe to flow.

4.0 **DISCUSSION**

Water quality parameters usually vary widely both temporally and spatially. Monitoring over several years during construction and detailed assessment including statistical analyses is required to definitively establish if trends exist or if a parameter is problematic and/or to effectively determine its source. Sampling has occurred over six events between May and October at each sample location within the Monitoring Programs. Trend analyses will occur following data collection in future years.

Both laboratory and field measured pH has been neutral to slightly acidic. Alkalinity (as CaCO3), which is a measure of water's ability to neutralize acids, has been consistent, with the exception of occurrences of acidic pH values that are reported below the allowable guideline range, where alkalinity has been lower than average. Temperature fluctuations are attributed to seasonal effects of the climate in the region.

Although DOC has been reported as consistently higher than TOC values (as well as being present in field filtered de-ionized water provided by the lab), indicating that the sampling filtration equipment is likely introducing organic carbons to the samples and not an indicator of source water elevations, the TOC values are considered stable and within natural levels for lentic and lotic systems. Further evaluation of the filtration methodology is required to resolve the effect of filter material on DOC concentrations.

Most water and sediment metal parameters analyzed have been consistently below the BC guidelines with the exception of exceedances reported for total iron, copper, silver, and zinc, and for dissolved iron and aluminum in May and October 2016 water quality. Sediment metal parameter exceedances included arsenic, cadmium, iron and nickel. A single exceedance is not an indication of impairment and no conclusive trend towards impairment can yet be established. The source(s) of the exceeded parameter cannot be conclusively determined. Most of the tributary rivers are large rivers with a substantial flow rate draining from communities in nearby areas, which also have vertical banks composed of fine materials. Given the location of exceedances (tributary downstream Peace River samples), it is possible that the exceedances are the result of natural processes (i.e. regional geology and erosion), anthropogenic sources (i.e. nearby communities), or a combination of these and other factors.

Sediment monitoring of all stations including the Site C reach and downstream to Many Islands are planned in 2017 and following monitoring years. These samples will be collected during the fall to collate sediment data with data collected under the Peace River Fish Food Organisms Monitoring Program (Mon-7) and Site C Reservoir Fish Food Organisms Monitoring Program (Mon-7).

Turbidity monitoring will continue at the four stations identified in the 2016 Monitoring Program. Power restoration at PAM-LB and PAP-RB, controller repairs at PAP-RB, and relocation of the PAP-LB probe to a stable flow environment is expected to improve the automatic equipment function of the turbidity monitoring program in 2017.

4.1 Quality Assurance and Quality Control

Quality assurance and quality control (QA/QC) programs for water and sediment quality sampling are implemented to assess and/or quantify field, laboratory and data reduction quality.

Laboratory QA/QC reports are required by environmental laboratories accredited by the Canadian Association of Environmental Analytical Laboratories (CAELA), such as ALS Environmental and can be requested to be attached to the laboratory data or requested from the lab directly. Laboratory QA/QC data reviewed by the assessor is generally limited to percentage recovery of added surrogates. The reported detection limits (RDL) of the analytical methods are presented on the analytical reports and in Table 9.

Field quality control includes procedures and documentation, and occasionally collection of quality assurance samples. Field quality assurance sampling programs are used to measure the precision and accuracy of the field sampling using blank and duplicate samples.

The field sampling and laboratory testing reproducibility of the sample-duplicate pairs is evaluated using the relative percentage difference (RPD) method, involving calculation of RPD as shown in equation 1:

RPD % = [Sample - Duplicate]/(X)*100

(Equation 1)

In which X is the average concentration of the sample and it's duplicate.

The duplicate analysis is compared to the sample by evaluating the RPD, where the target RPD is less than a 30% difference. RPD is calculated for results that are higher than five times the reported detection limit. Results of RPD analysis are presented in Table 9. Approximately 6.9% of all duplicates were found to generate an exceedance of 30% RPD analysis. The exceedances were attributed to the following parameters: DOC, aluminum, manganese, and chlorophyll a. Overall, 6.9% exceedance is considered to be within an acceptable quality control range.

Trip or travel blanks are deionized water sealed in a bottle provided by the laboratory and are introduced for the purpose of travelling with the samples for the duration of the event. Elevations above the reported detection limit may indicate laboratory or transit introduced errors outside of the field methodology. Table 9 indicates elevations above reported detection limits of ammonia in August and electrical conductivity in July. A one-time elevation of ammonia does not indicate major error.

The pH value reported for each field and trip blank were below the normal range of 6.5 to 9.0 and considered acidic. This is likely attributed to the acidity of the deionized water and not sampling and analytical methodologies. For this reason as well as limited hold times of 15 minutes, field measured pH and not laboratory analyzed pH is interpreted for data analysis.

Field blank analysis is used for identifying the introduction of elevated parameter concentrations not attributed to the source water but by field sampling methodologies (or laboratory analysis). Table 9 indicates elevations above reported detection limits of total phosphorus in September and DOC for June, July, August, and September field events. A one-time elevation of total phosphorus does not indicate major error. The relatively consistent elevation of field blank DOC above reported detection limits and TOC concentrations indicates the sample is subject to the addition of carbon through the field filtration process. The Waterra High Capacity filters utilize a polyethersulfone filtration paper, which potentially introduces organic carbon into the samples, as well as the field blank.

In general, the QA/QC program confirmed that the majority of blank and duplicates samples had parameter concentrations within acceptable quality ranges, therefore the overall analytical program is considered to accurately characterize water quality conditions at the sample stations.

5.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Saulteau EBA Environmental Services Joint Venture

Prepared by: Danielle MacDonald, B.Sc., B.Eng. Environmental Scientist - Aquatics & Fisheries Environment & Water Practice Direct Line: 780.451.2130x556 Danielle.MacDonald@tetratech.com

Reviewed by: Nigel Cavanagh, M.Sc., R.P.Bio. Senior Aquatics & Fisheries Biologist Environment & Water Practice Direct Line: 250.756.2256 x240 Nigel.Cavanagh@tetratech.com

/cee

TABLES

May Surface Water Quality Results
June Surface Water Quality Results
July Surface Water Quality Results
August Surface Water Quality Results
September Surface Water Quality Results
October Surface Water Quality Results
Reservoir Sediment Quality Results
Reservoir Water Quality Depth Profile
Water Quality Assurance and Quality Control Results
Water Quality Assurance and Quality Control Results

Parameter	Unit	Reported Detection Limit	BC MOE 2016		servoir Sites	DE 105 C			Future Site C R						DULE COMP	DE 467 17		PEACE AT		PEACE AT		
Parameter	Unit	RDL)		DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVER DOWNSTREAM (HD)	HALFWAY RIVER UPSTREAM (HU)	LOWER SITE C RESERVOIR (PR3)	MOBERLY RIVER UPSTREAM (MU)	MOBERLY RIVER DOWNSTREAM (MD)	PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUPE (POUCE)	MANY ISLAI (PDS)
nple Date			Approved	29-May-2016	29-May-2016	31-May-2016	30-May-2016	30-May-2016	30-May-2016	31-May-2016	31-May-2016	2-Jun-2016	2-Jun-2016	31-May-2016	31-May-2016	1-Jun-2016	1-Jun-2016	1-Jun-2016	1-Jun-2016	1-Jun-2016	1-Jun-2016	1-Jun-20
oratory Identification Number d Measurements				L1775119-1	L1775119-2	L1775541-1	L1775540-1/L1775541-2	L1775540-2/L1775541-4	L1775540-3/ L1775541-3	B L1776275-1	L1776275-2/L1776273-	L1777575-1	L1777575-2	L1776273-2/L1776275-3	L1776273-3	L1777078-7	L1777078-8	L1777078-5	L1777078-6	L1777078-4	L1777078-3	L177707
nple Depth	m		-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
al Depth acific Conductivity (SPC)	m SPCµS/cm	-	-	20.2 182.0	65.1 182.0	17.8 182.5	4.3 177.0	3.5 182.2	3.4 330.0	1.2 248.4	4.7 195.5	- 166.7	- 84.1	2.5 174.4	2.1 186.6	5.4 203.4	1.0 156.3	2.4 203.3	0.8 401.6	4.2 200.7	2.4 367.3	8.3 204.9
ctrical Conductivity (EC)	µS/cm pH Units		- 6.5-9.0	114.9 8.10	110.1 8.17	111.2 8.11	111.3 8.60	150.8 8.22	232.5 8.38	176.2 8.36	123.7 8.20	102.4 8.35	38.5 8.35	113.5 8.23	130.0 8.38	137.1 8.10	123.3 7.93	203.3 8.29	338.8 8.68	138.4 8.25	282.9 8.33	143.5
nperature	°C	-	15	5.7	4.3	4.5	4.7	5.4	9.6	9.1 10.67	6.0 11.86	13.0	14.0	6.6	12.1	7.9	14.0	8.3 11.55	16.8	8.8 11.08	12.4	9.4
solved Oxygen (DO) inity	mg/L parts per trillion		Minimum 5 "1	12.36 0.09	12.23	12.36	12.37	12.45 0.09	11.01 0.16	0.13	0.09	9.70	9.74 0.02	11.42 0.07	10.21	11.40 0.10	9.66	0.10	9.42 0.19	0.10	10.26 0.18	10.8
rbidity ysical Parameters	nephelometric units			1.3	0.8	1.4	1.4	5.2	119.0	67.3	14.4	27.9	38.0	21.3	20.0	17.0	469.0	22.9	102.0	67.1	202.0	58.0
lour	Col. Unit	5.0 500		10.3	8.6	6.4	6.5	6.7	28.3	32.2	8.6	16.9	15.9	9.0	12.2	10.7	129	9.7	23.0	20.5	41.0	18.9
rdness as CaCO ₃	µg/L pH Units	0.10	6.5-9.0	99,500 7.78	99,100 7.80	98,700 7.99	100,000 8.00	101,000 8.04	187,000 8.18	184,000 8.32	108,000 8.15	116,000 8.25	117,000 8.23	111,000 8.18	122,000 8.25	111,000 8.19	64,200 7.62	111,000 8.22	213,000 8.52	108,000 8.16	174,000 8.13	111,0 8.14
tal Suspended Solids (TSS) tal Dissolved Solids (TDS)	µg/L µg/L	3000 13000	-	<3000 105.000	<3000 112.000	<3000	<3000 108.000	14500	226000 226,000	96400 264,000	20200	51100 137.000	82500 139.000	38400 123.000	28700 129,000	26000 132,000	966000 183.000	38500 129.000	121000 286,000	124000 148.000	232000 263,000	10600
ions and Nutrients											1											
otal Alkalinity as CaCO ₃ mmonia, Total (as N)	μg/L μg/L	1000 5.0	- See narrative #2	77,300 <5.0	78,800	82,400 <5.0	81,800 <5.0	84,100 <5.0	147,000	145,000 7.6	88,300 <5.0	109,000 8.1	9.4	92,700 6.0	107,000 <5.0	95,800 5.4	46,500 54.4	94,300 <5.0	209,000 14.9	91,100 12.3	108,000 60.9	92,30
omide (Br) Ioride (CI)	µg/L µg/L	50 500	- 600.000	-	-	<50 <500	<50 <500	<50 <500	<50	-	<50	-		<50 <500	<50 540	-		-		-	-	-
ioride (F)	µg/L	20	See equation #3			40	40	41	93	-	45	-		48	59					-		-
rate and Nitrite (as N) rate (as N)	μg/L μg/L	5.1 5.0	- 32,800	75.8 75.8	72.8 72.8	75.6 75.6	75.3 75.3	71.7 71.7	24.1 24.1	16.1 16.1	66.8 66.8	19 19.0	16 16.0	64.6 64.6	21.5 21.5	56.5 56.5	16.8 14.6	55 55.0	21.2 19.3	55 55.0	161 152	53.9 53.9
trite (as N) tal Kjeldahl Nitrogen	µg/L	1.0 50	60-600 #4	<1.0 115	<1.0	<1.0 90	<1.0 78	<1.0 170	<1.0 745	<1.0 464	<1.0 162	<1.0 282	<1.0 340	<1.0 198	<1.0 165	<1.0 128	2.2 2020	<1.0 120	1.9 568	<1.0 340	9.5 1050	<1.0
tal Nitrogen	μg/L μg/L	30		140	136	137	156	141	387	335	160	275	290	190	134	138	1110	145	495	248	910	226
thophosphate (as P) osphorus (P)-Total Dissolved	μg/L μg/L	1.0 2.0	-	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	4.4	2.8	<1.0 <2.0	<1.0 <2.0	<1.0	<1.0 <2.0	<1.0	<1.0 <2.0	5.6 20.2	<1.0 <2.0	<1.0	1.6 3.1	7.2	1.1
iosphorus (P)-Total licate (as SiO2)	µg/L	2.0	-	4.1	3.4	2.6 4570	3.3 4440	15.5 4380	251 3570	141	27.4 4420	47.9	98.8	55.2 4510	23.5 2240	32.4	885	35.4	139	133	268	95.9
Ifate (SO4)	μg/L μg/L	300		-	-	4570	4440 13,100	4380	3570		4420			4510 16,900	12,300	-	-	-				<u> </u>
rganic and Inorganic Carbon issolved Organic Carbon (DOC)	µg/L	500		2630	2420	2910	3450	3480	7320	7790	4630	6570	8020	8770	4650	4300	23500	3400	10200	6520	16900	6490
otal Organic Carbon (TOC)	µg/L	500		3630	3400	2460	2690	2790	7820	9440	3530	6660	6610	3890	3660	3300	24800	3580	12000	6550	17500	5820
uminum	µg/L	5.0	-	26.5	27.0	31.2	42.5	133	3580	2610	552	845	1000	721	753	665	14100	624	3610	2210	8520	1780
ntimony rsenic	μg/L μg/L	0.50	-	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 2.33	<0.50 1.47	<0.50 <0.50	<0.50 0.66	<0.50 0.84	<0.50 0.57	<0.50 <0.50	<0.50 0.52	<0.50 10.5	<0.50 <0.50	<0.50 2.04	<0.50	<0.50 4.66	< 0.5
arium eryllium	µg/L	20		33 <1.0	32 <1.0	32 <1.0	33 <1.0	36 <1.0	187 <1.0	146	51 <1.0	162 <1.0	175 <1.0	60 <1.0	88 <1.0	60 <1.0	465 <1.0	61 <1.0	215 <1.0	109 <1.0	185 <1.0	98 <1.0
ismuth	μg/L μg/L	0.050		<200	<200	< 0.050	<0.050	<0.050	0.102	< 0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<200	<200	<200	<200	<200	<200	<200
admium	μg/L μg/L	100 0.0050	-	<100 0.0180	<100 0.0146	<100 0.0194	<100 0.0171	<100 0.0384	<100 0.264	<100 0.197	<100 0.0431	<100 0.0540	<100 0.0670	<100 0.0634	<100 0.0387	<100 0.0560	<100	<100 0.0465	<100	<100	<100	<10
alcium	µg/L	100 1.0	-	29500 <1.0	30000 <1.0	28900 <1.0	28800 <1.0	28400 <1.0	54900 6.5	53600 4.4	32600 1.0	31700 1.7	33200 1.9	33000 1.3	35300 1.2	32400 1.5	21800 24.1	32500 1.2	61400 5.8	31400 3.9	48600 10.9	3270 3.1
obalt	μg/L μg/L	0.30	110	<0.30	<0.30	< 0.30	<0.30	<0.30	2.14	1.31	<0.30	0.53	0.74	0.39	0.40	0.35	11.3	0.34	1.71	1.35	3.69	1.07
n n	μg/L μg/L	1.0	See equation ^{#5} 1000	<1.0 40	<1.0	<1.0	<1.0	1.0	6.8 5140	4.0 3160	1.4	2.3	2.9	1.8	1.3 935	1.6	29.3 24600	1.5 824	6.0 4320	4.2 3290	11.2 9150	3.5
ad	µg/L	0.50	See equation #5	<0.50	<0.50	<0.50	<0.50	<0.50	2.67	1.68	<0.50	0.68	0.92	<0.50	<0.50	<0.50	13.3	<0.50	2.26	1.72	4.92	1.34
hium gnesium	μg/L μg/L	1.0	-	<1.0 6060	<1.0 6180	1.2 6020	1.3 6070	1.4 6210	9.4 14700	7.6	2.0 7070	4.1 8570	4.5 9010	2.2 7400	4.3 8130	2.4 7210	24.2 8880	2.5 7210	7.0 15800	4.5 7460	14.6 14600	4.1
anganese arcury	µg/L	0.10	See equation #7	2.28	1.89 <0.0050	2.41 <0.0050	2.59 <0.0050	6.49 <0.0050	73.1 <0.025	49.7 <0.0050	10.8	22.2 <0.0050	30.8 0.0054	15.1 <0.0050	14.6 <0.0050	13.5 <0.0050	370 0.067	13.0 <0.0050	63.9 <0.025	45.2 <0.025	124 <0.025	37.2
olybdenum	µg/L µg/L	1.0	2000	<1.0	<1.0	<1.0	<1.0	<1.0	2.9	2.9	1.0	<1.0	<1.0	1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	1.2	<1.0
ickel hosphorus	μg/L μg/L	1.0 300	-	<1.0 <300	<1.0 <300	<1.0 <300	<1.0 <300	1.1 <300	8.6 <300	6.4 <300	1.5 <300	2.9 <300	3.4 <300	2.1 <300	1.7 <300	1.9 <300	36.6 720	1.8 <300	7.2 <300	5.2 <300	14.4 <300	4.1
otassium elenium	µg/L	2000 0.050		<2000 0.249	<2000 0.230	<2000 0.248	<2000 0.231	<2000 0.246	2200 1.44	<2000	<2000 0.350	<2000 0.246	<2000 0.247	<2000 0.380	<2000 0.435	<2000 0.404	5200 1.05	<2000 0.367	3100 0.370	<2000 0.468	6100 0.561	<2000
ilicon	µg/L µg/L	50	-	2180	2230	2210	2220	2390	9810	7430	3090	2780	3130	3480	2370	3260	26700	3080	10600	6360	19900	5670
ilver odium	μg/L μg/L	0.020 2000	0.1 or 3.0 **	<0.020 <2000	<0.020 <2000	<0.020 <2000	<0.020 <2000	<0.020 <2000	0.072 2900	0.043 3000	<0.020 <2000	<0.020 2000	0.020 2200	<0.020 <2000	<0.020 2000	<0.020 <2000	0.265 8800	<0.020 <2000	0.047 11600	0.035 2400	0.075	0.029
trontium	µg/L	5.0 0.20	-	108	111 <0.20	110 <0.20	111 <0.20	109 <0.20	236 <0.20	229 <0.20	122	73.6	77.7	126	112 <0.20	118 <0.20	110	114 <0.20	242 <0.20	116 <0.20	188	118
'hallium 'in	μg/L μg/L	0.50		<0.20 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20 <0.50	<0.20
itanium Iranium	μg/L μg/L	10 0.20	-	<10 0.46	<10 0.48	<10 0.46	<10 0.47	<10 0.47	97 0.89	72	14 0.51	26 0.24	29 0.27	19 0.50	18 0.26	20 0.50	214 1.57	17 0.46	0.84	52 0.59	245 1.15	48 0.55
anadium	µg/L	0.50		<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	0.52	1.03	15.6	11.7	2.40	3.20	3.84 8.5	3.11 6.0	2.65	3.07 5.7	48.4 113	2.54	13.1 18.6	8.70 15.8	23.8 37.4	6.67 12.2
ssolved Metals	µg/L		See equation **						29.3		5.2	6.2										
luminum ntimony	μg/L μg/L	5.0 0.50	100 #10	<5.0 <0.50	<5.0	<5.0 <0.50	<5.0 <0.50	<5.0	13.7	17.9 <0.50	<5.0	5.1 <0.50	7.8 <0.50	11.2	9.2 <0.50	8.1 <0.50	73.1 <0.50	6.0 <0.50	6.5 <0.50	8.8 <0.50	44.1 <0.50	8.0 <0.50
rsenic	µg/L	0.50		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.65	<0.50	<0.50	<0.50	0.51	<0.50
arium eryllium	μg/L μg/L	20	-	32 <1.0	31 <1.0	31 <1.0	31 <1.0	32 <1.0	66 <1.0	71 <1.0	36	135 <1.0	135 <1.0	39 <1.0	71 <1.0	46 <1.0	41 <1.0	45 <1.0	137 <1.0	43 <1.0	38 <1.0	45 <1.0
smuth pron	μg/L μg/L	0.050	-	<200 <100	<200 <100	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050 <100	<0.050	<0.050	<0.050	<200	<200 <100	<200 <100	<200 <100	<200	<200 <100	<200
admium	µg/L	0.0050	See equation #11	0.0104	0.0088	0.0078	0.0115	0.0088	0.0182	0.0225	0.0082	0.0091	0.0078	0.0078	0.0107	0.0107	0.0396	0.0132	0.0080	0.0262	0.0175	0.024
alcium nromium	μg/L μg/L	100	-	29800 <1.0	29800 <1.0	29800 <1.0	30100 <1.0	30300 <1.0	52400 <1.0	51800 <1.0	32000	32300 <1.0	32900 <1.0	32900 <1.0	36000 <1.0	32900 <1.0	17700 <1.0	32700 <1.0	60600 <1.0	31900 <1.0	48100 <1.0	3280
obalt opper	µg/L	0.30		<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30	<0.30	<0.30	<0.30	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 3.9	<0.30 <1.0	<0.30	<0.30 <1.0	<0.30	<0.3
n	µg/L µg/L	30	350	<30	<30	<30	<30	<30	32	46	<30	<30	<30	<30	<30	<30	565	<30	<30	49	65	32
ad hium	μg/L μg/L	0.50	-	<0.50 <1.0	<0.50 <1.0	<0.50	<0.50	<0.50 1.3	<0.50 5.7	<0.50	<0.50	<0.50 3.5	<0.50 3.6	<0.50	<0.50 3.8	<0.50 2.3	<0.50 4.6	<0.50	<0.50 3.7	<0.50	<0.50 6.8	<0.50
gnesium nganese	µg/L	100 0.10	-	6070 0.84	5990 0.65	5920 0.84	6050 0.91	6040 0.76	13700 4.92	13400 7.34	6780 1.06	8510 1.99	8560 2.13	7090	7910 1.44	7060 1.48	4850 16.8	7070 1.29	14900 1.39	6940 3.04	13000 5.12	7090 2.39
rcury	μg/L μg/L	0.0050		0.0062	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0073	<0.0050	<0.0050	<0.0050	0.0054	<0.00
lybdenum skel	μg/L μg/L	1.0		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.5	2.5	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 4.2	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
losphorus	µg/L	300	-	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300
tassium Ilenium	μg/L μg/L	2000 0.050	-	<2000 0.258	<2000 0.253	<2000 0.239	<2000 0.268	<2000 0.268	<2000 1.26	<2000 1.14	<2000 0.316	<2000 0.206	<2000 0.176	<2000 0.356	<2000 0.445	<2000 0.350	<2000 0.344	<2000 0.349	<2000 0.243	<2000 0.336	3400 0.383	<200
licon Iver	μg/L μg/L	50 0.020		2140 <0.020	2160 <0.020	2160 <0.020	2150 <0.020	2170 <0.020	1760 <0.020	1740 <0.020	2110 <0.020	1140 <0.020	1100 <0.020	2110 <0.020	1080 <0.020	1780 <0.020	2490 <0.020	1880 <0.020	1650 <0.020	1950 <0.020	1750 <0.020	1880
idium	µg/L	2000	-	<2000	<2000	<2000	<2000	<2000	2900	3000	<2000	2000	2100	<2000	<2000	<2000	8200	<2000	11300	2300	14500	2400
ontium allium	μg/L μg/L	5.0 0.20		107 <0.20	107 <0.20	108 <0.20	108 <0.20	108 <0.20	227 <0.20	220 <0.20	118 <0.20	72.4 <0.20	73.8 <0.20	123 <0.20	109 <0.20	112 <0.20	65.6 <0.20	113 <0.20	234 <0.20	111 <0.20	165 <0.20	112 <0.2
anium	µg/L	0.50		<0.50 <10	<0.50	<0.50	<0.50	<0.50	<0.50 <10	<0.50	<0.50	<0.50 <10	<0.50	<0.50 <10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <10	<0.50	<0.5
inium	µg/L µg/L	0.20	-	0.41	0.41	0.43	0.40	0.41	0.59	0.56	0.41	<0.20	<0.20	0.41	<0.20	0.40	0.29	0.40	0.62	0.42	0.70	0.42
nadium c	μg/L μg/L	0.50		<0.50 <5.0	<0.50 6.5	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	0.58 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.5
ant Pigments nlorophyll a (reservoirs only)	µg/L	0.010		0.308	0.533	-						1								1 1		
NOTES: BC MDE 2016 #1 #2 #3 #6 #6 #6 #7 #8 #9 #10 #11 H	BC MOE. 2016. Britis Dissolved Oxygen gu Guideline/standard fr Standard for fluoride Guideline/standard fr Water quality guideli Standard for lead is Guideline for manga Criteria for silver vari Guideline for mangard Standard for adminu Standard for adminu Hardness	ideline protects all II or ammonia varies v varies with hardnes or nitrite varies with ne for copper is calc 3 ug/L at H<8 mg/L, nese calculated as (culated as (33+0.75 m varies with pH. S n is calculated as e	life stages other than with pH and tempera ss. Calculated based chloride concentrati culated as 0.094(H)+ or calculated as e(1 (0.01102*H)+0.54 L1 µg/L at H<100 mg *(H-90) Xandard is 0.05 m/l	n buried embryo/ale ture. ion equation: -51.7 ons. -2 -2 -2 73*In(H)-1.460) v g/L or 3.0 μg/L at H: L if pH is greater the	vin 3 + 92.57*log(Hardn vhen H>8 mg/L >100 mg/L	855)	tion and Sustainability Bra 92.426(pH)+0.2889) where K≕(p	nch. British Columbia Mini H) ²	stry of Environment. Fresh	water Aquatic Life - :	Short-term Maximum criter	ria applied.										

Concentration is less than the laboratory detection limit indicated.
 Bold
 Bold and shaded indicates an exceedance of one of the applicable standards/guidelines.

Table 2: June Surface Water Quality Results

					Existing Re	servoir Sites					Future Site	C Reservoir							Downst	ream of Site C Re	servoir			
Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2016	DINOSAUR (D1 - Deep)	DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	WILLISTON (W1 - Deep)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVER DOWNSTREAM (HD)	R HALFWAY RIVER UPSTREAM (HU)		MOBERLY RIVER UPSTREAM (MU)		PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	PEACE AT KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUPE (POUCE)	MANY ISLAND (PDS)
Sample Date			Approved	21-Jun-2016	21-Jun-2016	21-Jun-2016	22-Jun-2016	21-Jun-2016	21-Jun-2016	22-Jun-2016	22-Jun-2016	22-Jun-2016	22-Jun-2016	<u> </u>	24-Jun-2016	22-Jun-2016	22-Jun-2016	20-Jun-2016	20-Jun-2016	20-Jun-2016	20-Jun-2016	20-Jun-2016	20-Jun-2016	20-Jun-2016
Laboratory Identification Number				L1786823-6	L1786823-5	L1786823-4	L1788272-1	L1786825-1	L1786825-2	L1788272-7	L1788272-6	L1788272-5	L1788272-3	Not Sampled	L1789102-1	L1788272-2	L1788272-4	L1786063-1	L1786063-2	L1786063-3	L1786063-4	L1786063-5	L1786063-6	L1786063-7
Field Measurements				L1700023-0	L1700023-3	L1700023*4	L1700272-1	L1700023-1	L1700023-2	L1700272-7	L1700272-0	L1700272-3	L1700272-3	Not Sampled	L1709102-1	L1700272-2	L1700272*4	L1780003-1	L1700003-2	L1780003-3	L1780003*4	L1700003-3	L1780003-0	L1780003-7
Sample Depth	m		-	4.5	0.2	0.2	6.5	0.2	0.2	0.2	0.2	0.2	0.2	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total Depth	m	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Specific Conductivity (EC)	SPCuS/cm		-	181.9	182.5	181.2	181.2	181.5	181.0	183.9	361.4	358.7	200.7	-	212.5	211.7	226.7	218.8	126.5	211.2	223.6	193.6	260.4	206.2
Electrical Conductivity (EC)	µS/cm			126.8	128.3	131.3	128.6	156	125.5	130.3	299.0	286.0	148.0	-	187.2	158.6	176.6	156.3	97.9	156.5	174.0	146.1	210.1	157.2
pH	pH Units	-	6.5-9.0	7.83	6.17	8.04	8.05	8.03	8.09	8.13	8.36	8.36	8.17	-	8.14	8.16	8.09	6.68	5.71	6.22	6.76	6.65	6.53	6.20
Temperature	°C	-	15	9.2	9.4	10.6	9.8	8.9	8.9	9.7	15.9	14.4	11.3	-	18.7	11.9	14.9	11.5	13.2	11.5	13.4	12.1	15.0	12.6
Dissolved Oxygen (DO)	ma/L	-	Minimum 5 #1	11.47	11.29	11.22	11.39	11.15	11.27	10.75	9.59	9.81	10.82	-	8.89	10.66	9.82	10.45	9.94	10.28	10.17	10.16	9.61	10.16
Salinity	parts per trillion	-	-	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.17	0.17	0.10	-	0.10	0.10	0.11	0.10	0.06	0.10	0.11	0.09	0.13	0.01
Turbidity	nephelometric units	-	-	1.8	0.7	2.7	2.9	4.6	4.2	9.3	60.2	29.4	15.2	-	450.7	33.8	220.0	311.3	1089.4	377.6	2180.4	478.8	2046.0	857.0
Physical Parameters				-					1			-	-										J	1
Colour	Col. Unit	5.0	-	<5.0	46.9	8.2	7.7	<5.0	<5.0	12.0	22.8	23.5	13.2	-	28.7	13.8	29.4	30.3	177	30.3	288	166	129	54.3
pН	pH Units	0.10	6.5-9.0	8.07	8.08	8.08	7.84	8.07	8.08	8.10	8.33	8.32	8.11	-	8.00	8.02	8.11	8.04	7.37	8.03	8.00	8.01	7.89	7.98
Total Suspended Solids (TSS)	µg/L	3000	-	4600	7400	<3000	<3000	4700	5500	19,900	78,900	32,900	28,700	-	914,000	57,700	418,000	697,000	2,420,000	740,000	3,970,000	1,280,000	5,640,000	1,310,000
Total Dissolved Solids (TDS)	µg/L	13000	-	125,000	113,000	118,000	121,000	121,000	118,000	126,000	238,000	238,000	143,000	-	172,000	157,000	187,000	182,000	202,000	175,000	294,000	220,000	283,000	236,000
Anions and Nutrients					*			•										*						
Total Alkalinity as CaCO ₃	μg/L	1000	-	81,700	81,100	79,900	92,500	79,900	80,500	81,300	156,000	154,000	87,800	-	104,000	90,700	110,000	95,500	30,200	96,800	127,000	93,000	82,500	88,100
Ammonia, Total (as N)	μg/L	5.0	See narrative #2	<5.0	5.9	<5.0	<5.0	<5.0	<5.0	<5.0	5.6	<5.0	<5.0	-	21.3	9.0	7.8	15.2	47.2	15.4	123	24.5	276	48.0
Nitrate and Nitrite (as N)	μg/L	5.1	-	67.6	68	61.2	61.4	67.7	68	66.3	<5.1	<5.1	60	-	40.7	58.5	79.1	71	27.8	71.9	23	65.1	58.1	64.6
Nitrate (as N)	μg/L	5.0	32,800	67.6	68.0	61.2	61.4	67.7	68.0	66.3	<5.0	<5.0	60.0	-	40.7	58.5	79.1	71.0	27.8	71.9	21.8	65.1	54.3	64.6
Nitrite (as N)	μg/L	1.0	60-600 #4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	3.9	<1.0
Total Kjeldahl Nitrogen	μg/L	50	-	84	110	79	85	122	161	78	334	231	157	-	1720	211	757	878	3570	1110	5640	1500	12000	2260
Total Nitrogen	µg/L	30	-	216	193	133	172	169	166	165	239	251	185	-	860	193	505	420	1400	550	2200	750	3800	960
Orthophosphate (as P)	µg/L	1.0	-	<1.0	1.0	<1.0	<1.0	<1.0	2.5	<1.0	3.4	2.3	1.2	-	4.4	1.5	4.0	4.3	4.3	4.4	4.4	3.7	7.0	4.9
Phosphorus (P)-Total Dissolved	μg/L	2.0	-	2.0	2.6	4.0	<2.0	<2.0	<2.0	<2.0	4.2	3.2	2.1	-	8.7	2.7	6.6	9.2	42.7	7.9	16.5	11.3	44.4	16.7
Phosphorus (P)-Total	µg/L	2.0	-	8.1	17.7	3.8	5.9	14.1	13.5	18.4	91.6	58.4	35.5	-	950	47.5	318	437	1360	645	2640	79.0	3480	982
Organic and Inorganic Carbon			-																					
Dissolved Organic Carbon (DOC)	µg/L	500	-	10300	4830	8350	4540	5480	5020	8160	11400	6230	10200	-	8870	9860	7110	8850	28700	8810	26200	17800	28200	15700
Total Organic Carbon (TOC)	µg/L	500	-	2990	3160	2370	2700	3080	3500	3650	6560	5640	3880	-	23100	4980	6100	14200	51700	17700	70400	28100	76900	30900
Plant Pigments					•			•		÷	·	÷		•	· ·				•		•	•	·	
Chlorophyll a (reservoirs only)	µg/L	0.010	-	0.619	0.645	0.474	1.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NOTES:																								

BC MOE 2016 BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - Short-term Maximum criteria applied.

#1

#2 #3 #4 H

Dissolved Oxygen guideline protects all life stages ofter than buried embryo/alevin Guideline/standard for ammonia varies with pH and temperature. Standard for fluoride varies with hardness. Calculated based on equation: -51.73 + 92.571log(Hardness) Guideline/standard for nitrite varies with chloride concentrations. Hardness

For criteria comparison, the background monitoring stations was considered to be the most upstream located station observed within the sample set at the time of sampling. PR1 is located at the most upstream point within the system. Results are presented from upstream to downstream locations, left to right within the table. Background No applicable standard/guideline or analysis was not conducted. Concentration is less than the laboratory detection limit indicated. Bold and shaded indicates an exceedance of one of the applicable standards/guidelines.

Bold

Table 3: July Surface Water Quality Results

					Existing Re	servoir Sites					Future Site C	Reservoir							Downst	ream of Site C Re	eservoir			
Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2016	DINOSAUR (D1 - Deep)	DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	WILLISTON (W1 - Deep)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVEF DOWNSTREAM (HD)	HALFWAY RIVER UPSTREAM (HU)	LOWER SITE C RESERVOIR (PR3)	MOBERLY RIVER UPSTREAM (MU)		PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	PEACE AT KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUPE (POUCE)	MANY ISLANI (PDS)
ample Date		1	rippiorou	26-Jul-2016	26-Jul-2016	26-Jul-2016	26-Jul-2016	26-Jul-2016	26-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016	25-Jul-2016	-	25-Jul-2016	25-Jul-2016	25-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016	27-Jul-2016
aboratory Identification Number				L1804199-4	L1804199-3	L1804199-1	L1804199-2	L1804199-7	L1804199-8	L1804941-3	L1804941-2	L1804941-1	L1803379-3	Not Sampled	L1803379-4	L1803379-2	L1803379-1	L1805724-1	L1805724-2	L1805724-3	L1805724-4	L1805724-5	L1805724-6	L1805724-7
Field Measurements																								
Sample Depth	m	-	-	3.0	0.2	0.2	4.0	0.2	0.2	0.2	0.2	0.2	0.2	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total Depth	m	-	-	20.2	20.2	150.0	150.0	-	-	-	1.5	-	-		-	-	-	-	-	-	-	-	-	4.0
Specific Conductivity (EC)	SPCµS/cm	-	-	168.9	169.4	165.0	165.0	162.4	167.3	153.4	389.4	389.6	179.2	-	241.8	171.0	102.1	193.4	140.1	199.0	355.4	191.6	670.0	194.7
Electrical Conductivity (EC)	µS/cm	-	-	130.4	134.8	141.5	141.0	124.3	127.0	150.3	329.4	323.1	136.4	-	223.0	147.2	-	155.7	130.9	163.5	341.5	158.8	659.0	162.1
Н	pH Units	-	6.5-9.0	8.15	8.20	8.31	8.25	8.14	8.18	8.07	8.43	8.40	8.22	-	8.36	8.16	8.42	8.33	8.15	8.32	8.51	8.32	8.49	8.32
Femperature	°C	-	15	12.9	14.3	17.5	17.4	12.7	12.7	12.6	17.0	16.2	12.6	-	20.9	12.3	18.0	14.9	21.5	15.7	22.9	16.0	23.5	16.3
Dissolved Oxygen (DO)	mg/L	-	Minimum 5 #1	10.24	10.15	9.10	9.09	10.16	10.37	9.92	9.26	9.33	10.26	-	8.51	10.31	9.37	9.92	8.48	9.69	8.36	9.67	8.15	9.51
Salinity	parts per trillion	-	-	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.19	0.19	0.08	-	0.11	0.08	0.13	0.09	0.07	0.09	0.17	0.09	0.33	0.09
Furbidity	nephelometric unit	s -	-	4.4	4.3	5.8	7.7	5.9	5.9	5.0	35.1	20.4	7.6	-	41.4	80.6	14.0	8.5	90.8	8.5	198.5	14.4	53.6	17.7
Physical Parameters																								
Colour	Col. Unit	5.0	-	7.1	6.9	7.0	7.2	11.2	6.8	6.8	23.6	23.2	19.4	-	22.3	12.5	11.0	10.3	275	11.6	62.9	25.5	85.0	23.3
рН	pH Units	0.10	6.5-9.0	8.01	8.05	8.07	8.09	8.05	8.09	8.00	8.35	8.33	8.11	-	8.27	8.12	8.32	7.98	7.35	7.89	8.31	7.86	8.34	7.91
Total Suspended Solids (TSS)	µg/L	3000	-	<3000	<3000	<3000	<3000	3300	<3000	5300	32,200	15,600	9000	-	122,000	14,900	16,900	10,600	96,400	10,600	146,000	18,600	23,200	18,900
Total Dissolved Solids (TDS)	µg/L	20000	-	105,000	108,000	102,000	107,000	108,000	105,000	108,000	268,000	263,000	114,000	-	152,000	122,000	162,000	132,000	184,000	125,000	303,000	127,000	517,000	132,000
Anions and Nutrients																								
Total Alkalinity as CaCO ₃	µg/L	1000	-	76,500	75,800	73,600	76,200	76,600	77,100	78,100	173,000	173,000	84,400	-	121,000	88,400	130,000	95,400	44,400	92,300	190,000	88,900	189,000	91,600
Ammonia, Total (as N)	µg/L	5.0	See narrative #2	5.0	5.3	<5.0	5.4	<5.0	5.5	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	9.7	<5.0	18.1	<5.0	17.5	<5.0
Nitrate and Nitrite (as N)	µg/L	5.1	-	54.3	55.9	46.2	42.2	55.8	56.4	56.4	<5.1	<5.1	51.9	-	<5.1	50.7	17.9	36.1	<5.1	37.1	72.1	35.6	<25	36.5
vitrate (as N)	µg/L	5.0	32,800	54.3	55.9	44.8	42.2	55.8	55.4	56.4	<5.0	<5.0	51.9	-	<5.0	49.7	17.9	36.1	<5.0	37.1	72.1	35.6	<25	36.5
Nitrite (as N)	µg/L	1.0	60-600 #4	<1.0	<1.0	1.4	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.2	<1.0
Fotal Kjeldahl Nitrogen	µg/L	50	-	107	119	107	146	124	117	97	267	219	121	-	317	145	144	161	1110	139	1080	228	1440	219
Fotal Nitrogen	µg/L	30	-	132	143	129	175	138	139	137	211	221	140	-	262	157	103	121	878	136	670	179	1140	167
Orthophosphate (as P)	µg/L	1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	1.1	<1.0	-	1.9	1.3	<1.0	<1.0	7.1	<1.0	5.5	<1.0	1.3	<1.0
Phosphorus (P)-Total Dissolved	µg/L	2.0	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3.7	2.7	<2.0	-	4.7	<2.0	<2.0	<2.0	24.9	<2.0	10.6	2.3	13.6	2.2
Phosphorus (P)-Total	µg/L	2.0	-	3.4	4.3	5.8	8.7	4.4	4.2	5.6	61.3	30.2	9.9	-	50.9	18.9	16.2	11.0	91.0	9.9	179	20.7	47.5	17.6
Drganic and Inorganic Carbon														•										
Dissolved Organic Carbon (DOC)	µg/L	500	-	4910	4460	5350	5220	5220	4950	10300	11600	13800	5350	-	13200	5290	4740	9990	39600	7550	21200	12300	34500	10500
Total Organic Carbon (TOC)	µg/L	500	-	2860	3100	3120	3250	2910	3020	3080	6860	6100	3280	-	7800	3770	3050	3240	39100	3280	21100	5180	28000	5310
Plant Pigments																								
Chlorophyll a (reservoirs only)	µg/L	0.010	-	0.359	0.873	0.372	1.16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NOTES:

BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - Short-term Maximum criteria applied. Dissolved Oxygen guideline protects all life stages other than buried embryo/alevin Guideline/standard for rimonia varies with pH and temperature. Standard for fluoride varies with pH and temperature. Guideline/standard for infrite varies with chloride concentrations. Hardness No applicable standard/guideline or analysis was not conducted. Concentration is less than the laboratory detection limit indicated. Bold and shaded indicates an exceedance of one of the applicable standards/guidelines. BC MOE 2016

#1

#2 #3

#4 н

Bold

Table 4: August Surface Water Quality Results

					Existing Res	servoir Sites					Future Site	C Reservoir							Downs	tream of Site C Re	eservoir			
Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2016	DINOSAUR (D1 - Deep)	DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	WILLISTON (W1 - Deep)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVER DOWNSTREAM (HD)	HALFWAY RIVER UPSTREAM (HU)	LOWER SITE C RESERVOIR (PR3)	MOBERLY RIVER UPSTREAM (MU		PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	PEACE AT KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUPE (POUCE)	MANY ISLANDS (PDS)
Sample Date				24-Aug-2016	24-Aug-2016	24-Aug-2016	24-Aug-2016	24-Aug-2016	24-Aug-2016	24-Aug-2016	24-Aug-2016	-	23-Aug-2016	-	23-Aug-2016	23-Aug-2016	23-Aug-2016	25-Aug-2016	25-Aug-2016	25-Aug-2016	25-Aug-2016	25-Aug-2016	25-Aug-2016	25-Aug-2016
Laboratory Identification Number				L1820026-3	L1820026-4	L1820026-2	L1820026-1	L1820026-5	L1820026-6	L1820026-7	L1820026-8	Not Sampled	L1818712-1	Not Sampled	L1818712-2	L1818712-3	L1818712-4	L1819424-1	L1819424-2	L1819424-3	L1819424-4	L1819424-5	L1819424-6	L1819424-7
Field Measurements																								
Sample Depth	m	-	-	4.0	0.2	0.2	4.0	0.2	0.2	0.2	0.2	-	0.2	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total Depth	m	-	-	-	-	-	-																	
Specific Conductivity (EC)	SPCµS/cm	-	-	174.4	174.3	167.7	167.5	174.4	174.4	175.0	427.7	-	182.0	-	257.6	185.3	325.5	189.5	199.2	187.1	401.5	198.0	732.3	202.9
Electrical Conductivity (EC)	µS/cm	-	-	126.1	126.9	147.4	146.2	126.6	126.9	129.7	371.9	-	134.8	-	229.8	138.4	386.0	142.5	170.8	149.9	343.1	151.8	623.0	158.7
pH	pH Units	-	6.5-9.0	8.05	8.29	8.29	8.28	8.10	8.17	8.17	8.47	-	8.15	-	8.38	8.21	8.47	8.35	8.04	8.29	8.64	8.36	8.51	8.41
Temperature	°C	-	15	10.5	10.8	19.0	18.4	10.6	10.8	11.5	18.2	-	11.4	-	19.3	11.7	18.7	12.0	17.6	12.5	17.4	12.9	17.1	13.7
Dissolved Oxygen (DO)	mg/L	-	Minimum 5 #1	10.45	10.75	8.68	8.69	10.61	10.63	10.91	9.68	-	10.74	-	9.00	10.72	9.24	10.53	8.94	10.43	9.56	10.34	9.65	10.36
Salinity	parts per trillion	-	-	0.08	0.07	0.08	0.08	0.08	0.08	0.08	0.21	-	ns	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Turbidity	nephelometric units	-	-	2.6	2.4	2.8	2.9	2.5	2.6	3.4	8.8	-	4.1	-	9.2	4.6	14.3	8.8	25.8	9.2	59.3	11.0	47.8	10.3
Physical Parameters																								
Colour	Col. Unit	5.0	-	<5.0	6.8	6.8	5.9	6.3	7.3	5.3	5.4	-	5.2	-	13.3	6.7	<5.0	6.5	318	9.1	45.5	10.8	62.2	11.4
pH	pH Units	0.10	6.5-9.0	8.10	8.11	8.12	8.11	8.12	8.11	8.12	8.46	-	8.10	-	8.30	8.13	8.37	8.15	7.88	8.15	8.54	8.10	8.44	8.16
Total Suspended Solids (TSS)	µg/L	3000	-	<3000	<3000	<3000	<3000	<3000	3800	7700	9300	-	4600	-	5800	6100	8400	12,400	9500	11,800	27,700	15,200	24,800	13,400
Total Dissolved Solids (TDS)	µg/L	20000	-	118,000	108,000	110,000	108,000	112,000	114,000	121,000	271,000	-	117,000	-	155,000	124,000	198,000	115,000	216,000	122,000	285,000	124,000	540,000	119,000
Anions and Nutrients					•													*						
Total Alkalinity as CaCO ₃	µg/L	1000	-	83,800	83,700	81,000	80,500	84,000	84,600	84,600	193,000	-	87,500	-	132,000	89,800	153,000	88,900	64,800	92,000	212,000	93,100	204,000	94,800
Ammonia, Total (as N)	µg/L	5.0	See narrative #2	<5.0	<5.0	11.1	12.3	<5.0	<5.0	<5.0	<5.0	-	<5.0	-	<5.0	6.2	<5.0	<5.0	9.2	<5.0	9.3	<5.0	17.3	<5.0
Nitrate and Nitrite (as N)	µg/L	5.1	-	69.6	69	35.2	35.2	69.6	68.3	64.4	<5.1	-	60.5	-	<5.1	60.4	<5.1	59.3	<10	68	<5.1	63.4	<25	44.9
Nitrate (as N)	µg/L	5.0	32,800	69.6	69.0	35.2	35.2	69.6	68.3	64.4	<5.0	-	60.5	-	<5.0	59.3	<5.0	59.3	<10	68.0	<5.0	63.4	<25	44.9
Nitrite (as N)	µg/L	1.0	60-600 #4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	1.2	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<5.0	<1.0
Total Kjeldahl Nitrogen	µg/L	50	-	106	95	120	135	99	93	100	124	-	99	-	193	94	99	111	1010	121	680	135	970	136
Total Nitrogen	µg/L	30	-	140	133	127	272	130	131	127	94	-	134	-	179	131	80	140	950	164	548	163	919	149
Orthophosphate (as P)	µg/L	1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	1.7	1.1	<1.0	<1.0	18.2	<1.0	1.4	<1.0	1.3	<1.0
Phosphorus (P)-Total Dissolved	µg/L	2.0	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	-	3.1	<2.0	<2.0	<2.0	40.3	<2.0	5.1	<2.0	10.8	<2.0
Phosphorus (P)-Total	µg/L	2.0	-	2.7	3.6	2.9	4.1	3.0	2.9	8.2	9.5	-	6.8	-	11.3	7.1	9.5	7.8	41.9	10.8	38.8	10.8	33.6	11.1
Organic and Inorganic Carbon																								
Dissolved Organic Carbon (DOC)	µg/L	500	-	6570	8600	8140	6900	5780	6990	6940	6360	-	8410	-	12400	7610	7670	6920	46400	6200	19200	6950	26600	9500
Total Organic Carbon (TOC)	µg/L	500	-	2750	2840	2990	2990	2770	3000	3090	3030	-	2730	-	5840	3130	2170	2810	42800	3250	16200	3470	23200	3900
Plant Pigments																								
Chlorophyll a (reservoirs only)	µg/L	0.010	-	0.265	0.301	0.675	0.715	nr	nr	nr	nr	ns	nr	ns	nr	nr	nr	nr	nr	nr	nr	nr	nr	nr
NOTES:																								

BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - Short-term Maximum criteria applied. Dissolved Oxygen guideline protects all life stages other than buried embryo/alevin Guideline/standard for ammonia varies with pPI and temperature. Standard for fultoride varies with pPI and temperature. Guideline/standard for nitrite varies with chloride concentrations. Hardness No applicable standard/guideline or analysis was not conducted. Concentration is less than the laboratory detection limit indicated. Bold and shaded indicates an exceedance of one of the applicable standards/guidelines. BC MOE 2016

#1 #2

#3 #4 н

< Bold

Table 5: September Surface Water Quality Results

					Existing Re	servoir Sites					Future Sit	te C Reservoir							Downs	tream of Site C Re	eservoir			
Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2016	DINOSAUR (D1 - Deep)	DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	WILLISTON (W1 - Deep)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVE DOWNSTREAM (HD)		LOWER SITE C RESERVOIR (PR3)	MOBERLY RIVER UPSTREAM (MU)	MOBERLY RIVER DOWNSTREAM (MD)	PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	PEACE AT KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUPE (POUCE)	MANY ISLAND
Sample Date			Approved	22-Sep-2016	22-Sep-2016	22-Sep-2016	22-Sep-2016	21-Sep-2016	21-Sep-2016	21-Sep-2016	21-Sep-2016	-	21-Sep-2016	-	21-Sep-2016	21-Sep-2016	21-Sep-2016	20-Sep-2016	20-Sep-2016	20-Sep-2016	20-Sep-2016	20-Sep-2016	20-Sep-2016	20-Sep-2016
Laboratory Identification Number				L 1833036-4	L1833036-3	L1833036-2	L1833036-1	L1832389-3	L1832389-4	L1832389-2	L1832389-1	Not Sampled	L1832388-2	Not Sampled	L1832388-1	L1832388-3	L1832388-4	L1831599-1	L1831599-2	L1831599-4	L1831599-5	L1831599-6	L1831599-7	L1831599-8
Field Measurements				E100000-4	E1033030-3	E100000-2	E100000-1	E1002003-0	L1002000-4	L1002003-2	E1002000-1	Not Gampied	E1032300-2	Not Gampied	E1002000-1	E1032300-3	E1002000-4	E1001000-1	E1001000-2	E1001000-4	E1001000-0	E1031333-0	E1001000-1	E1001000-0
Sample Depth	m	-	-	2.5	0.2	0.2	3.5	0.2	0.2	0.2	0.2		0.2		0.2	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Total Depth	m	-	-	-	-	45.3	45.3	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Specific Conductivity (EC)	SPCµS/cm		-	169.9	169.8	167.1	167.4	170.3	170.2	174.9	413.7		176.2		214.8	188.1	258.7	188.7	164.8	193.2	350.8	198.3	393.3	201.5
Electrical Conductivity (EC)	μS/cm	-	-	130.8	131.2	132.9	133.1	130.8	130.8	132.6	293.3	-	133.6	-	150.9	142.1	180.6	143.2	117.6	146.3	254.7	149.6	280.6	152.3
	pH Units	-	6.5-9.0	8.27	8.34	8.32	8.31	8.35	8.30	8.27	8.44		8.28	-	8.30	8.31	8.40	8.30	7.99	8.23	8.59	8.47	8.22	8.44
Temperature	pri onits °C	-	15	13.0	13.1	14.3	14.3	12.9	12.9	13.3	9.8	-	12.3	-	9.4	12.1	9.2	12.4	10.0	12.3	10.7	12.1	10.0	12.2
Dissolved Oxygen (DO)	mg/L	-	Minimum 5 #1	9.86	9.89	9.34	9.32	12.9	10.05	10.22	11.06	-	12.3	-	11.22	12.1	9.2	12.4	10.75	12.3	10.78	10.36	10.85	10.54
Salinity	parts per trillion	-	Minimum 5	9.86	9.89	9.34	0.08	0.08	0.08	0.08	0.20	-	0.08		0.10	0.09	0.12	10.19	0.08	0.09	0.17	0.09	0.09	0.10
Turbidity	nephelometric units	-	-	3.7	3.6	2.1	2.2	3.9	3.9	8.7	26.0		12.8	-	55.0	20.1	16.2	24.5	142.2	24.4	134.9	30.4	95.0	40.1
	hephelometric units	-	-	3.7	3.0	2.1	2.2	3.9	3.9	0.7	20.0	-	12.0	-	55.0	20.1	10.2	24.5	142.2	24.4	134.9	30.4	95.0	40.1
Physical Parameters	0-1 11-1			6.7	5.0		0.0	7.0	0.4		40.4	-	7.0		07.0	0.5			007	44.0	10.0	01.0	150	01.0
Colour Electrical Conductivity (EC)	Col. Unit	5.0	-	5.7	5.3 167	6.9 166	6.2 161	7.0	6.4 164	6.0 164	19.4 400	_	7.0	-	27.9	6.5 176	9.6 249	6.9 182	307 162	11.2 188	48.9 340	21.0	156 374	24.8
	µS/cm		-	167			-	164				-		-		176	-			188				193
Hardness as CaCO ₃	µg/L	500	-	-	-	-	-	-	83,300	82,300	225,000	-	86,400	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	0.10	6.5-9.0	8.11	8.11	8.08	8.10	8.03	7.97	8.03	8.30	-	8.04	-	8.10	8.06	8.20	8.08	7.44	8.09	8.41	8.09	7.94	8.04
Total Suspended Solids (TSS)	µg/L	3000	-	3500	<3000	<3000	<3000	5800	3600	22,500	35,300		22,200		40,200	36,900	17,500	61,600	136,000	65,800	98,400	114,000	88,900	127,000
Total Dissolved Solids (TDS)	µg/L	1000	-	110,000	115,000	108,000	116,000	87,000	91,800	91,600	249,000	-	96,600	-	156,000	126,000	149,000	127,000	222,000	127,000	288,000	132,000	345,000	135,000
Turbidity	NTU	0.10	-	2.49	2.75	1.60	1.66	3.27	3.36	6.22	30.0	-	11.3	-	48.1	16.8	13.5	22.6	122	26.1	147	34.0	116	37.1
Anions and Nutrients	-											-		-										
Bicarbonate as CaCO ₃	µg/L	1000	-	80,700	82,500	80,300	78,800	80,300	78,900	78,900	176,000	-	82,300	-	108,000	84,200	125,000	87,800	37,100	89,800	180,000	90,600	115,000	91,500
Carbonate as CaCO ₃	µg/L	1000	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	2200	-	<1000	-	<1000	<1000	<1000	<1000	<1000	<1000	6800	<1000	<1000	<1000
Hydroxide as CaCO ₃	µg/L	1000	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	-	<1000	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Total Alkalinity as CaCO ₃	µg/L	1000	-	80,700	82,500	80,300	78,800	80,300	78,900	78,900	178,000	-	82,300	-	108,000	84,200	125,000	87,800	37,100	89,800	187,000	90,600	115,000	91,500
Ammonia, Total (as N)	µg/L	5.0	See narrative #2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	-	5.5	5.1	<5.0	<5.0	13.8	5.1	32.8	5.5	32.7	<5.0
Bromide	µg/L	50	-	<50	<50	<50	<50	<50	<50	<50	<50	-	<50	-	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Chloride	µg/L	500	600,000	<500	<500	<500	<500	<500	<500	<500	<500	-	<500	-	<500	<500	640	<500	620	<500	620	<500	3020	<500
Fluoride	µg/L	20	See equation #3	34	31	33	33	37	37	38	100	-	40	-	73	43	62	36	66	38	73	40	113	42
Nitrate and Nitrite (as N)	µg/L	5.1	-	51.3	51.8	43.9	43.4	50.9	50.8	46.9	<5.1	-	48.9	-	35.4	47.7	22.3	48.8	6.3	46.5	37.6	45	110	43.6
Nitrate (as N)	µg/L	5.0	32,800	51.3	51.8	43.9	43.4	50.9	50.8	46.9	<5.0	-	48.9	-	35.4	47.7	22.3	48.8	6.3	46.5	33.2	45.0	101	43.6
Nitrite (as N)	µg/L	1.0	60-600 #4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	9.2	<1.0
Total Kjeldahl Nitrogen	µg/L	50	-	101	92	105	104	95	100	101	220	-	120	-	324	140	148	157	1230	135	790	198	1410	238
Total Nitrogen	µg/L	30	-	134	131	132	165	116	119	122	164	-	129	-	311	150	133	149	1020	145	579	195	1300	206
Orthophosphate (as P)	µg/L	1.0	-	<1.0	<1.0	<1.0	<1.0	1.0	1.2	1.1	2.2	-	2.4	-	2.5	1.5	<1.0	1.6	10.9	1.3	3.9	2.5	10.9	2.3
Phosphorus (P)-Total Dissolved	µg/L	2.0	-	2.0	2.3	<2.0	<2.0	<2.0	<2.0	<2.0	5.4	-	3.1	-	5.9	2.9	2.6	-	-	-	-	-	-	-
Phosphorus (P)-Total	µg/L	2.0	-	5.6	6.8	4.5	4.8	6.6	7.2	14.3	27.7	-	15.2	-	42.4	27.8	18.3	43.8	169	44.0	129	53.0	151	80.6
Silicate (as SiO ₂)	µg/L	500	-	4390	4190	4310	4320	4410	4190	4200	3730	-	4080	-	3270	4160	2230	4300	7010	4350	5130	4310	5820	4350
Sulphate	μg/L	300	-	11,500	11,500	11,100	11,200	11,600	11,600	11,700	54,400	-	12,900	-	10,200	14,800	18,600	14,700	40,300	15,100	14,000	16,000	85,900	17,300
Anions Total	meq/L	-		-	-	-	-	-	1.82	1.83	4.7	-	1.92	-	-	-	2.91	-	-	-	-	-	-	-
Cations Total	meq/L	-	-	-	-	-	-	-	1.66	1.64	4.62	-	1.73	-	-	-	2.84	-	-	-	-	-	-	-
Ionic Balance	N/A	-	-	-	-	-		-	-4.6	-5.2	-0.8	-	-5.3	-	-	-	-1.3	-	-	-	-	-	-	-
Organic and Inorganic Carbon			1									-	-	-										
Dissolved Organic Carbon (DOC)	µg/L	1000	-	8600	6000	6520	6640	6800	6200	6700	9400	-	8300	-	10200	6300	5900	8600	50700	9200	18300	10000	36800	7500
Total Organic Carbon (TOC)	µg/L	1000	-	2720	2700	2780	2810	2700	2800	2900	5900		3100		8300	3800	3300	4400	47400	4700	17400	6900	37000	6400

NOTES:

BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - Short-term Maximum criteria applied. Dissolved Oxygen guideline protects all life stages other than buried embryo/alevin Guideline/standard for ammonia varies with pH and temperature. Standard for fluoride varies with hardness. Calculated based on equation: -51.73 + 92.57*log(Hardness) Guideline/standard for nitrite varies with chloride concentrations. Hardness BC MOE 2016

#1 #2 #3 #4 H

Bold

No applicable standard/guideline or analysis was not conducted. Concentration is less than the laboratory detection limit indicated. Bold and shaded indicates an exceedance of one of the applicable standards/guidelines.

		Percetad			Existing Res	servoir Sites						C Reservoir		1	1		1	1	Downs	stream of Site C Re			1	
Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2016	DINOSAUR (D1 - Deep)	DINOSAUR (D1 - Shallow)	WILLISTON (W1 - Shallow)	WILLISTON (W1 - Deep)	PEACE CANYON (PC1)	UPPER SITE C RESERVOIR (PR1)	MIDDLE SITE C RESERVOIR (PR2)	HALFWAY RIVER DOWNSTREAM (HD)	HALFWAY RIVER UPSTREAM (HU)	LOWER SITE C RESERVOIR (PR3)	MOBERLY RIVER UPSTREAM (MU)	MOBERLY RIVER DOWNSTREAM (MD)	PEACE AT PINE (PD1)	PINE RIVER (PINE)	PEACE AT BEATTON (PD2)	BEATTON RIVER (BEATTON)	PEACE AT KISKATINAW (PD3)	KISKATINAW RIVER (KISKATINAW)	PEACE AT POUCE COUPE (PD4)	POUCE COUP (POUCE)	PE MANY
ple Date			Approved	24-Oct-2016	24-Oct-2016	24-Oct-2016	24-Oct-2016	24-Oct-2016	24-Oct-2016	24-Oct-2016			(FK3) 25-Oct-2016		25-Oct-2016	25-Oct-2016	25-Oct-2016	21-Oct-2016	21-Oct-2016	(FD3) 21-Oct-2016	21-Oct-2016	(FD4) 21-Oct-2016	21-Oct-2016	21-0
atory Identification Number Measurements				L1848454-4	L1848454-3	L1848454-1	L1848454-2	L1848455-1	L1848455-2	L1848452-2	L1848452-1	Not Sampled	L1848477-2	Not Sampled	L1848477-1	L1848477-3	L1848477-4	L1847680-1	L1847680-2	L1847680-3	L1847680-4	L1847680-5	L1847680-6	
le Depth Depth	m	-	-	5.0 13.5	0.2	0.2 54.2	5.0 54.2	0.2	0.2	0.2 4.0	0.2		0.2		0.2	0.2	0.2	0.2	0.2	0.2 4.3	0.2	0.2	0.2	
c Conductivity (EC) cal Conductivity (EC)	SPCµS/cm µS/cm	-	-	174.9 119.7	174.9 119.8	174.4 119.9	174.1 119.7	172.6 119.7	173.5 119.7	158.8 110.4	445.3 248.8	-	185.5 124.2		251.1 142.8	187.4 125.4	331.2 187.7	194.2 125.0	229.5 120.5	198.2 129.6	403.2 222.3	198.7 129.0	536.0 310.1	
erature	pH Units 'C	-	6.5-9.0 15	8.16 8.5	8.19 8.5	8.14 8.7	8.14 8.7	8.20 8.5	8.21 8.5	8.24 8.3	8.37		8.19		8.24 2.4	8.23	8.34 2.3	8.19 6.9	7.79	8.22 6.9	8.47	8.19	8.15 3.0	
ved Oxygen (DO) y	mg/L parts per trillion	-	Minimum 5 #1	10.52 0.08	10.58 0.08	10.36 0.08	10.32 0.08	10.70 0.08	10.77 0.08	11.12 0.08	12.16 0.21		10.98 0.09		13.07 0.12	11.12 0.09	12.36 0.16	11.36 0.09	13.73 0.11	11.38 0.09	13.04 0.19	11.47 0.09	13.07	
ty al Parameters	nephelometric unit	s -		1.5	1.5	1.4	1.6	9.1	1.6	9.2	17.9	•	4.2		33.2	5.4	52.4		110.0	17.9	122.9	29.2	353.1	
cal Conductivity (EC)	Col. Unit µS/cm	5.0 2.0 500		5.0 165	<5.0 162	7.0	6.2 163	5.6 165	5.4	<5.0 174	8.9 415		5.2 174		26.9 232	7.1	7.3 299	7.2	235 218 94700	6.0 193	36.8 375	11.1 190	84.5 498	_
uspended Solids (TSS)	µg/L pH Units	0.10	6.5-9.0	90100 7.98 <3000	87200 8.01 <3000	89300 7.99 <3000	86600 8.01 <3000	87800 8.00 <3000	86700 8.00 <3000	89900 8.15 13500	250000 8.27 16700		92100 7.98 5300		130000 8.15 22900	87900 8.00 7400	178000 8.19 72200	99000 8.15 15900	94700 7.63 164000	103000 8.18 29600	202000 8.40 326000	102000 8.15 41500	217000 8.05 481000	
issolved Solids (TDS)	μg/L μg/L NTU	1000		96500	95700	96600	94500	95500	95100	97800	270000	-	122000		181000 36.2	124000 4.59	219000 64.8	109000	177000	111000 17.5	249000	116000 33.5	354000	
s and Nutrients onate as CaCO ₃	µg/L	1000		81300	81200	81500	80000	81300	81100	83100	191000		83100		122000	87200	152000	91700	56000	94100	201000	91500	142000	
ate as CaCO ₃ ide as CaCO ₁	μg/L μg/L	1000	-	<1000 <1000	<1000 <1000	<1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000		<1000 <1000		<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	7600	<1000 <1000	<1000 <1000	
Ikalinity as CaCO ₃ nia, Total (as N)	μg/L μg/L	1000	- See narrative #2	81300 <5.0	81200 <5.0	81500 <5.0	80000	81300 <5.0	81100 <5.0	83100 <5.0	191000		83100 <5.0		122000 <5.0	87200 5.0	152000 8.0	91700 <5.0	56000 20.1	94100 <5.0	209000 29.4	91500 <5.0	142000	
le le	μg/L μg/L	50 500	- 600,000	<50 <500	<50 <500	<50 <500	<50 <500	<50 <500	<50 <500	<50 <500	<50 500	-	<50 <500	-	<50 570	<50 <500	<50 1300	<50 <500	<50 2700	<500 <5000	<50 2660	<50 510	<50 14200	_
e and Nitrite (as N)	μg/L μg/L	20 5.1	See equation *3	35 48.8	35 47.6	34 46	34 46.2	35 48.2	34 48.1	35 46	99 <5.1		38 47.6		73 21.1	38 46.6	73 94.2	41 57.3	72 29.2	<200 58	81 66.9	40 59.1	136 262	
(as N) (as N)	µg/L µg/L	5.0 1.0	32,800 60-600 ^{#4}	48.8 <1.0	47.6 <1.0	46.0 <1.0	46.2 <1.0	48.2 <1.0	48.1 <1.0	46.0 <1.0	<5.0 <1.0		47.6 <1.0		21.1 <1.0	46.6 <1.0	94.2 <1.0	57.3 <1.0	29.2 <1.0	58 <10	66.9 <1.0	59.1 <1.0	257 5.2	-
Kjeldahl Nitrogen Nitrogen	μg/L μg/L	50 30	-	105 128	97 125	86 134	103 200	88 119	96 119	114 141	167 133		136 129		339 324	113 242	280 227	120 147	1240 1030	142 163	890 723	192 191	1850 1670	-
hosphate (as P) horus (P)-Total Dissolved	μg/L μg/L	1.0 2.0	-	<1.0 <2.0	<1.0 <2.0	<1.0 2.4	<1.0 2.1	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	2.1 3.1		<1.0 2.4		2.5 6.7	<1.0	2.3 3.1	<1.0 2.7	12.0 35.5	<1.0 2.9	4.3 10.6	<1.0 3.1	12.1 28.8	
orus (P)-Total (as SiO ₂)	μg/L μg/L	2.0	-	3.7 4400	3.6 4310	2.4 4350	2.6 4440	3.0 4290	3.3 4420	15.5 4360	22.7 3600		5.1 4230		20.7 2790	10.4 4200	75.6 2750	17.3 4260	133 7450	22.1 4230	230 5240	27.4 4320	312 5700	
te Total	μg/L meg/L	300	-	12300 1.89	12300 1.88	12300 1.89	12400 1.86	12300 1.89	12300 1.88	12500 1.93	58800 5.07		13500 1.95	-	13500 2.75	14500 2.05	28400 3.67	15000 2.15	52400 2.29	14000 2.18	23700 4.75	17000	118000 5.72	-
Total liance	meg/L N/A	-		1.8 -2.3	1.74 -3.9	1.78 -2.9	1.73 -3.6	1.75	-4.1	1.8 -3.5	5.16 0.9		1.84 -2.8	-	2.72	1.76	3.74	1.98	2.51 4.5	2.06	4.49 -2.8	2.15	5.63 -0.8	-
c and Inorganic Carbon ed Organic Carbon (DOC)	µg/L	500		2800	2800	2870	2730	3200	3440	3260	4300		3470	-	8200	3610	3680	3240	38900	3220	13800	4960	25300	_
rganic Carbon (TOC) fetals	µg/L	500	-	2900	3180	3050	2800	2700	2870	3020	4200		3090	-	9050	3070	4640	3000	41600	3350	15200	4660	28700	_
um ny	μg/L μg/L	5.0		22.1 <0.50	26.3 <0.50	18.2 <0.50	14.4 <0.50	24.2 <0.50	34.9 <0.50	174 <0.50	516 <0.50		137 <0.50		784 <0.50	123 <0.50	1960 <0.50	448 <0.50	3080 <0.50	550 <0.50	4830 <0.50	657 <0.50	7900 <0.50	
	μg/L μg/L	0.50	-	<0.50 32	<0.50 31	<0.50 31	<0.50 30	<0.50 32	<0.50 32	<0.50 37	<0.50 106		<0.50 38		0.85	<0.50 38	1.44 154	<0.50 52	3.03 117	0.50	3.78 267	0.60	7.72 237	
3	μg/L μg/L	1.0 200	-	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200		<1.0 <200		<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	<1.0 <200	_
n	μg/L μg/L	100 0.0050	-	<100 0.0148	<100 0.0145	<100 0.0170	<100 0.0126	<100 0.0152	<100 0.0146	<100 0.0486	<100 0.0651		<100 0.0236		<100 0.0542	<100 0.0267	<100 0.114	<100 0.0286	<100 0.178	<100 0.0402	<100 0.278	<100 0.0504	<100 0.281	-
m	μg/L μg/L	100	-	26700 <1.0	26000 <1.0	26700 <1.0	25900 <1.0	26100 <1.0	26400 <1.0	29300 <1.0	69000 <1.0		30200 <1.0		39500 1.4	30700 <1.0	52200 3.3	32700 <1.0	29400 5.5	33500 1.0	68800 8.4	32400 1.2	68000 13.3	-
	μg/L μg/L	0.90	4 See equation #5	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	<0.30 <1.0	0.49		<0.30 <1.0		0.65	<0.30 <1.0	1.65 4.6	<0.30 1.4	3.15 7.6	0.39	3.94 11.5	0.50	7.22 18.7	_
	µg/L µg/L	30 0.50	1000 See equation #6	30 <0.50	37 <0.50	<30 <0.50	<30 <0.50	37 <0.50	50 <0.50	263 <0.50	854 <0.50	-	181 <0.50		1460 0.75	143 <0.50	3390 1.76	688 <0.50	7250 3.08	852 <0.50	8800 5.02	1180 0.58	15900 8.68	_
sium	µg/L µg/L	1.0		<1.0 5880	<1.0 5740	<1.0 5940	<1.0	<1.0	<1.0 5910	1.3 6210	8.2 18500		1.4 6510		4.2	1.5 6610	9.5 13400	1.8 6890	10.6 8890	1.9 7040	9.4 17000	2.2 6940 17.7	19.2 21200	
nese ry denum	µg/L µg/L	0.10 0.0050 1.0	See equation " - 2000	1.46 <0.0050 <1.0	1.48 0.0071 <1.0	1.10 <0.0050 <1.0	1.17 <0.0050 <1.0	1.64 0.0053 <1.0	1.64 0.0057 <1.0	7.86 0.0063 <1.0	20.0 0.0066 3.5		4.29 <0.0050 <1.0		27.0 0.0057 <1.0	5.42 0.0061 <1.0	52.1 0.013 1.0	12.0 0.0076 <1.0	118 0.028 <1.0	14.1 0.0076 <1.0	137 0.035 <1.0	0.0083	243 0.048 1.1	
horus	μg/L μg/L μg/L	1.0	-	<1.0 <300	<1.0	<1.0 <300	<1.0	<1.0 <300	<1.0	1.0	3.2		<1.0 <300		3.8	<1.0	6.3 <300	1.8	12.5	2.0	14.2	2.4	25.8 440	_
ium am	μg/L μg/L	2000		<2000	<2000	<2000	<2000 0.253	<2000 0.260	<2000 0.242	<2000 0.247	<2000		<2000 0.268		<2000	<2000	<2000	<2000	2600	<2000	3000 0.532	<2000	6600 0.878	
	μg/L μg/L	50	0.1 or 3.0 ^{#8}	2160 <0.020	2100	2130 <0.020	2060 <0.020	2130 <0.020	2130 <0.020	2320	2560		2370 <0.020		2360	2210	4160 0.036	2890 <0.020	8040	2920	9890 0.100	3170 <0.020	16100 0.114	_
um	μg/L μg/L	2000 5.0	-	<2000 103	<2000	<2000 105	<2000	<2000	<2000 103	<2000	4000 323		<2000 115		2800 94.9	<2000 112	4100 178	<2000	11400 103	<2000	9900 243	2100 115	25400 262	-
n	μg/L μg/L	0.20	-	<0.20	<0.20 <0.50	<0.20	<0.20	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50		<0.20 <0.50		<0.20 <0.50	<0.20	<0.20	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20	<0.20 <0.50	—
n	μg/L μg/L	10	-	<10 0.40	<10 0.40	<10	<10 0.40	<10 0.45	<10 0.44	<10 0.44	15 0.91		<10 0.45		<10 0.37	<10 0.44	26 0.64	12 0.49	23 0.61	11 0.49	36 1.00	12 0.50	51 1.64	—
um	μg/L μg/L	0.50	- See equation #9	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	1.24 <5.0	2.34 7.9		0.77 <5.0		3.27 7.5	0.79 <5.0	6.96 18.0	1.86 <5.0	11.5 32.7	2.25 6.9	17.9 45.5	2.68 6.3	27.2 69.4	—
ved Metals um	µg/L	5.0	100 #10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	23.7		5.4	-	21.7	8.3	35.7	6.6	133	7.2	<5.0	12.5	13.9	
ny	μg/L μg/L	0.50	-	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	-	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.71	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 0.76	-
m	μg/L μg/L	20 1.0	-	31 <1.0	30 <1.0	29 <1.0	29 <1.0	30 <1.0	29 <1.0	31 <1.0	94 <1.0		33 <1.0	-	130 <1.0	31 <1.0	96 <1.0	34 <1.0	37 <1.0	36 <1.0	104 <1.0	37 <1.0	34 <1.0	
h	μg/L μg/L	200 100	-	<200 <100	<200	<200 <100	<200	<200 <100	<200	<200 <100	<200	-	<200 <100	-	<200 <100	<200 <100	<200 <100	<200 <100	<200 <100	<200 <100	<200 <100	<200 <100	<200 <100	+
m 1	μg/L μg/L	0.0050	See equation #11	0.0081 26500	0.0084 25600	0.0077 26400	0.0094 25500	0.0079 25700	0.0065 25400	0.0098 26400	0.0232 69500		0.0064 26900		0.0152 36900	0.0054 25500	0.0171 51100	0.0125 29300	0.0581 25000	0.0114 30600	0.0126 57600	0.0164 30100	0.0234 57700	-
im	μg/L μg/L	1.0		<1.0 <0.30	<1.0 <0.30	<1.0 <0.30	<1.0	<1.0 <0.30	<1.0	<1.0 <0.30	<1.0 <0.30		<1.0 <0.30	-	<1.0 <0.30	<1.0 <0.30	<1.0 0.32	<1.0 <0.30	<1.0	<1.0 <0.30	<1.0 <0.30	<1.0 <0.30	<1.0 0.73	\pm
	μg/L μg/L	1.0 30	- 350	<1.0 <30	<1.0 <30	<1.0 <30	<1.0 <30	1.1 <30	<1.0 <30	<1.0 <30	<1.0 56		<1.0 <30	-	1.7	<1.0 <30	<1.0 33	<1.0 <30	1.9 1460	<1.0 <30	1.7 35	<1.0 55	2.8 288	-
	μg/L μg/L	0.50	-	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<0.50 7.7		<0.50 1.1	-	<0.50 3.6	<0.50 1.3	<0.50 7.6	<0.50 1.5	<0.50 6.9	<0.50 1.3	<0.50 2.8	<0.50 1.9	<0.50 9.2	Ŧ
um ese	μg/L μg/L	100 0.10		5810 0.24	5620 0.24	5690 0.16	5550 0.18	5730 0.33	5650 0.22	5800 0.27	18500 11.3		6050 0.77		9140 12.9	5860 1.53	12300 16.1	6290 1.53	7810 72.3	6440 1.97	14200 25.2	6560 4.76	17700 84.4	+
num	μg/L μg/L	0.0050		0.0062 <1.0	<0.0050 <1.0	<0.0050	<0.0050	0.0052 <1.0	0.0081	0.0052	0.0079		0.0063 <1.0		0.0052	0.0064	0.0063	<0.0050 <1.0	<0.0050 <1.0	<0.0050	<0.0050 <1.0	<0.0050	0.0103	+
ณร	μg/L μg/L	1.0 300		<1.0 <300	<1.0 <300	<1.0 <300	<1.0 <300	<1.0 <300	<1.0 <300	<1.0 <300	2.2 <300		<1.0 <300		2.0 <300	<1.0 <300	1.8	<1.0 <300	5.7 <300	<1.0 <300	1.8 <300	<1.0 <300	6.0 <300	+
m 1	μg/L μg/L	2000		<2000 0.247	<2000 0.241	<2000 0.224	<2000 0.254	<2000 0.267	<2000 0.230	<2000 0.237	<2000 1.53		<2000 0.268		<2000 0.197	<2000 0.269	<2000 0.601	<2000 0.338	<2000 0.219	<2000 0.256	<2000 0.239	<2000 0.285	4800 0.339	+
	µg/L µg/L	50	-	2100 <0.020	2100 <0.020	2070 <0.020	2060 <0.020	2040 <0.020	2000	2050	1670		2000	-	1320 <0.020	2000 <0.020	1250 <0.020	2030 <0.020	3480 <0.020	1980 <0.020	2400 <0.020	2120 <0.020	2580 <0.020	+
	µg/L µg/L	2000	-	<2000 101	<2000 97.7	<2000 99.4	<2000 96.9	<2000 101	<2000 98.8	<2000 101	3900 322		<2000 108	-	2600 86.5	<2000 102	4100 171	<2000 111	12000 92.5	<2000 113	10200 218	2300 113	26200 222	+
n	µg/L µg/L	0.20	-	<0.20 <0.50	<0.20 <0.50	<0.20	<0.20	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20		<0.20	-	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20	<0.20	<0.20 <0.50	+
	μg/L μg/L	10	-	<10 0.36	<10 0.41	<10	<10 0.42	<10 0.38	<10 0.40	<10 0.41	<10 0.86		<10	-	<10 0.32	<10 0.34	<10 0.49	<10 0.37	<10 0.31	<10 0.41	<10 0.51	<10 0.38	<10	+
m	μg/L μg/L	0.50	-	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0		<0.50 <5.0	-	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	+
yll a (reservoirs only) NOTES:	µg/L	0.010		· ·	1.31	1.73	1.7		· ·						-	-		-	· ·	-			· ·	+
BC MOE 2016 #1 #2 #3 #4 #5 #6 #7 #8	Dissolved Oxygen Guideline/standar Standard for fluori Guideline/standar Water quality guid Standard for lead Guideline for man	guideline protects a d for ammonia varie de varies with hardn d for nitrite varies wi eline for copper is o is 3 ug/L at H<8 mg	roved Water Quality G all life stages other that s with pH and tempera ess. Calculated bases th chloride concentrat alculated as 0.094(H) /L, or calculated as (et al. 0.0102*H)+0.54	in buried embryo/ale ature. d on equation: -51.7 ions. +2 1.273*In(H)-1.460) v	evin '3 + 92.57*log(Hardn when Hi>8 mg/L		ton and Sustainabi	ity Branch. British	Columbia Ministry o	t Environment. Fre	shwater Aquatic Life	- Short-term Maximu	n criteria applied.											

 #11
 Standard for cadmium is calculated as e^{11,007,004,02,10}

 H
 Hachness

 No applicable standard/guideline or analysis was not conducted

 Concentration is less than the blackord y detection limit incidented.

 Bold
 Bold and shaded indicates an exceedance of one of the applicable standard

Parameter	Unit	Reported Detection Limit (RDL)	BC MOE 2015 (mg	g/kg in dry weight)	Williston (W1)	Dinosaur (D1)
		()	Lower SWQG	Upper SWQG		
Sample Date					24-Oct-2016	24-Oct-2016
Laboratory Identification Number					L1848454-7	L1848454-8
Field Measurements						
Sample Depth (bottom)	m	-	-	-	22.5	13.5
Particle Size (Soil)						
% Gravel (>2mm)	%	1.0	-	-	<1.0	<1.0
% Sand (2.00mm - 1.00mm)	%	1.0	-	-	<1.0	<1.0
% Sand (1.00mm - 0.50mm)	%	1.0	-	-	<1.0	<1.0
% Sand (0.50mm - 0.25mm)	%	1.0	-	-	<1.0	<1.0
% Sand (0.25mm - 0.125mm)	%	1.0	-	-	<1.0	<1.0
% Sand (0.125mm - 0.063mm)	%	1.0	-	-	10.2	7.2
% Silt (0.063mm - 0.0312mm)	%	1.0	-	-	25.3	25.8
% Silt (0.0312mm - 0.004mm)	%	1.0	-	-	46.7	51.0
% Clay (<4um)	%	1.0	-	-	16.9	14.6
Texture	-	-	-	-	Silt loam	Silt
Physical Tests (Soil)						
pH (1:2 soil:water)	pH	0.10	-	-	8.38	8.35
Leachable Anions & Nutrients (Soil)	122		•	•		
Total Kjeldahl Nitrogen	%	0.020	-	-	0.054	0.076
Anions and Nutrients (Soil)			1	1		
Total Nitrogen by LECO	%	0.020	-	-	0.056	0.073
Plant Available Nutrients (Soil)	,0	0.020	1		0.000	0.010
Available Ammonium-N	mg/kg	1.0	-	-	4.9	2.8
Nitrate+Nitrite-N	mg/kg	2.0	-	-	<2.0	<2.0
Nitrate-N	mg/kg	2.0	-	-	<2.0	<2.0
Nitrite-N	mg/kg	0.40	-	-	<0.40	<0.40
Available Phosphate-P	mg/kg	2.0	-	-	<2.0	<2.0
Metals (Soil)	ilig/kg	2.0	-	-	< <u>2.0</u>	N2.0
Aluminum (Al)	mg/kg	50	_	-	7880	6890
Antimony (Sb)	mg/kg	0.10	-		0.92	0.86
Arsenic (As)	mg/kg	0.10	5.9#1	17 ^{#2}	6.70	7.67
Barium (Ba)	mg/kg	0.50	5.9	-	178	275
Beryllium (Be)	mg/kg	0.10	-	-	0.37	0.40
Bismuth (Bi)	mg/kg	0.20	-	-	<0.20	<0.20
Boron (B)	mg/kg	5.0	-	-	<5.0	<5.0
Cadmium (Cd)		0.020	0.6*1	3.5#2		
	mg/kg	50	0.6	3.5	1.19 39900	1.16 25900
Calcium (Ca)	mg/kg		-	- 90 ^{#2}	20.4	
Chromium (Cr)	mg/kg	0.50	37.3"1	90	20.4	16.9 7.25
Cobalt (Co)	mg/kg		-	-		
Copper (Cu)	mg/kg	0.50	35.7#1	197#2	20.4	19.2
Iron (Fe)	mg/kg	50	21,200 (about 2%)#3	43,766 (about 4%)#3	21600	20900
Lead (Pb)	mg/kg	0.50	35#1	91.3 ^{#2}	8.89	9.50
Lithium (Li)	mg/kg	2.0	-	-	11.3	10.5
Magnesium (Mg)	mg/kg	20	- #2	- 49	13000	11400
Manganese (Mn)	mg/kg	1.0	460#3	1100#3	441	279
Mercury (Hg)	mg/kg	0.0050	0.17#1	0.486#2	0.0429	0.0622
Molybdenum (Mo)	mg/kg	0.10	-	-	1.27	1.23
Nickel (Ni)	mg/kg	0.50	16 ^{#3}	75 ^{#3}	28.3	26.3
Phosphorus (P)	mg/kg	50	-	-	886	924
Potassium (K)	mg/kg	100	-	-	1040	1100
Selenium (Se)	mg/kg	0.20	-	-	0.48	0.78
Silver (Ag)	mg/kg	0.10	0.5#4	N/A ^{#4}	0.13	0.21
Sodium (Na)	mg/kg	50	-	-	104	95
Uranium (U)	mg/kg	0.050	-	-	0.861	0.894
Vanadium (V)	mg/kg	0.20	-	-	40.7	36.3
Zinc (Zn)	mg/kg	2.0	123#1	315#2	79.9	88.1
Zirconium (Zr)	mg/kg	1.0	-	-	3.1	1.6

Table 7: Reservoir Sediment Quality Results

NOTES:

BC MOE 2015	BC MOE. 2015. Working Water Quality Guidelines and Working Sediment Quality Guidelines for British Columbia. Water Protection and Sustainability Branch. British Columbia Ministry of Environment.
CCME 2001	Canadian Council of Minister of the Environment (CCME). 2001. Canadian sediment quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg, Accessed on-line at http://cegg-rcge.ccme.ca/en/index.html#void
Lower SWQG	A concentration that will protect aquatic life from adverse effects of toxic substance in most situations (equivalent to CCME's Threshold Effect Level or Interim Sediment Quality Guidelines (TEL or ISQGs; CCME 2001))
Upper SWQG	A concentration that if exceeded will likely cause severe effects on aquatic life (equivalent to CCME's Probably Effect Level (PEL; CCME (2001)).
AET	Apparent Effects Threshold
BA	Background Approach
CoA	Co-Occurrence analysis
EqP	Equilibrium Partitioning
ISQG	Interim Sediment Quality Guideline
NSTPA	National Status and Trends Program Approach
PEL	Probable Effect Level
SLC	Screening Level Concentration
#1	Lower SWQG is based on ISQG
#2	Upper SWQG is based on PEL
#3	Effect levels based on SLC
#4	Based on Ontario sediment guideline
<	Concentration is less than the laboratory detection limit indicated.
-	No applicable standard or guideline
Unshaded	Concentration < Lower SWQG: Rarely associated with adverse biological effects (BC MOE, 2015)
Shaded only	כטורטיווומנוטו א בטיאפו סאייעס טעו < לטָטָפּו סאייעס מופ טכנמאטרומוע מאסטמוניט אינוו מטיפולי טוטולטנמו פוופנוג ארא ארא ארא ארא ארא ארא איינער איינער ארא ארא ארא ארא ארא ארא ארא ארא ארא א
Shaded and Bolded	Concentrations > Upper SWQG are frequently associated with adverse biological effects (BC MOE, 2015)

Table 8: Reservoir Water Quality Depth Profile

Parameter (Unit)	BC MOE 2016	Sample Depth (m)			(D1) Dinosa	ur Reservoir					(W1) Williste	on Reservoir		
Sample Date	ments		29-May-16	21-Jun-16	26-Jul-16	24-Aug-16	22-Sep-16	24-Oct-2016	29-May-2016	21-Jun-2016	26-Jul-2016	24-Aug-16	22-Sep-16	24-Oct-2016
Secchi Depth (m)	-		4.3	1.5	4.5	5.0	2.5	4.5	5.0	3.0	2.0	3.8	2.5	3.5
Total Depth (m)	-		20.2	-	20.2	-	-	13.5	65.1	-	150.0	-	45.3	54.5
()		0.0	114.2 114.9	124.7 128.3	141.4 141.5	- 126.7	- 131.2	- 119.8	110.1 110.1	131.2 131.3	142.4 134.8	- 148.5	- 132.9	- 119.9
		0.5	113.8 111.1	126.2 126.8	141.5 141.4	126.9 126.8	131.1 131.0	119.7 119.7	110.0 109.8	131.3 131.2	134.2 132.4	147.4 146.8	133.0 133.0	119.9 119.9
		1.5 2.0	110.9 110.9	126.9 126.1	141.3 141.3	126.7 126.5	131.0 139.9	119.8 119.7	109.7 109.4	131.2 131.3	131.2 130.6	146.7 146.6	133.1 133.1	119.9 119.9
Electrical		2.5 3.0	110.8 111.1	125.6 126.7	141.1 141.2	126.4 126.3	130.8	119.7 119.8	109.6 109.3	131.3 131.3	130.4 130.6	146.4 146.4	133.1 133.0	119.8 119,8
Conductivity (µS/cm)	-	3.5 4.0	110.7 110.7	126.7 126.8	141.0 141.0	126.2 126.1		119.7 119.7	109.1 109.3	131.3 131.3	129.8 129.7	146.3 146.2	133.1	119.9 119.8
		4.5	110.8 110.7	126.8 126.8	141.0 141.0	-	-	119.7 119.7	108.9 109.2	130.5 130.3	129.6 129.5	-	-	119.8 119.7
		6.0 7.0 8.0	110.7 110.7 110.7	126.8 126.8 127.7	141.0 141.0 141.0	-		-	109.0 109.0 109.0	130.3 127.7 127.0	129.5 129.4 129.4	-	-	-
		9.0 10.0	110.7	127.7	141.0		-	-	109.0	126.3	129.4	-		-
		0.0	183.8 182.0	181.4 182.5	171.4 169.4	- 174.3	- 169.8	- 174.9	181.8 182.0	181.1 181.2	165.0 165.0	- 167.7	- 167.1	- 174.4
		0.5	182.8 182.4	180.2 182.7	169.6 169.1	174.3 174.3	169.9 169.8	174.9 174.9	181.9 182.0	181.1 181.2	165.1 165.0	167.7 167.6	167.4 167.3	174.3 174.3
		1.5 2.0	182.4 182.6	182.4 181.7	169.0 168.9	174.3 174.3	169.9 169.9	175.0 174.9	182.1 182.1	181.1 181.1	165.0 165.0	167.6 167.6	167.4 167.4	174.3 174.2
Specific		2.5 3.0	182.4 182.4	181.1 181.9	168.9 168.9	174.3 174.3	169.9 -	174.9 175.0	182.1 182.1	181.1 181.1	165.0 165.0	167.6 167.6	167.4 167.3	174.2 174.2
Conductivity (SPCµS/cm)	-	3.5 4.0	182.5 182.4	181.9 181.9	168.9 168.9	174.4 174.4	-	174.9 174.9	182.1 182.1	181.1 181.1	164.9 165.0	167.5 167.5	167.4 -	174.2 174.2
		4.5 5.0	182.4 182.4	181.9 182.0	168.9 168.9	-	-	174.9 174.9	182.2 182.1	181.1 181.1	165.0 165.0	-	-	174.1 174.1
		6.0 7.0	182.5 182.4	182.0 181.7 181.9	168.9 168.9	-	-		182.2 182.2	181.1 181.2 181.0	165.0 165.0	-	-	
		8.0 9.0 10.0	182.4 182.5	181.9 181.9 -	168.9 168.9 -		-	-	182.2 182.2	181.0 181.1	165.0 - -			
		0.0	8.09 8.10	7.57 6.17	4.48 8.20	- 8.29	- 8.34	- 8.19	8.18 8.17	8.05 8.04	8.32 8.31	- 8.29	- 8.46	- 8.14
		0.2	8.10 8.10 8.10	6.92 7.20	8.20 8.19 8.20	8.29 8.12 8.08	8.34 8.29 8.29	8.19 8.19 8.18	8.17 8.16 8.15	8.05 8.06	8.29 8.29	8.28 8.28	8.32 8.32	8.14 8.15 8.14
		1.5 2.0	8.10 8.10 8.10	7.40 7.48	8.18 8.17	8.07 8.06	8.29 8.28	8.17 8.18	8.15 8.15	8.06 8.06	8.28 8.28	8.28 8.28	8.31 8.31	8.15 8.15
		2.5 3.0	8.12 8.12	7.57 7.68	8.16 8.15	8.06 8.05	8.27	8.19 8.19	8.15 8.15	8.06 8.06	8.27 8.28	8.28 8.28	8.31 8.31	8.15 8.15
pH (pH units)	6.5-9.0	3.5 4.0	8.12 8.12	7.75 7.81	8.14 8.14	8.05 8.05	-	8.18 8.16	8.15 8.15	8.06 8.08	8.26 8.25	8.28 8.28	8.31 -	8.15 8.14
		4.5 5.0	8.13 8.13	7.83 7.83	8.14 8.14	-	-	8.16 8.16	8.15 8.15	8.10 8.10	8.26 8.25	-	-	8.14 8.14
		6.0 7.0	8.13 8.12	7.83 7.84	8.14 8.13	-	-	-	8.15 8.15	8.04 8.03	8.25 8.25	-	-	-
		8.0 9.0 10.0	8.13 8.12	7.85	8.13 8.12 -	-			8.15 8.15 -	8.03 8.03	8.25			
		0.0	4.9 5.7	8.6 9.4	14.2 14.3	- 10.8	- 13.1	- 8.5	4.4	10.6 10.6	17.5 17.5	- 19.0	- 14.3	- 8.6
		0.5	4.7	9.2 9.1	13.9 13.6	10.8 10.7	13.0 13.0	8.5 8.5	4.3	10.6 10.6	17.5 17.5	18.6 18.5	14.3 14.3	8.7 8.7
		1.5 2.0	4.5 4.5	9.0 9.0	13.3 13.1	10.7 10.7	13.0 13.0	8.5 8.5	4.2 4.2	10.6 10.6	17.5 17.5	18.5 18.4	14.3 14.3	8.6 8.7
Temperature		2.5 3.0	4.4 4.5	9.0 9.1	13.0 12.9	10.7 10.6	13.0 -	8.5 8.5	4.1 4.1	10.6 10.6	17.4 17.4	18.4 18.4	14.3 14.3	8.6 8.7
(°C)	15	3.5 4.0	4.4 4.4	9.1 9.1	12.9 12.9	10.6 10.5	-	8.5 8.5	4.1 4.0	10.6 10.6	17.4 17.4	18.4 18.4	14.3 -	8.7 8.7
		4.5 5.0	4.5 4.4	9.2 9.1	12.8 12.8	-	-	8.5 8.5	3.9 4.0	10.6 10.4	17.4 17.4	-	-	8.7 8.7
		6.0 7.0	4.4	9.1 9.1	12.8 12.8	-	-	-	4.0 4.0	10.2 9.4	17.4 17.4	-	-	-
		8.0 9.0 10.0	4.4 4.4	8.9 8.8	12.8 12.8	-	-	-	3.9 3.9 -	9.3 9.1 -	17.4		-	
		0.0	12.42 12.36	- 11.40 11.29	9.66 10.15	10.75	- - 9.89	10.58	12.02 12.23	- 11.14 11.22	9.08 9.10	8.68	- 9.36	- - 10.39
		0.2	12.36 12.34 12.46	11.29 11.44 11.46	10.13 10.20 20.22	10.75 10.55 10.47	9.89 9.88 9.88	10.58 10.57 10.55	12.23 12.32 12.35	11.22 11.23 11.24	9.10 9.10 9.10	8.69 8.70	9.34 9.34 9.34	10.39 10.36 10.35
		1.5 2.0	12.46 12.32	11.47 11.48	10.24 10.25	10.45 10.45	9.88 9.86	10.55 10.55	12.36 12.37	11.23 11.23	9.11 9.11	8.70 8.69	9.33 9.32	10.34 10.34
Dissolved	Minimum 5 mg/L (All life	2.5 3.0	12.39 12.40	11.48 11.48	10.24 10.24	10.44 10.45	9.86	10.55 10.54	12.36 12.38	11.23 11.23	9.10 9.10	8.69 8.69	9.32 9.32	10.33 10.33
Oxygen (DO; mg/L)	stages other than buried embryo/alevin)	3.5 4.0	12.43 12.42	11.47 11.47	10.24 10.25	10.45 10.45	-	10.53 10.53	12.39 12.38	11.22 11.22	9.09 9.09	8.69 8.69	9.32	10.32 10.32
		4.5 5.0	12.42 12.42	11.47 11.46	10.24 10.24	-	-	10.52 10.52	12.38 12.37	11.22 11.30	9.08 9.08	-	-	10.32 10.32
		6.0 7.0	12.42 12.42	11.46 11.46	10.24 10.23	-	-	-	12.37 12.36	11.33 11.43	9.07 9.07	-	-	-
		8.0 9.0 10.0	12.41 12.41	11.49 11.49 -	10.22 10.22	-	-	-	12.36 12.36	11.42 11.45 -	9.07	-		-
		0.0	0.09	0.09	0.08	0.07	0.08	0.08	0.09	0.09	0.08		0.08	
		0.5	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08
		1.5 2.0	0.09	0.09 0.09	0.08 0.08	0.08 0.08	0.08 0.08	0.08 0.08	0.09 0.09	0.09 0.09	0.08 0.08	0.08 0.08	0.08 0.08	0.08
Salinity (parts		2.5 3.0	0.09 0.09	0.09 0.09	0.08 0.08	0.08	0.08	0.08 0.08	0.09 0.09	0.09 0.09	0.08 0.08	0.08 0.08	0.08 0.08	0.08
per trillion (ppt)	-	3.5 4.0	0.09 0.09	0.09 0.09	0.08 0.08	0.08 0.08	-	0.08 0.08	0.09 0.09	0.09 0.09	0.08 0.08	0.08 0.08	0.08	0.08
		4.5 5.0	0.09	0.09	0.08	-	-	0.08	0.09	0.09	0.08	-	-	0.08
		6.0 7.0	0.09	0.09 0.09	0.08	-	-	-	0.09 0.09	0.09	0.08	-	-	-
		8.0 9.0 10.0	0.09 0.09 -	0.09 0.09 -	0.08	-	-	-	0.09	0.09 0.09	0.08 - -	-		
		0.0	- 1.2 1.6	- 0.7 0.7	- 4.2 4.3	- 2.4	3.6	- - 1.5	- 0.9 0.8	3.0 2.7	- 6.1 5.8	2.8	- 2.3	- - 1.3
		0.2	1.6 1.5 1.3	0.7 0.7 1.1	4.3 4.6 4.4	2.4 2.5 2.5	3.6 3.7 3.6	1.5 1.5 1.5	0.8 0.9 0.9	2.7 2.9 3.0	5.8 5.9 5.9	2.8 2.8 2.8	2.3 2.1 2.2	1.3 1.4 1.3
		1.0 1.5 2.0	1.3 1.5 1.3	0.6 0.7	4.4 4.5 4.6	2.5 2.5 2.4	3.6 3.4 3.5	1.5 1.5 1.5	0.9 0.9 1.0	3.0 3.0 3.0	5.9 5.9 6.0	2.8 2.9 3.1	2.2 2.2 2.3	1.3 1.4 1.6
Turbidity		2.5 3.0	1.3 1.4 1.3	1.3 2.3	4.0 4.2 4.4	2.4 2.6 2.5	3.7	1.5 1.5 1.5	0.9	2.8 3.0	6.4 6.6	2.8	2.3 2.3 2.2	1.6 1.5
(nephelometric units (NTU))	-	3.5 4.0	1.5 1.4	1.3 1.4	4.6	2.6 2.6		1.5 1.4	1.0 1.0	2.9 2.8	8.1 7.7	3.0 2.9	2.2	1.6 1.6
		4.5 5.0	1.3 1.5	1.8 1.7	4.5 4.5	-	-	1.5 1.5	1.0 1.0	3.1 3.0	8.4 7.7	-	-	1.7 1.6
		6.0 7.0	1.3 1.4	1.0 0.9	4.5 4.6	-	-	-	1.0 1.0	2.9 3.1	8.6 11.4	-	-	-
		8.0 9.0	1.6 1.5	1.4 2	4.5 4.5	-	-	-	1.0 1.0	3.1 2.9	12.1	-	-	-
		10.0	-	-	-	-	-	-	-	-	-	-	-	-

NOTES:

 BC MOE 2016
 BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia

 No applicable standard/guideline or analysis was not conducted.

 <</td>
 Concentration is less than the laboratory detection limit indicated.

 Bold
 Bold and shaded indicates an exceedance of one of the applicable standard/guidelines.

Table 9a: Water Quality Assurance and Quality Control Results

		BC MOE 2016			TRIP BLANKS									
Parameter	Unit	Approved	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank			
ample Date			1-Jul-2016	1-Aug-2016	1-Sep-2016	28-Oct-2016	21-Jun-2016	26-Jul-2016	24-Aug-2016	22-Sep-2016	24-Oct-2016			
aboratory Identification Number			L1805726-1	L1819424-8	L1833109-1	L1850471	L1786823-1	L1804199-6	L1820026-10	L1833036-6	L1848454-6			
hysical Parameters				1				1						
Colour	Col. Unit	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			
Electrical Conductivity (EC)	µS/cm	-	-	-	<2.0	331	-	-	-	<2.0	<2.0			
lardness as CaCO ₃	µg/L	-	-	-	<500	<500	-	-	-	<500	<500			
ъН	pH Units	6.5-9.0	5.33	5.41	5.41	5.43	5.52	5.51	5.40	5.37	5.57			
Total Suspended Solids (TSS)	µg/L	-	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000			
otal Dissolved Solids (TDS)	µg/L	-	<10000	<10000	<1000	<1000	<10000	<10000	<10000	-	<1000			
Anions and Nutrients			-		-		<1000	-	-					
Bicarbonate as CaCO ₃	μg/L	-	-	-	<1000	<1000	-	-	-	<1000	<1000			
Carbonate as CaCO ₃	μg/L	-	-	-	<1000	<1000	-	-	-	<1000	<1000			
Hydroxide as CaCO ₃	µg/L	-	-	-	<1000	<1000	-	-	-	<1000	<1000			
Total Alkalinity as CaCO ₃	μg/L	-	<1000	<1000	<1000	<1000	<5.0	<1000	<1000	<1000	<1000			
Ammonia, Total (as N)	µg/L	See narrative #2	<5.0	10.3	<5.0	-	-	<5.0	<5.0	<5.0	<5.0			
Bromide	µg/L	-	-	-	<50	<50	-	-	-	<50	<50			
Chloride	µg/L	600,000	-	-	<500	<500	-	-	-	<500	<500			
	μg/L	See equation #3	-	-	<20	<20	-	-	-	<20	<20			
Nitrate and Nitrite (as N)	µg/L	-	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1			
Nitrate (as N)	µg/L	32,800	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			
Nitrite (as N)	µg/L	60-600 #4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Fotal Kjeldahl Nitrogen	µg/L	-	<50	<50 <30	<50 <30	-	<50 <30	<50 <30	<50 <30	<50 <30	<50 <30			
Total Nitrogen Orthophosphate (as P)	μg/L μg/L	-	<30 <1.0	<30	<30	- <1.0	<30	<30	<30	<30	<30			
Phosphorus (P)-Total Dissolved			<2.0	<2.0	<1.0	-	<2.0	<1.0	<1.0	<2.0	<1.0			
Phosphorus (P)-Total	μg/L μg/L	-	<2.0	<2.0	<2.0	-	<2.0	<2.0	<2.0	2.0	<2.0			
Silicate (as SiO ₂)	μg/L	-	-	<2.0	<500	<500	-	-	-	<500	<500			
Sulphate	μg/L	-	-	-	<300	<300	-	-	-	<300	<300			
Anions Total	meq/L	-	-	-	<0.10	<0.10	-	-	-	<0.10	<0.10			
Cations Total	meq/L		-	-	<0.10	<0.10	-	-	-	<0.10	<0.10			
onic Balance	N/A		-	-	0	0.0	-	-	-	0	0			
Organic and Inorganic Carbon					-				1	-				
Dissolved Organic Carbon (DOC)	µg/L	-	Not Sampled	Not Sampled	Not Sampled	Not Sampled	1950	3320	6960	4420	<500			
Total Organic Carbon (TOC)	μg/L	-	<500	<500	<500	<500	<500	<500	<500	<500	<500			
Total Metals				1										
Aluminum	µg/L	-	-	-	<5.0	<5.0	-	-	-	<5.0	<5.0			
Antimony	µg/L	-	-	-	<0.50	<0.50	-	-	-	<0.50	<0.50			
Arsenic	µg/L	-	-	-	<0.50	<0.50	-	-	-	<0.50	<0.50			
Barium	µg/L	-	-	-	<20	<20	-	-	-	<20	<20			
Beryllium	µg/L	-	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
Bismuth	µg/L	-	-	-	<200	<200	-	-	-	<200	<200			
Boron	µg/L	-	-	-	<100	<100	-	-	-	<100	<100			
Cadmium	µg/L	-	-	-	<0.0050	<0.0050	-	-	-	<0.0050	<0.0050			
Calcium	µg/L	-	-	-	<100	<100	-	-	-	<100	<100			
Chromium	µg/L	-	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
Cobalt	µg/L	110	-	-	<0.30	<0.30	-	-	-	<0.30	<0.30			
Copper	µg/L	See equation #5	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
ron	μg/L	1000	-	-	<30	<30	-	-	-	<30	<30			
Lead	µg/L	See equation #6	-	-	<0.50	<0.50	-	-	-	<0.50	<0.50			
Lithium	μg/L	-	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
Magnesium	µg/L	-	-	-	<100	<100	-	-	-	<100	<100			
Manganese	µg/L	See equation #7	-	-	<0.10	<0.10	-	-	-	<0.10	<0.10			
Mercury	µg/L	-	-	-	<0.0050	<0.0050	-	-	-	<0.0050	<0.0050			
Molybdenum	µg/L	2000	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
Nickel	µg/L	-	-	-	<1.0	<1.0	-	-	-	<1.0	<1.0			
Phosphorus	µg/L	-	-	-	<300	<300	-	-	-	<300	<300			
Potassium	µg/L	-	-	-	<2000	<2000	-	-	-	<2000	<2000			
	µg/L	-	-	-	<0.050	<0.050	-	-	-	< 0.050	< 0.050			
Silicon	μg/L	-	-	-	<50	<50	-	-	-	<50	<50			
Silver	μg/L	0.1 or 3.0 ^{#8}	-	-	<0.020	<0.020	-	-	-	<0.020	<0.020			
Sodium	µg/L	-	-	-	<2000	<2000	-	-	-	<2000	<2000			
Strontium	µg/L	-	-	-	<5.0	<5.0	-	-	-	<5.0	<5.0			
Thallium Fin	µg/L	-	-	-	<0.20	<0.20	-	-	-	<0.20	<0.20			
Fin	µg/L	-	-	-	<0.50	<0.50	-	-	-	<0.50	< 0.50			
Fitanium	µg/L	-	-	-	<10	<10	-	-	-	<10	<10			
Jranium	µg/L	-	-	-	<0.20	<0.20	-	-	-	<0.20	<0.20			
(and a discuss						< 0.50	-	-	-	< 0.50	< 0.50			
/anadium /inc	μg/L μg/L	- See equation #9		-	<0.50 <5.0	<5.0	-	-	-	<5.0	<5.0			

BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - Short-term Maximum criteria applied. BC MOE 2016

#1 Dissolved Oxygen guideline protects all life stages other than buried embryo/alevin

#2 Guideline/standard for ammonia varies with pH and temperature.

#3 #4 Standard for fluoride varies with hardness. Calculated based on equation: -51.73 + 92.57*log(Hardness) Guideline/standard for nitrite varies with chloride concentrations.

#5 Water quality guideline for copper is calculated as 0.094(H)+2

#6 Standard for lead is 3 ug/L at H<8 mg/L, or calculated as e(1.273*ln(H)-1.460) when H>8 mg/L

Guideline for manganese calculated as (0.01102'H)+0.54 Criteria for silver varies with hardness, 0.1 µg/L at H<100 mg/L or 3.0 µg/L at H>100 mg/L #7 #8

#9 Guideline for zinc calculated as 33+0.75*(H-90)

Standard for aluminum varies with pH. Standard is 0.05 mg/L if pH is greater than or equal to 6.5, or calculated as e^{(1.209-2.426(pH)+0.286K)} where K=(pH)² Standard for cadmium is calculated as e^{(1.031n(H)-5.274)} #10 #11

Hardness

н

No applicable standard/guideline or analysis was not conducted.

Concentration is less than the laboratory detection limit indicated. Bold and shaded indicates an exceedance of one of the applicable standards/guidelines.

Bold Reported detection limit (RDL)

Reported detection limit varied between sampling events, therefore, was not presented with Quality Assurance/ Quality Control results, which presents multiple events within the same table

		BC MOE 2016	2016 TRIP BLANKS													
Parameter	Unit	Approved	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank					
Sample Date			1-Jul-2016	1-Aug-2016	1-Sep-2016	28-Oct-2016	21-Jun-2016	26-Jul-2016	24-Aug-2016	22-Sep-2016	24-Oct-2016					
Laboratory Identification Number			L1805726-1	L1819424-8	L1833109-1	L1850471	L1786823-1	L1804199-6	L1820026-10	L1833036-6	L1848454-6					
Dissolved Metals																
Aluminum	µg/L	100 #10	-	-	-	-	-	-	-	<5.0	<5.0					
Antimony	µg/L	-	-	-	-	-	-	-	-	<0.50	< 0.50					
Arsenic	µg/L	-	-	-	-	-	-	-	-	<0.50	< 0.50					
Barium	µg/L	-	-	-	-	-	-	-	-	<20	<20					
Beryllium	µg/L	-	-	-	-	-	-	-	-	<1.0	<1.0					
Bismuth	µg/L	-	-	-	-	-	-	-	-	<200	<200					
Boron	µg/L	-	-	-	-	-	-	-	-	<100	<100					
Cadmium	µg/L	See equation #11	-	-	-	-	-	-	-	< 0.0050	< 0.0050					
Calcium	µg/L	-	-	-	-	-	-	-	-	<100	<100					
Chromium	µg/L		-	-	-	-	-	-	-	<1.0	<1.0					
Cobalt	µg/L	-	-	-	-	-	-	-	-	< 0.30	< 0.30					
Copper	µg/L	-	-	-	-	-	-	-	-	<1.0	<1.0					
Iron	µg/L	350	-	-	-	-	-	-	-	<30	<30					
Lead	µg/L	-	-	-	-	-	-	-	-	< 0.50	< 0.50					
Lithium	µg/L	-	-	-	-	-	-	-	-	<1.0	<1.0					
Magnesium	µg/L	-	-	-	-	-	-	-	-	<100	<100					
Manganese	µg/L	-	-	-	-	-	-	-	-	<0.10	<0.10					
Mercury	µg/L	-	-	-	-	-	-	-	-	< 0.0050	< 0.0050					
Molybdenum	µg/L	-	-	-	-	-	-	-	-	<1.0	<1.0					
Nickel	µg/L		-	-	-	-	-	-	-	<1.0	<1.0					
Phosphorus	µg/L	-	-	-	-	-	-	-	-	<300	<300					
Potassium	µg/L	-	-	-	-	-	-	-	-	<2000	<2000					
Selenium	µg/L	-	-	-	-	-	-	-	-	< 0.050	< 0.050					
Silicon	μg/L	-	-	-	-	-	-	-	-	<50	<50					
Silver	μg/L	-	-	-	-	-	-	-	-	<0.020	<0.020					
Sodium	µg/L	-	-	-	-	-	-	-	-	<2000	<2000					
Strontium	µg/L	-	-	-	-	-	-	-	-	<5.0	<5.0					
Thallium	µg/L	-	-	-	-	-	-	-	-	<0.20	<0.20					
Tin	µg/L	-	-	-	-	-	-	-	-	<0.50	<0.50					
Titanium	μg/L	-	-	-	-	-	-	-	-	<10	<10					
Uranium	μg/L	-	-	-	-	-	-	-	-	<0.20	<0.20					
Vanadium	μg/L	-	-	-	-	-	-	-	-	<0.50	< 0.50					
Zinc	μg/L	-	-	-	-	-	-	-	-	<5.0	<5.0					
Plant Pigments	1 F3-	1		1			•	•	1							
Chlorophyll a	μg/L	-	-	-	-	-	<0.010	-	-	<0.010	<0.010					

Table 9a: Water Quality Assurance and Quality Control Results

NOTES: BC MOE 2015 BC MOE. 2015. Working Water Quality Guidelines and Working Sediment Quality Guidelines for British Columbia. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquat BC MOE 2016 BC MOE. 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection and Sustainability Branch. British Columbia Ministry of Environment. Freshwater Aquatic Life - S #1 Dissolved Oxygen guideline protects all life stages other than buried embryo/alevin Guideline/standard for ammonia varies with pH and temperature. Standard for fluoride varies with hardness. Calculated based on equation: -51.73 + 92.57*log(Hardness) #2 #3 #4 Guideline/standard for nitrite varies with chloride concentrations. #5 #6 Water quality guideline for copper is calculated as 0.094(H)+2Standard for lead is 3 ug/L at H<8 mg/L, or calculated as e(1.273*In(H)-1.460) when H>8 mg/L #7 Guideline for manganese calculated as (0.01102*H)+0.54 #8 #9 Criteria for silver varies with hardness, 0.1 $\mu g/L$ at H<100 mg/L or 3.0 $\mu g/L$ at H>100 mg/L Guideline for zinc calculated as 33+0.75*(H-90) Standard for aluminum varies with pH. Standard is 0.05 mg/L if pH is greater than or equal to 6.5, or calculated as $e^{(1.209-2.426(pH))+0.286K}$ where K=(pH)² Standard for cadmium is calculated as $e^{(1.037n(H)-5.274)}$ #10 #11 н Hardness No applicable standard/guideline or analysis was not conducted. -Concentration is less than the laboratory detection limit indicated. Bold Bold and shaded indicates an exceedance of one of the applicable standards/guidelines. Reported detection limit varied between sampling events, therefore, was not presented with Quality Assurance/ Quality Control results, which presents multiple events within the same table Reported detection limit (RDL)

Nater Quality Assurance and			MAY DUPL	ICATE		1				JUNE	DUPLICATE			1		JU	ULY DUPLICATE				AUGUST DUPLICA	ATE		1			SEPTEMBER DUF	LICATE			OCTOBE	R DUPLICATE		
Parameter	Unit	eported (R	RIVER	PINE RIVER			MANY ISLAND	MANY ISLAND DUPLICATE (DU	3	WILLISTON- SHALLOW (W1-		LOWER SITE C DU	PLICATE		DINOSAUR SHALLOW (DI	DUPLICATE	MIDDLE SITE C	DUPLICATE (DUP		BEATTON RIVER	CATE (DUP 2)	DINOSAUR SHALLOW (DI	DUPLICATE		Reported	EATTON RIVER	PLICATE (DUP 2)	DINOSAUR	DUPLICATE (DUP1) Reported	DINOSAUR SHALLOW (DI	DUPLICATE	MIDDLE	SITE C DUP	JPLICA'
	Dete	ction Limit	,	1)	RPD Analysis	Reported Detection Limit (RDL)	(PDS)	2)	RPD Analysis	SHALLOW)	(,	RPD Analysis RESERVOIR (PR3) (RPD Analysis	Reported Detection Lim	nit SHALLOW (DI	(DUP1) R	RESERVOIR (PR		Reported RPD Analysis Detection Lim	(BEATTON) DUPLI	RPD Analysis			RPD Analysis	Detection Limit	(destron)	RPD Analy			it SHALLOW (DI	(DUP1) RPI	Analysis RESERVOI	IR (PR2)	2)
ntification Number neters		(RDL) 31-M	ay-2016 16273-3	31-May-2016 L1776273-4		(RDL)	1-Jun-2016 L1777078-1	1-Jun-2016 L1777078-2		21-Jun-2016 L1786823-4	21-Jun-2016 L1786823-2	22-Jun-2016 22- L1788272-3 L17	Jun-2016 /88272-8	(RDL)	26-Jul-2016 L1804199-3	26-Jul-2016 L1804199-5	27-Jul-2016 L1804941-3	27-Jul-2016 L1804941-4	(RDL)	25-Aug-2016 25 L1819424-2 L1	-Aug-2016 819424-9	24-Aug-2016 L1820026-4	24-Aug-2016 L1820026-9		(RDL)	20-Sep-2016 L1831599-2	20-Sep-2016 L1831599-3	22-Sep-2016 L1833036-3	22-Sep-2016 (RDL)	24-Oct-2016 L1848454-3	24-Oct-2016 L1848454-5	24-005	2016 2 52-2 L	24-Oct-0 L1848-
ters	0-111-2					<i>.</i>					-6.0	100	10.0	<i>c</i> .		67			5.0	040	017		C 0			007					60			
ity (EC)				12.4		5.0	18.9	19.4		8.2	-	- 13.2		5.0	-	0.7	. 6.8	- 6.2 -	- 5.0				-		2.0	162	162 0	5.3	<5.0 - 5.0 168 1 2.0	<5.0 162	45.0	1 174	0 4	16/
	H Light	500 12 0.10 1	2000	122000	0	0.10	111000 8.14	8 14	0	8.08	. 8.08			0.10	8.05	8.07	0 8.00	7.97	. 0.10	. 7.88		8.11	8.12		0.10	. 7.44	7.43 0	. 8.11	500 8.13 0 0.10 <3000 - 3000	87200	89200	2 8990	5 5	896
Solids (TSS)	P92	3000 2	8700	27300	5	3000	106000	109000	3	<3000	<3000	- 28700	26200 9	3000	<3000	<3000	- 5300	5800		9500	10200 -	<3000	<3000		3000	136000	148000 8	<3000	<3000 - 3000	<3000	<3000	- 1350	00	<30
olids (TDS) ients	POL	13000 12	9000	133000	3	13000	146000	155000	5	118000	120000	2 143000 1		20000	108000	109000	1 108000	113000	5 20000	216000	214000 1	108000	110000		1000		208000 7	115000				0 9780		
rients taCO ₃	μ9%. μ9%.				•																				1000	37100	36800 1 <1000 ·	82500	82800 0 1000	81200	80600	1 8310	00	81i <1i
co.	H9L H9L	-																							1000 1000 1000	<1000 <1000 37100	<1000 - <1000 - 36800 1	<1000 <1000 82500	<1000 - 1000 <1000 - 1000 82800 0 1000	<1000 <1000 81200	<1000 <1000	- <100 - <100 1 8310	00	<1
a CaCO ₃ as N)	μ9L μ9L μ9L	1000				1000		-		79900	79600 <5.0	0 87800 1 - <5.0	87800 0 <5.0 -	1000	75800	76900 <5.0	1 78100	78700 <5.0	1 1000		65800 2 9.8 ·	83700	82600	1	1000	37100	36800 1	82500	82800 0 1000	6.0	80600	1 8310	00	81
	pgc pgL	50	-50	<50		5.0	9.2	49.9		<5.0				5.0	5.3	-			- 8.0	9.2	2.8	-	-		50	<50	<50 .	<5.0 <50	<50 - 50	<50	-50	1 8310 - 61 - 60		
	µgL µgL	500	540	540									<u>.</u>												500	620 66	620 -	-500	<500 - 500 32 3 20	<500	<500		0	-
e (as N)	μg1. μg1.	5.1	21.5	59 21.1 21.1		5.1	53.9 53.9	54.5	1	61.2 61.2	60.6	1 60	61.8 3 61.8 3	5.1	55.9	55.2	1 58.4	56.2	0 5.1	<10	<10 .	69	67.9 67.9 <1.0	2	5.1	6.3	5.2	31 51.8 51.8	<500 - 500 32 3 20 51.7 0 5.1 51.7 0 5.0	47.6	34 47.6 47.6	0 46	0	_
	µg'L	5.0	:1.0	<1.0	- 2	5.0	<1.0	<1.0	1	<1.0	<1.0	1 60.0 - <1.0	61.8 3 <1.0 ·	5.0	<1.0	<1.0		56.2 <1.0	- 1.0	<10	<10 .	<1.0	<1.0	- 2	1.0	<1.0	<1.0 -	<1.0		47.6	47.6	0 461 · <1.0	0	_
te (as N)	µgL µgl	50	165	169		50	2/4	290	6	/9	/5	5 15/	148 -	50	119	106		88	- 50	1010	1050 4	95	89	÷	50	1230	1230 0	92	90 2 50 192 2 90	97	97		4	
(as P)	µgL	1.0 .	:1.0	<1.0					17			. 12	1.1 -	1.0	<1.0	<1.0	- <1.0	<1.0	- 1.0	18.2	16.7 9	<1.0	<1.0		1.0	10.9	11.7 7	<1.0	<1.0 - 1.0	<1.0	<1.0	· <1.	0	
)-Total Dissolved)-Total	μgL μgL μgL μgL μgL μgL	2.0	2.0	<2.0 25.4	8	2.0	3.3	3.7 81.2	17	4.0	2.4 4.9	- 2.1	<2.0 · 26.4 29	2.0	<2.0 4.3	<2.0 3.6	- <2.0	<2.0 6.4	- 2.0	40.3 41.9	37.6 7 42.8 2	<2.0 3.6	<2.0 3.0	- : -	2.0	169 7010	160 5 6750 4	2.3 6.8	-2.0 · 2.0 5.2 27 2.0	-2.0	<2.0 4.3	- 421	5	
2)	µgL µgL µgL ment	500	240	2280	2																				500	40300	40200 0	4190	4280 2 500 11400 1 300	4310	4280	1 438	0	4
	µg'L meq/L	300 1	-	12300			1	-	<u> </u>	<u> </u>															300			11500	11400 1 300	12300	12300	u 1250 1 1.90	3	1
	meg/L N/A		:			+		-	+	-	-			-	-							-				-				1.74	1.78	2 1.8	5	
organic Carbon		600		2222	~		0.400	4055	30	0050	2140		C400 47	500	4400	4000			FA	10100	40500	0000	6070		1000	60700	40000	0000		0000	0000			
anic Carbon (DOC) Carbon (TOC)	H0r H0r	500 3	660	3280 3370	35 8	500	6490 5820	4380 5810	39 0	2370	3110 2730	91 10200 14 3880	5180 65 3980 3	500	4460 3100	4200 2830	9 10300 9 3080	5660 2910	58 500 6 500	46400 42800	46500 0 42900 0	8600 2840	6270 3000	31 5	1000	50700 47400	48800 4 47200 0	6000 2700	8510 35 500 2840 5 500	2800 3180	2800	+ 326 13 302	0	_
-	Int	5.0	753	772	2				1 .	+ .	_			· · ·	· ·			-		- · · ·		-							C 0	26.3	25.2	4 174		
	µg'L	0.50 <	0.50	<0.50			1							- · ·															5.0	<0.50	<0.50 -0.50	4 1/4 - d0.5 - d0.5	60	
	991. 191.	0.50 <	0.50 88	<0.50 89				-	-	-														<u> </u>				-	0.50 - 0.50 20	<0.50	30	- 40.5	60	
	µg"L	1.0	1.0	<1.0																									- 1.0	<1.0	<1.0 <200 <100	· <1.	0	_
	µ91. µ91.	100 4	:100	<100			-	-	-				-										-			-		-	200	<100	<200	- <20	0	
	µgL.	0.0050 0.	0387	0.0358	8								: · · ·																0.0050	0.0145	0.0158 25900	9 0.04	86	-
	pgc pgL	1.0	1.2	1.2	ő																								. 1.0	<1.0	<1.0	· <11	0	-
	µgL µ01	0.30	1.3	0.38									· ·																0.30	<0.30			10 0	_
	µ9°L	30	135	934	0																								1.0 30 0.50	37	<1.0	· <1.1 · 265 · <0.5	3	_
	µg'L	1.0	4.3	4.6			-																							<10	<10	- 1.3	5	
	μ9L μ9L μ9L μ9L μ9L μ9L μ9L μ9L	100 8	130	8130	0								: :	_														-	100	5740	5720 1.36 <0.0050	0 621	0	_
	pgc pgL	0.0050 <0	.0050	<0.0050																									- 0.0050	0.0071	<0.0050	- 0.00	63	
	ugit.	1.0	1.7	<1.0			-	-						-								-							1.0	<1.0	<1.0	· <1.1	0	-
	μgL μgL μgL μgL μgL μgL μgL	300	300	<300																									300	<300	<300	· <30	0	_
	HOL HOL	0.050 0	.435	0.483	10				-													-				-			0.050	<2000	<300 <2000 0.248 2070	- <200 8 0.24	30 17	
	µgL µgl	50 3	370	2350	1								: :																50 0.020	2100	2070 <0.020	1 232 · <0.0		
	µgL	2000 2	000	2000																									- 2000	<2000	<2000	- <200	00	
	μg% μg% μg%	5.0 0.20 <	0.20	111 <0.20	1		-			-				-									-			-			· · · 2000 · · · · 5.0 · · · 0.20	101 <0.20	100	1 101 - <0.2	1	-
	μgt	0.50 <	0.50	<0.50																									0.50	<0.50	<0.50	<0.5	50	
	μgt. μgt. μgt. μgt.	0.20	0.26	0.28			-				-				-														0.20	0.40	<10 0.41 <0.50	· <10 · 0.4	4	-
	µgL.	0.50	2.65	2.69	1																								0.50	<0.50	<0.50	- 1.2	4	_
la la	μgτ. μgτ. μgτ. μgτ.			~~																		-						-	- 5.0		-0.0			_
	µgL µgL	5.0 0.50 <	9.2 0.50	7.9 <0.50				-	-	-	+ :		+ + + +		-							-							5.0	<5.0	<5.0 <0.50	· ජා	0	
	µ91.	0.50	0.50	<0.50																									0.50 0.50	<0.50	<0.50 <0.50	· 40.5	60 60	_
	μgτ μgτ μgτ	1.0	:1.0	<1.0		<u> </u>			1																				20	30 <1.0	30	· 31	0	-
	H01	0.050 d	100	<0.050			-		+ - : -		+ -: -		: :	1								-							200	<200	<200	. <20	0	
	H8r H8r	0.0050 0.	0107	0.0100	7																								100		<100	- <10		
	μgL μgL μgL μgL μgL	100 3	5000 :1.0	35700	1			-	+ :													-		- : -					100	25600	26300	3 2640	00	-
	µ9°L	0.30 <	0.30	-0.30	•				•															•					0.30		<1.0	· <1.1		
	491. 491. 491. 491. 491. 491. 491. 491. 491. 491. 491. 491.	30	c30	<1.0		<u> </u>	1			1																			1.0	<1.0	1.1 <30	. 30)	
	ugt_	0.50 <	0.50	<0.50 3.9				+ :-	1 .	+	+				+ - : -	\vdash						-	+			T			0.50			- <0.5	50	
	H0r H0r	100 7	910	7880	0																								- 1.0	5620	<0.50 <1.0 5740 0.16 0.0077	· <1.1 2 580 · 0.2	0	2
	H9L H9L	0.10	.0050	1.37	5		-	-			+ :									<u> </u>		-						-	- 100 - 0.10 - 0.050	0.24	0.16	- 0.2		
	µg/L	1.0	1.0	<1.0																									1.0	<1.0	<1.0	· <1.		
	P9°L	300	300	<300			<u> </u>			1																			1.0	<300	<300	. 30	0	
	μgτ. μgτ. μgτ. μgτ.	2000 <	2000	<2000			-		+ - : -		+ -: -		: :	1								-							2000	<2000	<2000	- <200 8 0.23 1 205	00	-
	h8r h8r	50 1	080	1040	4																								0.050	2100	0.223 2070	1 205	0	-
	ug"L	0.020 d	2000	<0.020						-												-		<u> </u>				-						
	H0r H0r	5.0	109	109	0																								5.0	97.7	<2000 99.4 <0.20	- <200 2 101 - <0.2		_
	μοτ μοτ μοτ μοτ μοτ μοτ μοτ	0.20 <	0.20	<0.20			-	-			+ :									<u> </u>		-						-			<0.20	- <0.2		-
	µg"L	10	<10	<10																									10 - 0.20	<10 0.41	<10 0.35	- <0.5 - <10 - 0.4		_
	µgr. µgl.	0.50 <	0.50	<0.21			-	-		1				-	-				-										0.20	<0.50	<0.50	· 0.4	60	-
	μg%. μg%																			•									5.0	<5.0	<0.50 <5.0	. 6	0	_
	H9L					0.010		1.93	10	0.474	0.468			0.040	0.070	0.000		-						1						-	1			—

....y unetral results, which presents multiple events within the same table

No applicable sensitivity of the -RPD

FILE: ENV.VENV03118-01 | APRIL 2017 | ISSUED FOR USE

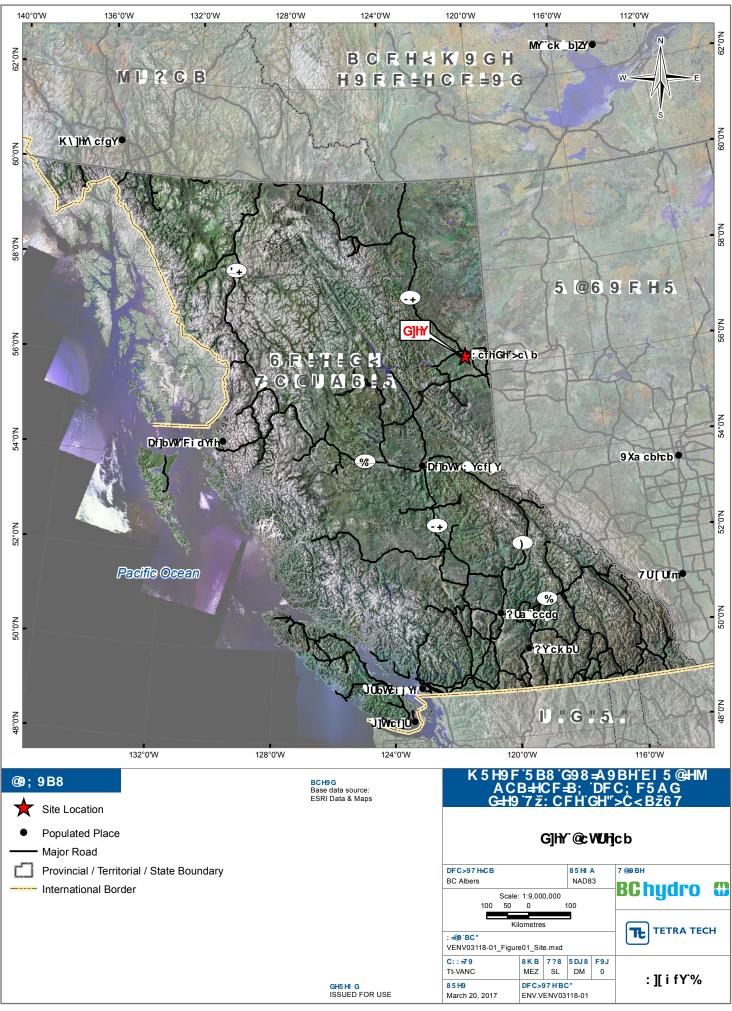
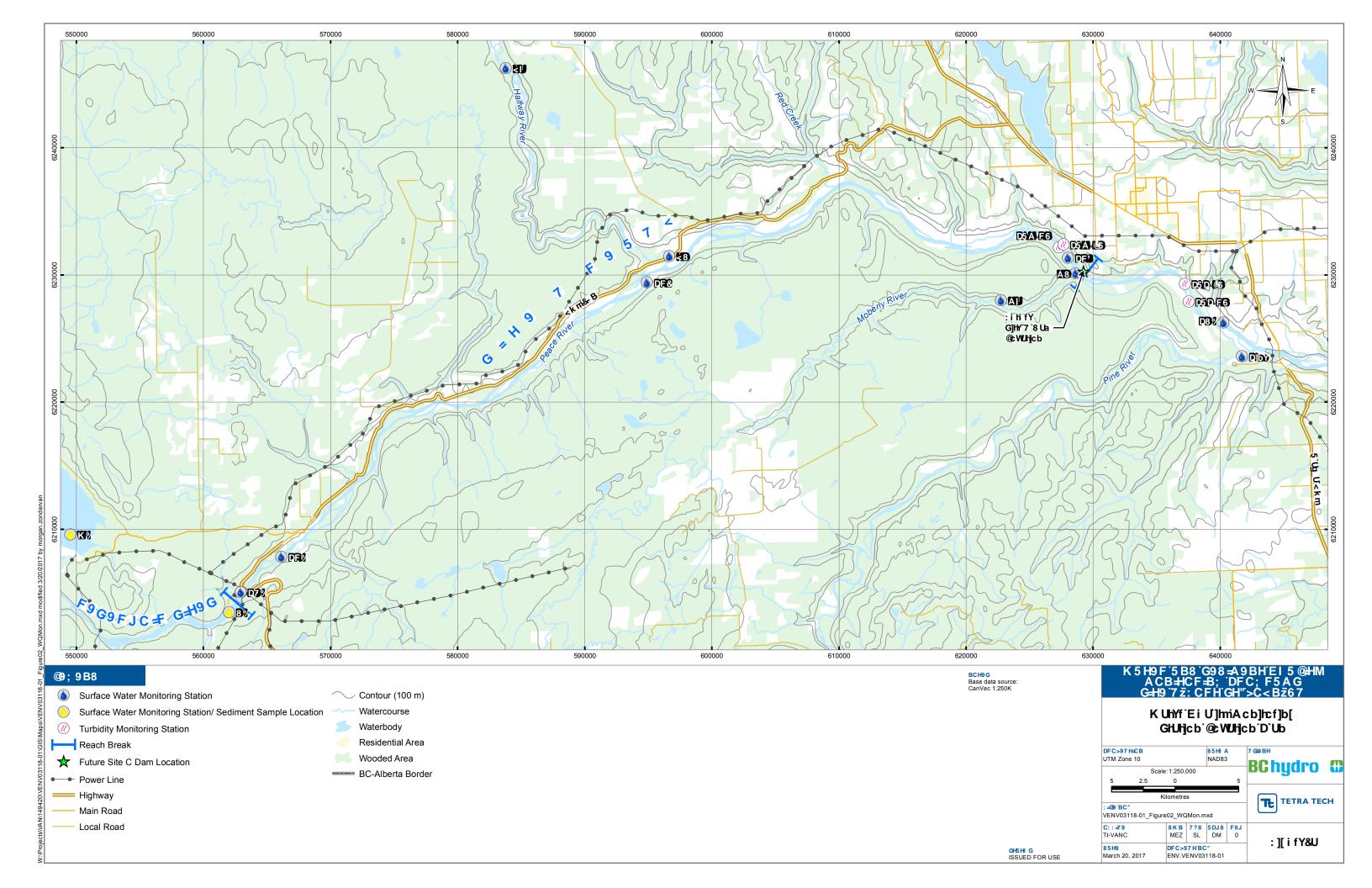
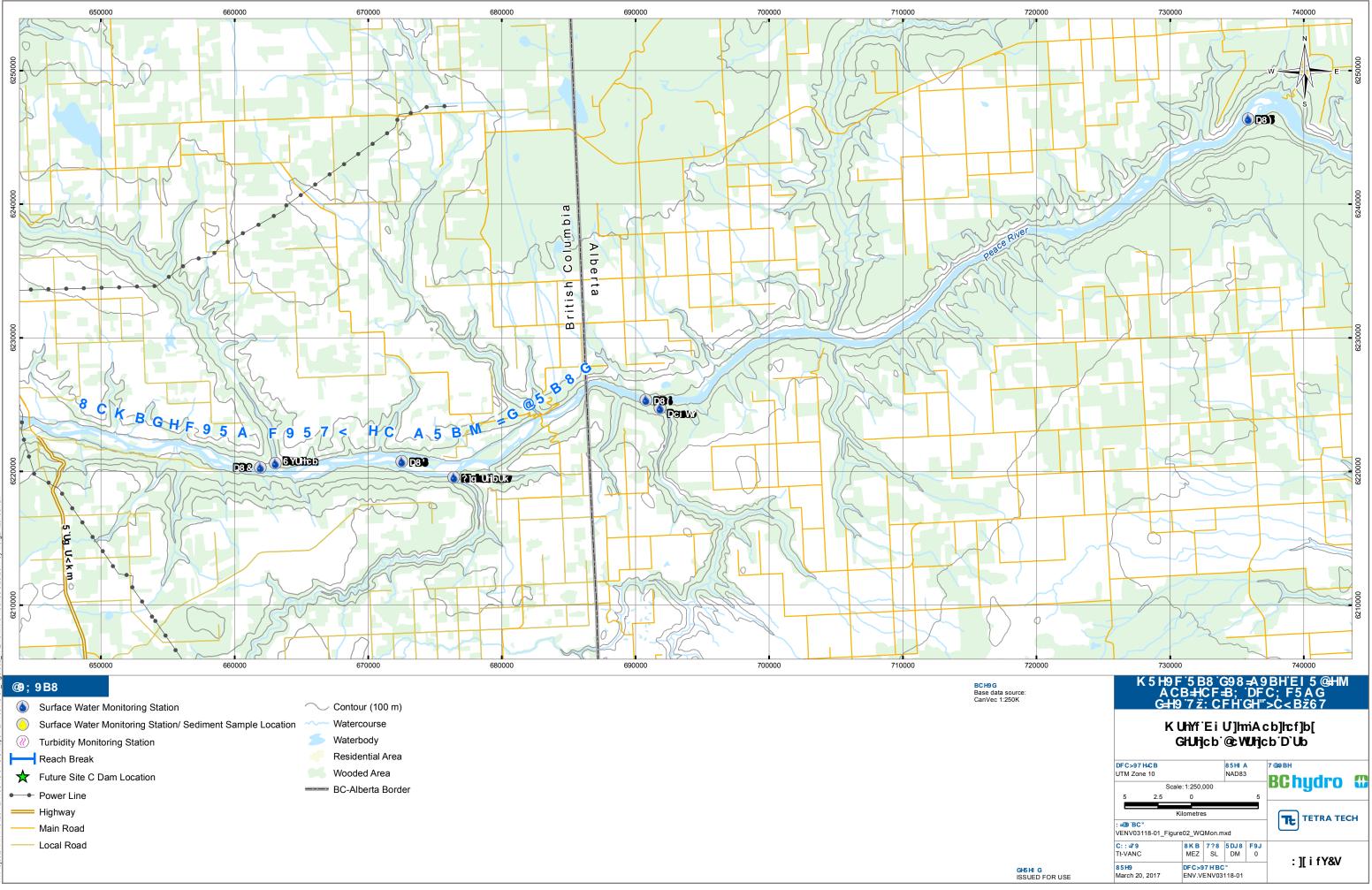

FIGURES

Figure 1 Site Location


Figure 2a Water Quality Monitoring Station Location Plan


Figure 2b Water Quality Monitoring Station Location Plan

W:\Projects\VAN\149420\VENV03118-01\GIS\Maps\VENV03118-01_Figure01_Site.mxd modified 3/20/2017 by morgan.zondervan

Tetra Tech EBA Inc. ATTN: Danielle MacDonald # 1 - 4376 Boban Drive Nanaimo BC V9T 6A7 Date Received: 29-MAY-16 Report Date: 10-JUN-16 15:32 (MT) Version: FINAL

Client Phone: 250-756-2256

Certificate of Analysis

Lab Work Order #: L1775119

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED VENV03118-01 14-487052

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1775119 CONTD.... PAGE 2 of 8 10-JUN-16 15:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1775119-1 WATER 29-MAY-16 11:00 (D1) DINOSAUR RESERVOIR	L1775119-2 WATER 29-MAY-16 13:15 (W1) WILLISTON RESERVOIR		
Grouping	Analyte				
WATER					
Physical Tests	Colour, True (CU)	10.3	8.6		
	Conductivity (umhos/cm)	179	179		
	Hardness (as CaCO3) (ug/L)	99500	99100		
	pH (pH units)	7.78	7.80		
	Total Suspended Solids (ug/L)	<3000	<3000		
	Total Dissolved Solids (ug/L)	105000	112000		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (ug/L)	77300	78800		
	Ammonia, Total (as N) (ug/L)	<5.0	<5.0		
	Nitrate and Nitrite (as N) (ug/L)	75.8	72.8		
	Nitrate (as N) (ug/L)	75.8	72.8		
	Nitrite (as N) (ug/L)	<1.0	<1.0		
	Total Kjeldahl Nitrogen (ug/L)	115	107		
	Total Nitrogen (ug/L)	140	136		
	Orthophosphate-Dissolved (as P) (ug/L)	<1.0	<1.0		
	Phosphorus (P)-Total Dissolved (ug/L)	<2.0	<2.0		
	Phosphorus (P)-Total (ug/L)	4.1	3.4		
Organic / Inorganic Carbon	Dissolved Organic Carbon (ug/L)	2630	2420		
	Total Organic Carbon (ug/L)	3630	3400		
Total Metals	Aluminum (Al)-Total (ug/L)	26.5	27.0		
	Antimony (Sb)-Total (ug/L)	<0.50	<0.50		
	Arsenic (As)-Total (ug/L)	<0.50	<0.50		
	Barium (Ba)-Total (ug/L)	33	32		
	Beryllium (Be)-Total (ug/L)	<1.0	<1.0		
	Bismuth (Bi)-Total (ug/L)	<200	<200		
	Boron (B)-Total (ug/L)	<100	<100		
	Cadmium (Cd)-Total (ug/L)	0.0180	0.0146		
	Calcium (Ca)-Total (ug/L)	29500	30000		
	Chromium (Cr)-Total (ug/L)	<1.0	<1.0		
	Cobalt (Co)-Total (ug/L)	<0.30	<0.30		
	Copper (Cu)-Total (ug/L)	<1.0	<1.0		
	Iron (Fe)-Total (ug/L)	40	32		
	Lead (Pb)-Total (ug/L)	<0.50	<0.50		
	Lithium (Li)-Total (ug/L)	<1.0	<1.0		
	Magnesium (Mg)-Total (ug/L)	6060	6180		
	Manganese (Mn)-Total (ug/L)	2.28	1.89		
	Mercury (Hg)-Total (ug/L)	<0.0050	<0.0050		

L1775119 CONTD.... PAGE 3 of 8 10-JUN-16 15:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1775119-1 WATER 29-MAY-16 11:00 (D1) DINOSAUR RESERVOIR	L1775119-2 WATER 29-MAY-16 13:15 (W1) WILLISTON RESERVOIR		
Grouping	Analyte				
WATER					
Total Metals	Molybdenum (Mo)-Total (ug/L)	<1.0	<1.0		
	Nickel (Ni)-Total (ug/L)	<1.0	<1.0		
	Phosphorus (P)-Total (ug/L)	<300	<300		
	Potassium (K)-Total (ug/L)	<2000	<2000		
	Selenium (Se)-Total (ug/L)	0.249	0.230		
	Silicon (Si)-Total (ug/L)	2180	2230		
	Silver (Ag)-Total (ug/L)	<0.020	<0.020		
	Sodium (Na)-Total (ug/L)	<2000	<2000		
	Strontium (Sr)-Total (ug/L)	108	111		
	Thallium (TI)-Total (ug/L)	<0.20	<0.20		
	Tin (Sn)-Total (ug/L)	<0.50	<0.50		
	Titanium (Ti)-Total (ug/L)	<10	<10		
	Uranium (U)-Total (ug/L)	0.46	0.48		
	Vanadium (V)-Total (ug/L)	<0.50	<0.50		
	Zinc (Zn)-Total (ug/L)	<5.0	<5.0		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD		
	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (Al)-Dissolved (ug/L)	<5.0	<5.0		
	Antimony (Sb)-Dissolved (ug/L)	<0.50	<0.50		
	Arsenic (As)-Dissolved (ug/L)	<0.50	<0.50		
	Barium (Ba)-Dissolved (ug/L)	32	31		
	Beryllium (Be)-Dissolved (ug/L)	<1.0	<1.0		
	Bismuth (Bi)-Dissolved (ug/L)	<200	<200		
	Boron (B)-Dissolved (ug/L)	<100	<100		
	Cadmium (Cd)-Dissolved (ug/L)	0.0104	0.0088		
	Calcium (Ca)-Dissolved (ug/L)	29800	29800		
	Chromium (Cr)-Dissolved (ug/L)	<1.0	<1.0		
	Cobalt (Co)-Dissolved (ug/L)	<0.30	<0.30		
	Copper (Cu)-Dissolved (ug/L)	<1.0	<1.0		
	Iron (Fe)-Dissolved (ug/L)	<30	<30		
	Lead (Pb)-Dissolved (ug/L)	<0.50	<0.50		
	Lithium (Li)-Dissolved (ug/L)	<1.0	<1.0		
	Magnesium (Mg)-Dissolved (ug/L)	6070	5990		
	Manganese (Mn)-Dissolved (ug/L)	0.84	0.65		
	Mercury (Hg)-Dissolved (ug/L)	0.0062	<0.0050		
	Molybdenum (Mo)-Dissolved (ug/L)	<1.0	<1.0		
	Nickel (Ni)-Dissolved (ug/L)	<1.0	<1.0		

L1775119 CONTD.... PAGE 4 of 8 10-JUN-16 15:32 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1775119-1 WATER 29-MAY-16 11:00 (D1) DINOSAUR RESERVOIR	L1775119-2 WATER 29-MAY-16 13:15 (W1) WILLISTON RESERVOIR		
Grouping	Analyte				
WATER					
Dissolved Metals	Phosphorus (P)-Dissolved (ug/L)	<300	<300		
	Potassium (K)-Dissolved (ug/L)	<2000	<2000		
	Selenium (Se)-Dissolved (ug/L)	0.258	0.253		
	Silicon (Si)-Dissolved (ug/L)	2140	2160		
	Silver (Ag)-Dissolved (ug/L)	<0.020	<0.020		
	Sodium (Na)-Dissolved (ug/L)	<2000	<2000		
	Strontium (Sr)-Dissolved (ug/L)	107	107		
	Thallium (TI)-Dissolved (ug/L)	<0.20	<0.20		
	Tin (Sn)-Dissolved (ug/L)	<0.50	<0.50		
	Titanium (Ti)-Dissolved (ug/L)	<10	<10		
	Uranium (U)-Dissolved (ug/L)	0.41	0.41		
	Vanadium (V)-Dissolved (ug/L)	<0.50	<0.50		
	Zinc (Zn)-Dissolved (ug/L)	<5.0	6.5		

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Alkalinity, Total (as CaCO3)	В	L1775119-1, -2
Method Blank	Alkalinity, Total (as CaCO3)	В	L1775119-1, -2
Duplicate	Aluminum (AI)-Dissolved	DLA	L1775119-1, -2
Duplicate	Antimony (Sb)-Dissolved	DLA	L1775119-1, -2
Duplicate	Beryllium (Be)-Dissolved	DLA	L1775119-1, -2
Duplicate	Chromium (Cr)-Dissolved	DLA	L1775119-1, -2
Duplicate	Lead (Pb)-Dissolved	DLA	L1775119-1, -2
Duplicate	Selenium (Se)-Dissolved	DLA	L1775119-1, -2
Duplicate	Silver (Ag)-Dissolved	DLA	L1775119-1, -2
Duplicate	Thallium (TI)-Dissolved	DLA	L1775119-1, -2
Duplicate	Tin (Sn)-Dissolved	DLA	L1775119-1, -2
Duplicate	Vanadium (V)-Dissolved	DLA	L1775119-1, -2
Duplicate	Aluminum (Al)-Dissolved	DLA	L1775119-1, -2
Duplicate	Beryllium (Be)-Dissolved	DLA	L1775119-1, -2
Duplicate	Chromium (Cr)-Dissolved	DLA	L1775119-1, -2
Duplicate	Cobalt (Co)-Dissolved	DLA	L1775119-1, -2
Duplicate	Copper (Cu)-Dissolved	DLA	L1775119-1, -2
Duplicate	Lead (Pb)-Dissolved	DLA	L1775119-1, -2
Duplicate	Molybdenum (Mo)-Dissolved	DLA	L1775119-1, -2
Duplicate	Nickel (Ni)-Dissolved	DLA	L1775119-1, -2
Duplicate	Silver (Ag)-Dissolved	DLA	L1775119-1, -2
Duplicate	Tin (Sn)-Dissolved	DLA	L1775119-1, -2
Duplicate	Vanadium (V)-Dissolved	DLA	L1775119-1, -2
Duplicate	Nitrite (as N)	DLDS	L1775119-1, -2
Duplicate	Cadmium (Cd)-Dissolved	DLDO	L1775119-1, -2
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Iron (Fe)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Total Nitrogen	MS-B	L1775119-1, -2
Matrix Spike	Total Nitrogen	MS-B	L1775119-1, -2
	-	MS-B	L1775119-1, -2
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	-
Matrix Spike	Silicon (Si)-Dissolved		L1775119-1, -2
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Silicon (Si)-Total	MS-B	L1775119-1, -2
Matrix Spike	Molybdenum (Mo)-Total	MS-B	L1775119-1, -2
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Antimony (Sb)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Arsenic (As)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775119-1, -2
Matrix Spike	Molybdenum (Mo)-Dissolved	MS-B	L1775119-1, -2

Qualifiers for Individual Parameters Listed:

Quanners 10		antelers			
Qualifier	Description				
В	Method Blar reliable.	nk exceeds	s ALS DQO. All associated sampl	e results are at least	5 times greater than blank levels and are considered
DLA	Detection Li	mit adjust	ed for required dilution		
DLDS	Detection Li	mit Raiseo	d: Dilution required due to high Dist	solved Solids / Electr	rical Conductivity.
DLM	Detection Li	mit Adjust	ed due to sample matrix effects (e	.g. chemical interfere	ence, colour, turbidity).
MS-B	Matrix Spike	recovery	could not be accurately calculated	I due to high analyte	background in sample.
est Method	References:				
ALS Test Cod		Matrix	Test Description		Method Reference**
ALK-TITR-WP	· •	Nater	Alkalinity, Total (as CaCO3)		APHA 2320B
	alkalinity is deter				icarbonate, carbonate and hydroxide components of essive HCO3- and H2CO3 endpoints indicated
ANIONS-N+N-	CALC-VA	Nater	Nitrite & Nitrate in Water (Calcul	lation)	EPA 300.0
		calculated	parameter. Nitrate and Nitrite (as	,	Nitrate (as N).
	· · · ·			, , ,	
,	is carried out us	01	Dissolved organic carbon by cor dures adapted from APHA Methoo ugh a 0.45 micron membrane filter	d 5310 "Total Organic	APHA 5310B TOTAL ORGANIC CARBON (TOC) Carbon (TOC)". Dissolved carbon (DOC) fractions are
CARBONS-TC	, ,	Nater	Total organic carbon by combus		APHA 5310B TOTAL ORGANIC CARBON (TOC)
	-		dures adapted from APHA Method		
CHLOROA-F-	VA V	Nater	Chlorophyll a by Fluorometer		EPA 445.0
			modified from EPA Method 445.0. icidification procedure. This metho		termined by a routine acetone extraction followed with terferences from chlorophyll b.
COLOUR-TRU	JE-VA	Nater	Colour (True) by Spectrometer		BCMOE Colour Single Wavelength
is determined method.	d by filtering a sa	mple thro	ugh a 0.45 micron membrane filter	r followed by analysis	anual "Colour- Single Wavelength." Colour (True Colour s of the filtrate using the platinum-cobalt colourimetric eived (at time of testing), without pH adjustment.
			l is recommended.		
EC-WP	V	Nater	Conductivity		APHA 2510B
	of an aqueous so Ily inert electrode		ers to its ability to carry an electric	current. Conductant	ce of a solution is measured between two spatially fixed
HARDNESS-C	ALC-VA	Nater	Hardness		APHA 2340B
			ss) is calculated from the sum of C ncentrations are preferentially used		ium concentrations, expressed in CaCO3 equivalents. lculation.
HG-D-CVAA-V	'A \	Nater	Diss. Mercury in Water by CVA	AS or CVAFS	APHA 3030B/EPA 1631E (mod)
			preserved with hydrochloric acid, th y CVAAS or CVAFS.	nen undergo a cold-ox	xidation using bromine monochloride prior to reduction
HG-T-CVAA-V	A V	Nater	Total Mercury in Water by CVA	AS or CVAFS	EPA 1631E (mod)
Water sample	es undergo a col	ld-oxidatio	n using bromine monochloride pric	or to reduction with st	tannous chloride, and analyzed by CVAAS or CVAFS.
MET-D-CCMS	-VA V	Nater	Dissolved Metals in Water by Cl	RC ICPMS	APHA 3030B/6020A (mod)
Water sample	es are filtered (0	.45 um), p	preserved with nitric acid, and analy	yzed by CRC ICPMS	
Method Limit	ation (re: Sulfur)	: Sulfide a	nd volatile sulfur species may not	be recovered by this	method.
MET-DIS-ICP-	VA V	Nater	Dissolved Metals in Water by IC	POES	EPA SW-846 3005A/6010B
American Pu States Enviro	blic Health Asso	ciation, ar	nd with procedures adapted from "	Test Methods for Eva	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United d 3005A) and analysis by inductively coupled plasma -
MET-T-CCMS		Nater	Total Metals in Water by CRC IC	CPMS	EPA 200.2/6020A (mod)
			and hydrophlaria apida, and apply		

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Total Metals in Water by ICPOES EPA SW-846 3005A/6010B **MET-TOT-ICP-VA** Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). N-T-COL-VA APHA4500-P(J)/NEMI9171/USGS03-4174 Water Total Nitrogen in water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. NH3-F-VA Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) Water This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ, Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Total P in Water by Colour APHA 4500-P Phosphorus P-T-PRES-COL-VA Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Total Dissolved P in Water by Colour P-TD-COL-VA Water APHA 4500-P Phosphorous This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Dissolved Phosphorus is determined colourimetrically after persulphate digestion of a sample that has been lab or field filtered through a 0.45 micron membrane filter. PH-WP Water pН APHA 4500H The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode. PO4-DO-COL-VA APHA 4500-P Phosphorus Water Diss. Orthophosphate in Water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. **TDS-VA** Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. TKN-F-VA Water TKN in Water by Fluorescence APHA 4500-NORG D This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection. TSS-VA Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC Water This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WP ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

VA

14-487052

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

A S Equironmental	ustody (COC) / Request Form Toll Free: 1 800 6	-		L17751*	19-CC						coc	: Numb		4 - 7		70	52	
Report To		Report Format	/ Distribution		I		Select S	ervice L	evel Bel	ow (Rus	sh Tuma	round Tir	ne (TAT) i	is not ava	ilable for	rall tests)		+
	Select Report F			FOD (DIGITAL)	R			Standard						o not avo				+
Contact: DANIEILE MACDONALD		QC) Report with Rep			P			2-4 busin										
Company: TETRA TECH EBA INC Contact: DANIELLE MACDONAYD Address: 14940-123 AVE EDITONION AB		leport - provide details bel		FAX	E E2	Ē	mergena	cy (1-2 b	wsiness (days if re	eceived l	by 3pm))am – cor	itact ALS	for surch	harge.		
Phone: 780 886 3055	Email 1 or Fax	danielle.ma		etratech.com	Specif	fy Date I	Requir	ed for l	E2,E o	r P:								1
	Email 2	dave.hunte	rebchyd	tre com						A	nalysi	s Requ	est					
Involce To Same as Report To Ves T No		Invoice Di				Ir	ndicate F	iltered (F	°), Prese	rved (P)	or Filter	ed and P	reserved	(F/P) belo	WC			Т
Copy of Invoice with Report	Select Invoice D	istribution: 🗹	EMAIL MAI	L FAX							(Ax							
Company: same as above	Email 1 or Fax	same as r	mail 1.	+2				Ì		~	2	Ϋ́ς.						
Contact:	Email 2				1			İ			3	1	l j			Í		<i>"</i>
Project Information	distant distant	I and Gas Require	d Fields (client us	() and ride to the state	1. 7				2	<u> 8</u>	ゴゴ	13.0	h				1	Number of Containers
ALS Quote #: 055655	Approver ID:		Cost Center:	2.2.0.0.001 1.0.00	1271	્રી	_		14:40	ିଶ୍	1	173						Intai
JOD #: VENV03118-01	GL Account:		Routing Code:		<u>[]</u>	Ĩ	$\widehat{\mathbf{a}}$	\sim	_:≿(- 27	ിക്	i i					ပို
PO/AFE:	Activity Code:		<u> </u>	•	23		\leq	σ	× ا	<u>₂</u> <	N	÷		į				e e
LSD:	Location:					-r	Ш.		- <u>¥</u>	EI	SR	S.						Ě
ALO Lat Work Order # (tab use only) (1775119	ALS Contact:		Sampler	authier	5	Ch lorop	5		niha	م ج	No.) العمار ا	ET F	ļ				ž
	1	Date	Time		Кğ	닅	200	Ř	NH3,	≶	5-2	N F	11	Í				
ALS Dample Identification and/or Coordinates (labuae only) (This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	FS	ै	<u>, </u>	<u></u>	ź		Ξ	و ي						
(DI) DINOSAUR RESERV	01-	29-05-16	11:00A	WATER	Ĩ		オ	~	V				<u> </u>		+			đ
(WI) WILLISTON RESERVE	<u>vi</u>	29-05-16	13:15	WATER		シレ	レ	1		~								8
	~~~								-			-						4
																		+
					<b> </b>	+												+
		-																-
					1													
· · · · · · · · · · · · · · · · · · ·																		T
				· .	2	SD	ml	-										$\perp$
* chloroph	$\parallel a \rightarrow$	not filter	ed . colle	kted in	<u> </u>	las	<u>h</u> (	- 4	ro A	He	C	ove	rea	in		<u>, 11</u>		
	)				'			1										
Drinking Water (DW) Samples ¹ (client use) Spe	cial Instructions / Spe	cify Criteria to add on	report (client Use)			- 00 PP - 0. (16, 7 %		at the second	હે. (ન્			bservat		lab usu Yes	only)	No		
	sarahsimo	nebclaudur	7.(1)		Frozer tce pa		Yes		No	_		dy seal		Yes		No		
Are samples taken from a Regulated DW System? TYes IVNo Are samples for human drinking water use? TYes IVNo Please refe	soouthie	2014AL-	trail or	n n	Coolin	ig Initiat	ed	X										
Are samples for human drinking water use?	ronv ill	- avi nent	Arriun . Co				OLIN	emiter.	ATURES	.C:(%)	SURVICE	Xelliy Mart	INAL CO	oler te	MPERA	TURES	Maggine's	2315
TYes Nitro Please relev	rto OSSI	oss for Mo	y Samplir	28 Svite	8	3												
SHIPMENT RELEASE (client use)	INITIAL	SHIPMENTRECERT	TON (leb use only		9766M			in en	NAL SI	IPME	_		ON:(lat			ж <i>ар</i> ынын	e area s	<u>.</u>
Referenced by: Hyllig GAUTHIER HAY 29/16 3:45 pm	eived by:	Geoff	Date: Muy29/16	Time: 15145-	Recel	lved by:						Date:		Time	s:			
REFER 70 BLOW PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	E - LABORATORY	COPY YELLO	V - CLIE	INT COF	Ϋ́					NA	- FM-0325e v05	9 Front/OAL Jane	Jary 2014			

Failure of control is an control of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



Tetra Tech EBA Inc. ATTN: Danielle MacDonald # 1 - 4376 Boban Drive Nanaimo BC V9T 6A7 Date Received:30-MAY-16Report Date:08-JUN-16 10:19 (MT)Version:FINAL

Client Phone: 250-756-2256

# Certificate of Analysis

Lab Work Order #: L1775540

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED VENV0309S-02.002 14-487050

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

L1775540 CONTD.... PAGE 2 of 4 08-JUN-16 10:19 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1775540-1 WATER (SURFA 30-MAY-16 10:40 PEACE 1 (PR1)	L1775540-2 WATER (SURFA 30-MAY-16 12:10 PEACE 2 (PR2)	L1775540-3 WATER (SURFA 30-MAY-16 12:40 HALFWAY RIVER (HD-D)	
Grouping	Analyte				
WATER					
Bacteriological Tests	E. coli (MPN/100mL)	1	<1	32	
	HPC (CFU/1mL)	<1	<1	11	
	Coliform Bacteria - Total (MPN/100mL)	3	8	613	
Volatile Organic Compounds	Benzene (ug/L)	<0.50	<0.50	<0.50	
	Ethylbenzene (ug/L)	<0.50	<0.50	<0.50	
	Methyl t-butyl ether (MTBE) (ug/L)	<0.50	<0.50	<0.50	
	Styrene (ug/L)	<0.50	<0.50	<0.50	
	Toluene (ug/L)	<0.50	<0.50	<0.50	
	ortho-Xylene (ug/L)	<0.50	<0.50	<0.50	
	meta- & para-Xylene (ug/L)	<0.50	<0.50	<0.50	
	Xylenes (ug/L)	<0.75	<0.75	<0.75	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	92.9	100.3	103.0	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	94.5	97.0	98.1	
Organochlorine Pesticides	Aldrin (ug/L)	<0.050	<0.050	<0.050	
	alpha-BHC (ug/L)	<0.050	<0.050	<0.050	
	beta-BHC (ug/L)	<0.10	<0.10	<0.10	
	Lindane (gamma - BHC) (ug/L)	<0.010	<0.010	<0.010	
	delta-BHC (ug/L)	<0.050	<0.050	<0.050	
	cis-Chlordane (alpha) (ug/L)	<0.050	<0.050	<0.050	
	trans-Chlordane (gamma) (ug/L)	<0.050	<0.050	<0.050	
	2,4'-DDD (ug/L)	<0.0050	<0.0050	<0.0050	
	4,4'-DDD (ug/L)	<0.0050	<0.0050	<0.0050	
	2,4'-DDE (ug/L)	<0.0050	<0.0050	<0.0050	
	4,4'-DDE (ug/L)	<0.0050	<0.0050	<0.0050	
	2,4'-DDT (ug/L)	<0.0050	<0.0050	<0.0050	
	4,4'-DDT (ug/L)	<0.0050	<0.0050	<0.0050	
	Dieldrin (ug/L)	<0.050	<0.050	<0.050	
	Endosulfan I (ug/L)	<0.0020	<0.0020	<0.0020	
	Endosulfan II (ug/L)	<0.0020	<0.0020	<0.0020	
	Endosulfan Sulfate (ug/L)	<0.0020	<0.0020	<0.0020	
	Endrin (ug/L)	<0.020	<0.020	<0.020	
	Heptachlor (ug/L)	<0.10	<0.10	<0.10	
	Heptachlor Epoxide (ug/L)	<0.0030	<0.0030	<0.0030	
	Methoxychlor (ug/L)	<0.030	<0.030	<0.030	
	Mirex (ug/L)	<0.050	<0.050	<0.050	
	cis-Nonachlor (ug/L)	<0.050	<0.050	<0.050	

L1775540 CONTD.... PAGE 3 of 4 08-JUN-16 10:19 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1775540-1 WATER (SURFA 30-MAY-16 10:40 PEACE 1 (PR1)	L1775540-2 WATER (SURFA 30-MAY-16 12:10 PEACE 2 (PR2)	L1775540-3 WATER (SURFA 30-MAY-16 12:40 HALFWAY RIVER (HD-D)	
Grouping	Analyte					
WATER						
Organochlorine Pesticides	trans-Nonachlor (ug/L)		<0.050	<0.050	<0.050	
	Oxychlordane (ug/L)		<0.050	<0.050	<0.050	

L1775540 CONTD.... PAGE 4 of 4 08-JUN-16 10:19 (MT) Version: FINAL

#### **Test Method References:** ALS Test Code Method Reference** Matrix **Test Description** APHA METHOD 9223 **ECOLI-COLI-ENV-VA** Water E.coli by Colilert This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table. **HPC-PP-ENV-VA** HPC by pour plate APHA METHOD 9215 Water This analysis is carried out using procedures adapted from APHA Method 9215 "Heterotropic Plate Count". Heterotropic plate count (standard plate count or total plate count) is determined by culturing and colony counting using the pour plate method with a 48 hour incubation period. The test measures colonies formed by heterotropic bacteria. OCP1-LL-SF-ECD-VA Water OCP-1 in Water by GCECD EPA METHODS 3510, 3610, 3630, 3660, 8081 This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3510, 3610, 3630, 3660 & 8081, published by the United States Environmental Protection Agency (EPA). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to hexane followed by one or more of the following clean-up procedures (if required): alumina clean-up, silica gel clean-up and/or sulphur clean-up. The final extract is analysed by dual capillary column gas chromatography with electron capture detection (GC/ECD) and/or mass spectrometric detection (GC/MS). **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert **APHA METHOD 9223** This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is guantified by a statistical estimation of bacteria density (most probable number). VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA 5021A/8260C The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA Water VOC7 and/or VOC Surrogates for Waters EPA 5035A/5021A/8260C **XYLENES-CALC-VA** Water Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xylenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. ** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

### Laboratory Definition Code Laboratory Location

### Chain of Custody Numbers:

14-487050

### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878



 COC Number: 14 - 4870	50
Page 1 of 1	

Report To	Report Format			Sel	ect Service I	Level Be	low (Rush Tu	maround Tin	ne (TAT) is no	t available f:	or all tests)		
Company: Tetra Tech EBA Inc Contact: Danielle Maeronald	Select Report Format:	DF EXCEL EDD (DIGITAL)	R	Reg	ular (Standar	d TAT if i	eceived by 3p	) (mc					
Contact Danielle Machonald	Quality Control (QC) Report with Rep	oort 🚺 🖌 es 🗌 No	P [	Prio	rity (2-4 bush	ness days	if received by	y 3pm)					
Address: 14940-123 AVE	Criteria on Report - provide details bei		E [	Eme	ergency (1-2 t	business	days if receive	ed by 3pm)					
Address: 14940-123 AVE Edmonton AB		MAIL MAIL FAX	E2 [	Sam	ie day or wee	kend em	ergency if rea	ceived by 10	)am – contact	ALS for sur	charge.		
Phone: 780 886 3055	Email 1 or Fax clamelle, ma	edonald etetratech o	Scecify	Date Re	equired for	E2,E o	r P;						$\Box$
	Email 2 sarah. Simon@	behydin, com					Analy	sis Requ	iest				
Invoice To Same as Report To THYes IT No	Invoice Di	stribution		India	ate Filtered (	F), Prese	rved (P) or Fil	tered and P	reserved (F/P	) below			Π
Copy of Invoice with Report IV res 🔽 No	Select Invoice Distribution:	EMAIL MAIL FAX	0-	0									
Company:		rs above							Į				
Contact:	Email 2	· · · · ·	1 <u>ĕ</u> l′		1			ĺĺ	Í				
Project Information	Oll and Gas Require	d Fields (client use)	<b>-</b>	OC PI								Number of Containers	
ALS QUOLO #: 05393 Job #: VENV0309S-02.002	Approver ID:	Cost Center:	1-3	X								ntai	
JOD #: VENNO2099-02,002	GLAccount:	Routing Code:	ן <u>ט</u> ן	2								Ŭ	1
PO/AFE:	Activity Code:	·····	اتد 1	3								er o	;
LSD:	Location:		1-7	- <del>.</del> ~								e e	
		DiMaeDonald	المق	3.	<u> </u>							ž	1
ALS Lab Work Order # (leb use only) U775540	ALS Contact:	Sampler: P. Gauthier	Total Coline. Colin HPC	Pestivides	DIEX								
ALS Sample # Sample Identification and/or Coordinates	Date	Time	- 左	31						1			
(This description with appear on the report)	(dd-mmm-yy)	(hh:mm) Sample Type	14	٩ <u></u>						ĺ			
Peacel (PRI)	30.05-16	10:40 Mater		: .				+ +				-45	H
Peace 2 (PR2)		10 HOAL DOUGH			-						┢───┤-		ð
Halfway River (HD-D)	30-05-16	12 10 pm Csurface			Ч—						$\vdash$	<u>-17</u>	41
Halfway River (HD-D)	30-05-16	12:40 pm Waster)	14	<u>-</u>	4						$\vdash$		2
~													
													Π
			+		· ·			++			+		Η
······································		<u> </u>									+	-+	+
·····		· · · · · · · · · · · · · · · · · · ·	. ↓		_						$\vdash$	$\rightarrow$	1
													Π
			+ +					+ 1					Η
	L		20122-0005	152400122	NIN SAM	NECO	NOTION	ASRECE			L L L L L L L L L L L L L L L L L L L		22
Drinking Water (DW) Samples ¹ (client use) Special	Instructions / Specify Criteria to add on	report (client Use)	Frozen			Stockers Profile		Observati		res	a de la casa de la cas		Ħ
Are samples taken from a Regulated DW System?	email 3: pgaut	NEVER0140 Laturi	(BUTION)	ks Ye	es 🗖	No	Cus	tody seal	intact	Yes 🗖	No		
TYes TUNO	1 ]	ator a riejoni	Cooling	Initiated			_	-					
Are samples for human drinking water use?			()))) (teacher	MÉCOOL	ER TEMPER	ATURES	•C:	own Ryse	INAL COOLE	RTEMPER	ATURES		1
r Yes r√No			େର										
SHIPMENT RELEASE (client use)	INITIAL SHIPMENT RECEPT				()()) VIII FI	NAU SI	IPMENT F	RECEPT	ON (lab us	a only)	entraitor	<u>Ranzecia</u>	
Released by: Date: Time: Received		Date: Time: 15125	Receive					Date:		Fime:			П
Thyllis Gauthier A MAY30-14 330m								<u> </u>					Ц
REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	WHI	TE - LABORATORY COPY YELLO	N - CLIEN	T COPY				NA	FN-0326e v09 From	04 January 2014			

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



Tetra Tech Canada Inc. ATTN: Danielle MacDonald # 1 - 4376 Boban Drive Nanaimo BC V9T 6A7 Date Received: 30-MAY-16 Report Date: 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

Client Phone: 250-756-2256

# Certificate of Analysis

Lab Work Order #: L1775541

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED VENV03118-01 14-487048

Comments:

28-FEB-2017 This report replaces the previous version and contains a Client Sample ID change, as requested.

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

L1775541 CONTD.... PAGE 2 of 8 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1775541-1 WATER 30-MAY-16 10:00 PEACE CANYON (PC1)	L1775541-2 WATER 30-MAY-16 10:40 UPPER SITE C RESERVOIR (PR1)	L1775541-3 WATER 30-MAY-16 12:40 HALFWAY RIVER- DOWNSTREAM (HD)	L1775541-4 WATER 30-MAY-16 12:00 MIDDLE SITE C RESERVOIR (PR2)	
Grouping	Analyte					
WATER						
Physical Tests	Colour, True (CU)	6.4	6.5	28.3	6.7	
	Hardness (as CaCO3) (ug/L)	98700	100000	187000	101000	
	рН (рН)	7.99	8.00	8.18	8.04	
	Total Suspended Solids (ug/L)	<3000	<3000	226000	14500	
	Total Dissolved Solids (ug/L)	117000	108000	226000	119000	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (ug/L)	82400	81800	147000	84100	
	Ammonia, Total (as N) (ug/L)	<5.0	<5.0	12.0	<5.0	
	Bromide (Br) (ug/L)	<50	<50	<50	<50	
	Chloride (Cl) (ug/L)	<500	<500	<500	<500	
	Fluoride (F) (ug/L)	40	40	93	41	
	Nitrate and Nitrite (as N) (ug/L)	75.6	75.3	24.1	71.7	
	Nitrate (as N) (ug/L)	75.6	75.3	24.1	71.7	
	Nitrite (as N) (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Total Kjeldahl Nitrogen (ug/L)	90	78	745	170	
	Total Nitrogen (ug/L)	137	156	387	141	
	Orthophosphate-Dissolved (as P) (ug/L)	<1.0	<1.0	4.4	<1.0	
	Phosphorus (P)-Total Dissolved (ug/L)	<2.0	<2.0	7.2	<2.0	
	Phosphorus (P)-Total (ug/L)	2.6	3.3	251	15.5	
	Silicate (as SiO2) (ug/L)	4570	4440	3570 SFT	4380	
	Sulfate (SO4) (ug/L)	13100	13100	37500	13300	
Organic / Inorganic Carbon	Dissolved Organic Carbon (ug/L)	2910	3450 RRV	7320	3480 RRV	
	Total Organic Carbon (ug/L)	2460	2690	7820	2790	
Total Metals	Aluminum (Al)-Total (ug/L)	31.2	42.5	3580	133	
	Antimony (Sb)-Total (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Arsenic (As)-Total (ug/L)	<0.50	<0.50	2.33	<0.50	
	Barium (Ba)-Total (ug/L)	32	33	187	36	
	Beryllium (Be)-Total (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Bismuth (Bi)-Total (ug/L)	<0.050	<0.050	0.102	<0.050	
	Boron (B)-Total (ug/L)	<100	<100	<100	<100	
	Cadmium (Cd)-Total (ug/L)	0.0194	0.0171	0.264	0.0384	
	Calcium (Ca)-Total (ug/L)	28900	28800	54900	28400	
	Chromium (Cr)-Total (ug/L)	<1.0	<1.0	6.5	<1.0	
	Cobalt (Co)-Total (ug/L)	<0.30	<0.30	2.14	<0.30	
	Copper (Cu)-Total (ug/L)	<1.0	<1.0	6.8	1.0	
	Iron (Fe)-Total (ug/L)	66	64	5140	277	
	Lead (Pb)-Total (ug/L)	<0.50	<0.50	2.67	<0.50	

L1775541 CONTD.... PAGE 3 of 8 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1775541-1 WATER 30-MAY-16 10:00 PEACE CANYON (PC1)	L1775541-2 WATER 30-MAY-16 10:40 UPPER SITE C RESERVOIR (PR1)	L1775541-3 WATER 30-MAY-16 12:40 HALFWAY RIVER- DOWNSTREAM (HD)	L1775541-4 WATER 30-MAY-16 12:00 MIDDLE SITE C RESERVOIR (PR2)	
Grouping	Analyte			()		
WATER						
Total Metals	Lithium (Li)-Total (ug/L)	1.2	1.3	9.4	1.4	
	Magnesium (Mg)-Total (ug/L)	6020	6070	14700	6210	
	Manganese (Mn)-Total (ug/L)	2.41	2.59	73.1	6.49	
	Mercury (Hg)-Total (ug/L)	<0.0050	<0.0050	ollm <0.025	<0.0050	
	Molybdenum (Mo)-Total (ug/L)	<1.0	<1.0	2.9	<1.0	
	Nickel (Ni)-Total (ug/L)	<1.0	<1.0	8.6	1.1	
	Phosphorus (P)-Total (ug/L)	<300	<300	<300	<300	
	Potassium (K)-Total (ug/L)	<2000	<2000	2200	<2000	
	Selenium (Se)-Total (ug/L)	0.248	0.231	1.44	0.246	
	Silicon (Si)-Total (ug/L)	2210	2220	9810	2390	
	Silver (Ag)-Total (ug/L)	<0.020	<0.020	0.072	<0.020	
	Sodium (Na)-Total (ug/L)	<2000	<2000	2900	<2000	
	Strontium (Sr)-Total (ug/L)	110	111	236	109	
	Thallium (TI)-Total (ug/L)	<0.20	<0.20	<0.20	<0.20	
	Tin (Sn)-Total (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Titanium (Ti)-Total (ug/L)	<10	<10	97	<10	
	Uranium (U)-Total (ug/L)	0.46	0.47	0.89	0.47	
	Vanadium (V)-Total (ug/L)	<0.50	0.52	15.6	1.03	
	Zinc (Zn)-Total (ug/L)	<5.0	<5.0	29.3	<5.0	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (ug/L)	<5.0	<5.0	13.7	<5.0	
	Antimony (Sb)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Arsenic (As)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Barium (Ba)-Dissolved (ug/L)	31	31	66	32	
	Beryllium (Be)-Dissolved (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Bismuth (Bi)-Dissolved (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Boron (B)-Dissolved (ug/L)	<100	<100	<100	<100	
	Cadmium (Cd)-Dissolved (ug/L)	0.0078	0.0115	0.0182	0.0088	
	Calcium (Ca)-Dissolved (ug/L)	29800	30100	52400	30300	
	Chromium (Cr)-Dissolved (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Cobalt (Co)-Dissolved (ug/L)	<0.30	<0.30	<0.30	<0.30	
	Copper (Cu)-Dissolved (ug/L)	<1.0	<1.0	1.2	<1.0	
	Iron (Fe)-Dissolved (ug/L)	<30	<30	32	<30	
	Lead (Pb)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Lithium (Li)-Dissolved (ug/L)	1.3	1.2	5.7	1.3	
	Magnesium (Mg)-Dissolved (ug/L)	5920	6050	13700	6040	

L1775541 CONTD.... PAGE 4 of 8 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1775541-1 WATER 30-MAY-16 10:00 PEACE CANYON (PC1)	L1775541-2 WATER 30-MAY-16 10:40 UPPER SITE C RESERVOIR (PR1)	L1775541-3 WATER 30-MAY-16 12:40 HALFWAY RIVER- DOWNSTREAM (HD)	L1775541-4 WATER 30-MAY-16 12:00 MIDDLE SITE C RESERVOIR (PR2)	
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (ug/L)	0.84	0.91	4.92	0.76	
	Mercury (Hg)-Dissolved (ug/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Molybdenum (Mo)-Dissolved (ug/L)	<1.0	<1.0	2.5	<1.0	
	Nickel (Ni)-Dissolved (ug/L)	<1.0	<1.0	1.9	<1.0	
	Phosphorus (P)-Dissolved (ug/L)	<300	<300	<300	<300	
	Potassium (K)-Dissolved (ug/L)	<2000	<2000	<2000	<2000	
	Selenium (Se)-Dissolved (ug/L)	0.239	0.268	1.26	0.268	
	Silicon (Si)-Dissolved (ug/L)	2160	2150	1760	2170	
	Silver (Ag)-Dissolved (ug/L)	<0.020	<0.020	<0.020	<0.020	
	Sodium (Na)-Dissolved (ug/L)	<2000	<2000	2900	<2000	
	Strontium (Sr)-Dissolved (ug/L)	108	108	227	108	
	Thallium (TI)-Dissolved (ug/L)	<0.20	<0.20	<0.20	<0.20	
	Tin (Sn)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Titanium (Ti)-Dissolved (ug/L)	<10	<10	<10	<10	
	Uranium (U)-Dissolved (ug/L)	0.43	0.40	0.59	0.41	
	Vanadium (V)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Zinc (Zn)-Dissolved (ug/L)	<5.0	<5.0	<5.0	<5.0	
Plant Pigments	Chlorophyll a (ug/L)	0.622	0.614	2.41	1.72	
		0.622	0.014	2.41	1.72	

### QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Iron (Fe)-Total	В	L1775541-3
Method Blank	Manganese (Mn)-Total	MB-LOR	L1775541-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Molybdenum (Mo)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Aluminum (Al)-Total	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Copper (Cu)-Total	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Total	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Total	MS-B	L1775541-1, -2, -4
Matrix Spike	Phosphorus (P)-Total	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Silicon (Si)-Total	MS-B	L1775541-1, -2, -3, -4
Matrix Spike	Silicon (Si)-Total	MS-B	L1775541-1, -2, -4
Matrix Spike	Total Nitrogen	MS-B	L1775541-1, -2, -4
Matrix Spike	Total Nitrogen	MS-B	L1775541-1, -2, -4
Matrix Spike	Total Nitrogen	MS-B	L1775541-3
Matrix Spike	Total Nitrogen	MS-B	L1775541-3
Matrix Spike	Total Kjeldahl Nitrogen	MS-B	L1775541-3

### **Qualifiers for Individual Parameters Listed:**

Qualifier	Description
В	Method Blank exceeds ALS DQO. All associated sample results are at least 5 times greater than blank levels and are considered reliable.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis
SFT	Sample was filtered due to turbidity interference. Result reflects soluble analyte concentration.

### **Test Method References:**

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity
5	01	edures adapted from APHA Method 2320 "Alkalinit te and hydroxide alkalinity are calculated from phe	ry". Total alkalinity is determined by potentiometric titration to a enolphthalein alkalinity and total alkalinity values.
ANIONS-N+N-CALC-VA	Water	Nitrite & Nitrate in Water (Calculation)	EPA 300.0
Nitrate and Nitrite (as N)	is a calculate	d parameter. Nitrate and Nitrite (as N) = Nitrite (as	N) + Nitrate (as N).
BR-L-IC-N-VA	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are anal	yzed by Ion C	Chromatography with conductivity and/or UV detec	tion.
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
5	01	edures adapted from APHA Method 5310 "Total Ough a 0.45 micron membrane filter prior to analysi	rganic Carbon (TOC)". Dissolved carbon (DOC) fractions are s.
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310B TOTAL ORGANIC CARBON (TOC)
This analysis is carried or	ut using proce	edures adapted from APHA Method 5310 "Total O	rganic Carbon (TOC)".
CHLOROA-F-VA	Water	Chlorophyll a by Fluorometer	EPA 445.0

L1775541 CONTD.... PAGE 6 of 8 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

This analysis is done using procedures modified from EPA Method 445.0. Chlorophyll-a is determined by a routine acetone extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from chlorophyll b. EPA 300.1 (mod) **CL-IC-N-VA** Water Chloride in Water by IC Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. COLOUR-TRUE-VA Water Colour (True) by Spectrometer **BCMOE Colour Single Wavelength** This analysis is carried out using procedures adapted from British Columbia Environmental Manual "Colour- Single Wavelength." Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric method. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended. F-IC-N-VA Water Fluoride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. HARDNESS-CALC-VA Water Hardness **APHA 2340B** Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. HG-D-CVAA-VA Diss. Mercury in Water by CVAAS or CVAFS APHA 3030B/EPA 1631E (mod) Water Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. Water Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) **HG-T-CVAA-VA** Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. **MET-D-CCMS-VA** Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-DIS-ICP-VA Dissolved Metals in Water by ICPOES** EPA SW-846 3005A/6010B Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) **MET-T-CCMS-VA** Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-TOT-ICP-VA** Total Metals in Water by ICPOES EPA SW-846 3005A/6010B Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). N-T-COL-VA APHA4500-P(J)/NEMI9171/USGS03-4174 Water Total Nitrogen in water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. NH3-F-VA Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) Water This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

L1775541 CONTD.... PAGE 7 of 8 28-FEB-17 16:09 (MT) Version: FINAL REV. 2

Inorganic anions are analy	zed by Ion C	chromatography with conductivity and/or UV detection.	
P-T-PRES-COL-VA	Water	Total P in Water by Colour	APHA 4500-P Phosphorus
This analysis is carried ou after persulphate digestion		dures adapted from APHA Method 4500-P "Phosphorus ele.	s". Total Phosphorus is determined colourimetrically
P-TD-COL-VA	Water	Total Dissolved P in Water by Colour	APHA 4500-P Phosphorous
		dures adapted from APHA Method 4500-P "Phosphorus stion of a sample that has been lab or field filtered throu	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried ou electrode	t using proce	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that thi	s analysis be	e conducted in the field.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried ou electrode	t using proce	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that thi	s analysis be	e conducted in the field.	
PO4-DO-COL-VA	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P Phosphorus
		dures adapted from APHA Method 4500-P "Phosphorus been lab or field filtered through a 0.45 micron membrar	
SILICATE-COL-VA	Water	Silicate by Colourimetric analysis	APHA 4500-SiO2 E.
This analysis is carried ou the molybdosilicate-hetero		dures adapted from APHA Method 4500-SiO2 E. "Silic ourimetric method.	a". Silicate (molybdate-reactive silica) is determined by
SO4-IC-N-VA	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
This analysis is carried ou (TDS) are determined by f	t using proce iltering a san	dures adapted from APHA Method 2540 "Solids". Solid apple through a glass fibre filter, TDS is determined by ev	s are determined gravimetrically. Total Dissolved Solids vaporating the filtrate to dryness at 180 degrees celsius.
TKN-F-VA	Water	TKN in Water by Fluorescence	APHA 4500-NORG D.
		dures adapted from APHA Method 4500-Norg D. "Block estion followed by Flow-injection analysis with fluoresce	
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determin	ed by filtering		
** ALS test methods may inc	orporate mod	difications from specified reference methods to improve	performance.
The last two letters of the a	bove test coo	de(s) indicate the laboratory that performed analytical ar	nalysis for that test. Refer to the list below:
Laboratory Definition Cod	e Labor	atory Location	

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

### Chain of Custody Numbers:

14-487048

### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody (COC) / Analytical Request Form L1775541-COFC Conada Toll Free: 1 800 668 9878 Canada Toll Free: 1 800 668 9878																	
www.alsglobal.com	II Free; 1 800 60	8 9878	Manual and a second	N.T. 1940.													
Report To	1	Report Format	/ Distribution		Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)												
Company: Tetratech EBA Inc	Select Report Format; PDF VEXCEL VEDD (DIGITAL)																
Contact: DANIFELLE MACDONALD	Quality Control (QC) Report with Report					Ē,	- Priority ()	2-4 busino	ess days -	If receive	ed by 3pm)						
Address: 14940-123 AVE EDMONTON AB	Criteria on Report - provide details below if box checked Select Distribution:					E       Emergency (1-2 business days if received by 3pm)         E2       Same day or weekend emergency if received by 10am - contact ALS for surcharge.											
Phone: 780 886 3055	Email 1 or Fax danielle macdonalde tetratech. Email 2 dave wher @ bchydro .com			Canacify Date Required for E2,E or P: Analysis Request													
Invoice To Same as Report To 🕅 Yes 🗆 No	Invoice Distribution				Indicate Filtered (F), Presince (R) or Nitered and Preserved (F/P) below											-	
Copy of Invoice with Report 🛛 🛠 Yes Г No	Select Invoice Di	lect Invoice Distribution: 🔀 EMAIL 🗌 MAIL 🗌 FAX															
Company:	Email 1 or Fax		above		म्		6	2		7	-+-1	20	L.C.			$\neg$	
Contact:	Email 2						Auste (E/P)	( Mer )	9	5		1					
Project Information	C.	il and Gas Require	d Fields (cilent ui	() () () () () () () () () () () () () (	1 ไ	*	9	X	<u>_</u>	L.F.	2		add then				Number of Containers
ALS Quote #: 055655	Approver ID:		Cost Center:		ৡ		륑	Y	S+H9	metals-	5	ndtition	1	よ			onta
JOD #: VENN03118-01	GL Account:		Routing Code:		ತ	`⊄	्र	<u>≻ ⊀</u>	+	<u>-</u> <u></u>		100					ĕ
PO/AFE:	Activity Code:	• • • •			1 3	=		- SL	3	ŝ		197	. 5	p.			ero
LSD:	Location:				ിപ		ે શ્રે	- 1	X								- Engl
ALE Lab Work Order # (Jab use only) L1775541	ALS Contact:		Sampler:	actionald authier	Routine	Ch lovophy !!	Doc as per	TDC as por	il metal	dissolued		1, NO	( N				z
ALS Semple # Sample Identification and/or Coordinates	-	Date	Time	Sample Type	1 3	4	õ	<u>у</u>	total	3		Anio					
(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	<u>ک</u>	O	$( \rightarrow $	۴I	4	5		4	5				
Peace Canyon (PCI)		30-05-16	D:ODAN	water	1	~	V	V	1	V		~~					8
Veger, Site C Reservoir (PRI)		30-05-16		1				1	7	~				r t			8
Halfway River - Upstream (HI)	14-11				-			<u> </u>		~		-					3
			3.00.000.00									TV		<u></u>			3
Halfway River - Downstream (	<u>רַע ע</u> בי	30-05-16							$\mathbf{v}$					╞──┤		-+	ह्ये
Middle Site C Reservoir CPR	12)		12:00 pm			4	~	$\boldsymbol{\nu}$	4	$\nu$			1	<u> </u>			Å
·			-			-						_			ļ		
									1					$\square$			
											• • •						
												-		ił			
HUN IN AT 1 AN ALLA TH	1													<del> </del>		-+	-+-
# HD-U = To be sampled MAY 31 remared from this COC	12016											_		⊢	<u> </u>	$\rightarrow$	
remared tran this COC																	
· · · · · · · · · · · · · · · · · · ·																	
Drinking Water (DW) Samples ¹ (client use) Special	Instructions / Spec	ify Criteria to add on	report (client Use)			97. jili	4. 14	Autoritation /	- (S) -	directification of		$\sim 100$			<i>79694</i> 000		42.5 Q
												느느					
Are samples taken from a Regulated DW System? Thes The River Please add	: email	3: Sarah	isimon@l	schydro.com	lce pa		Yes	=			Custody se	eal intact	Yes	s 🗖	No		ן נ
Are samples for human drinking water use? Surface	email 4: pgauthier 2014@hotmai -unfiltered; stored in SOML plastic and fi			40 hotmail								and the second	5 . A S				
TYES IN Water + Chlorophyll A	-infilter	A LANK	Str. I. de	ati and f								<u>81.6.59</u> 6 :	<u></u>				
SHIPMENT RELEASE (client use)											THEFT	TUNE		ER ANY	Contraction of the	N.A. 1. 1.	
Released by: Date: Time: Receive	d hv	SHIPMENT RECERT	Date:	Time:		ved by		NAME AND	ALSH	RMEN	TRECER		o use o Tim		Wangday.		
Hullis Guillium For HAY 30 16 3:25 pm	<u> </u>	<del>xeo(f</del> -	14ay 30/16	COPY YELLOV								NA-FM-0325e vi					

Failure to complete all portions of this form may delay analysis. Please full in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

# APPENDIX B SEES JV GENERAL CONDITIONS



# **Natural Sciences**

This report incorporates and is subject to these "General Conditions".

#### 1.0 USE OF REPORTS AND OWNERSHIP

This report pertains to a specific site, a specific development or activity, and/or a specific scope of work. The report may include plans, drawings, profiles and other supporting documents that collectively constitute the report (the "Report").

The Report is intended for the sole use of Saulteau EBA Environmental Services Joint Venture's (SEES JV) Client (the "Client") as specifically identified in the SEES JV Services Agreement or other Contract entered into with the Client (either of which is termed the "Services Agreement" herein). SEES JV does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Report when it is used or relied upon by any party other than the Client, unless authorized in writing by SEES JV.

Any unauthorized use of the Report is at the sole risk of the user. SEES JV accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Report.

Where SEES JV has expressly authorized the use of the Report by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these General Conditions as well as any limitations on liability contained in the Services Agreement with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these General Conditions and the Services Agreement prior to making any use of the Report. Any use made of the Report by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Report and any other form or type of data or documents generated by SEES JV during the performance of the work are SEES JV's professional work product and shall remain the copyright property of SEES JV.

The Report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of SEES JV. Additional copies of the Report, if required, may be obtained upon request.

### 2.0 ALTERNATIVE REPORT FORMAT

Where SEES JV submits both electronic file and hard copy versions of the Report or any drawings or other project-related documents and deliverables (collectively termed SEES JV's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed version archived by SEES JV shall be deemed to be the original. SEES JV will archive the original signed and/or sealed version for a maximum period of 10 years.

Both electronic file and hard copy versions of SEES JV's Instruments of Professional Service shall not, under any circumstances, be altered by any party except SEES JV. SEES JV's Instruments of Professional Service will be used only and exactly as submitted by SEES JV.

Electronic files submitted by SEES JV have been prepared and submitted using specific software and hardware systems. SEES JV makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

#### 3.0 STANDARD OF CARE

Services performed by SEES JV for the Report have been conducted in accordance with the Services Agreement, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Report. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Report.

SEES JV professionals are bound by their ethical commitments to act within the bounds of all pertinent regulations. In certain instances, observations by SEES JV of regulatory contravention may require that regulatory agencies and other persons be informed. The client agrees that notification to such bodies or persons as required may be done by SEES JV in its reasonably exercised discretion.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of SEES JV.

#### 4.0 ENVIRONMENTAL ISSUES

The ability to rely upon and generalize from environmental baseline data is dependent on data collection activities occurring within biologically relevant survey windows.

### 5.0 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with SEES JV with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for SEES JV to properly provide the services contracted for in the Services Agreement, SEES JV has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

#### 6.0 INFORMATION PROVIDED TO SEES JV BY OTHERS

During the performance of the work and the preparation of this Report, SEES JV may have relied on information provided by persons other than the Client.

While SEES JV endeavours to verify the accuracy of such information, SEES JV accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.



#### 7.0 GENERAL LIMITATIONS OF REPORT

This Report is based solely on the conditions present and the data available to SEES JV at the time the data were collected in the field or gathered from publically available databases.

The Client, and any Authorized Party, acknowledges that the Report is based on limited data and that the conclusions, opinions, and recommendations contained in the Report are the result of the application of professional judgment to such limited data.

The Report is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present at or the development proposed as of the date of the Report requires a supplementary investigation and assessment.

It is incumbent upon the Client and any Authorized Party, to be knowledgeable of the level of risk that has been incorporated into the project design or scope, in consideration of the level of the environmental baseline information that was reasonably acquired to facilitate completion of the scope. The Client acknowledges that SEES JV is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of property, the decisions on which are the sole responsibility of the Client.

### 8.0 JOB SITE SAFETY

SEES JV is only responsible for the activities of its employees on the job site and was not and will not be responsible for the supervision of any other persons whatsoever. The presence of SEES JV personnel on site shall not be construed in any way to relieve the Client or any other persons on site from their responsibility for job site safety.

